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Abstract. The admissible rules of a logic are those rules under which the set of
theorems of the logic is closed. In a previous paper by the authors, formal sys-
tems for deriving the admissible rules of Intuitionistic Logic and a class of modal
logics were defined in a proof-theoretic framework where the basic objects of the
systems are sequent rules. Here, the framework is extended to cover derivability
of the admissible rules of intermediate logics and a wider class of modal logics,
in this case, by taking hypersequent rules as the basic objects.

1 Introduction

Investigations into logical systems typically focus on the derivability of formulas or
other structures within the system. However, the admissibility of rules for the system
may also play a key role. A rule is admissible for a logic (viewed as a consequence
relation) if adding it to the logic produces no new theorems. Such a notion is of in-
terest in Computer Science for (at least) two reasons. First, admissible rules show that
the derivability of certain formulas implies the derivability of stronger formulas, in the
sense that the latter derive the former but not vice versa, an example being the disjunc-
tion property, where the derivability of a disjunction implies that one of the disjuncts
is derivable. Second, equational unification can be formulated in terms of admissible
rules. A formula A is unifiable for a consistent logic L iff σA is a theorem of L for some
substitution σ. But this is equivalent to the claim that the rule A/q is not admissible in L
for any variable q not occurring in A. Finally, admissible rules are also interesting from
an algebraic perspective: they correspond to quasi-equations holding in the free algebra
with countably many generators (or the Lindenbaum algebra of the logic).

Classical Logic has no non-derivable admissible rules; that is, it is structurally com-
plete. However, for non-classical logics, this is no longer the case, and it is an interesting
and often quite challenging task to provide characterizations of admissibility for these
logics. In the case of modal and intermediate logics, a wide range of results for ad-
missible rules such as decidability and complexity have been obtained, in particular by
Rybakov [13]. Axiomatic-style presentations have been provided for wide classes of
intermediate logics by Iemhoff [7, 8] (the case of Intuitionistic Logic was considered



independently by Rozière [12]) and modal logics by Jeřábek [10], both making crucial
use of Ghilardi’s work on unification and projective approximations [4, 5].

In [9], the current authors introduced a proof-theoretic framework for admissibility:
analytic “Gentzen-style” proof systems for deriving the admissible rules of both Intu-
itionistic Logic and a class of “extensible” modal logics including K4, S4, and GL. The
key idea of this approach is that just as calculi for derivability in these logics can of-
ten be presented using sequents, so the corresponding systems for admissibility can be
presented using sequent rules as basic objects. Here, we extend this approach to both a
class of intermediate logics, including De Morgan Logic KC and the bounded cardinal-
ity logics BC1,BC2, . . ., and a wider class of “mono-extensible” modal logics, including
logics such as GL.3, S4.2, etc. In this case, however, the natural home for derivability is
not sequents, but the framework of hypersequents – intuitively, disjunctions of sequents
– introduced by Avron in [1] and used to define calculi for families of both intermediate
logics (see e.g. [3]) and fuzzy logics (see e.g. [11]). Hence, for admissibility in these
logics, the basic objects of our systems will be hypersequent rules.

2 Admissible Rules

Let us assume for this paper that the logic L is treated as a consequence relation based on
a propositional language with binary connectives ∧, ∨,→, a constant⊥, and sometimes
also a modal connective �. Other connectives are then defined as:

¬A =def A → ⊥ > =def ¬⊥ A ↔ B =def (A → B)∧(B → A) �A =def �A∧A

We denote (propositional) variables by p, q, r, . . ., formulas by A,B,C, . . ., and finite
sets of formulas by Γ,Π, Σ, ∆,Θ, Ψ . Formulas p → q and �p are called variable impli-
cations and boxed variables, respectively. We also write

∨
Γ and

∧
Γ where

∨
∅ = ⊥

and
∧
∅ = > for iterated disjunctions and conjunctions of formulas in a finite set Γ ,

and make use of the abbreviations:

�Γ =def {�A : A ∈ Γ} � Γ =def Γ ∪�Γ (Γ ≡ �Γ ) =def {A ↔ �A : A ∈ Γ}

Typically, logical rules are asymmetric, having many premises but just one conclusion.
However, for admissibility, it is convenient to treat instead generalized rules of the form
Γ . ∆, where both Γ and ∆ are sets of formulas. Intuitively, such a rule is admissible
for a logic L if whenever a substitution makes all the premises theorems of L, it also
makes one of the conclusions a theorem. More precisely, an L-unifier for a formula A is
a substitution σ such that `L σA. Then a generalized rule Γ .∆ is L-admissible, written
Γ |∼L ∆, if each L-unifier for all A ∈ Γ , is an L-unifier for some B ∈ ∆.

Example 1. A nice example of an admissible generalized rule for Intuitionistic Logic
is the disjunction property, formulated as p ∨ q . p, q. If `IPC σ(p) ∨ σ(q), then either
`IPC σ(p) or `IPC σ(q). However, this rule is not admissible for Classical Logic; e.g.
for σ(p) = p and σ(q) = ¬p, plainly `CPC p ∨ ¬p, but 6`CPC p and 6`CPC ¬p.

Although admissibility and derivability do not coincide in general for non-classical log-
ics, Ghilardi in [4, 5] identified classes of “projective” formulas A where the relation-
ship “A |∼L B iff A `L B” holds for all formulas B. Let us make this precise. A formula



A is L-projective for a logic L if there exists a substitution σ, called an L-projective uni-
fier for A, such that `L σA and A `L σ(p) ↔ p for all variables p.

Lemma 1. Let L be an intermediate logic or a normal extension of K4:

(a) If A is L-projective, then A |∼L ∆ iff A `L B for some B ∈ ∆.
(b) If A1, . . . , An are L-projective, then

∨n
i=1 Ai |∼L B iff

∨n
i=1 Ai `L B.

(c) If L′ extends L (as a consequence relation) and A1, . . . , An are L-projective formu-
las, then

∨n
i=1 Ai |∼L′ B iff

∨n
i=1 Ai `L′ B.

(d) If L′ extends a normal modal logic L (as a consequence relation) and A1, . . . , An

are L-projective formulas, then
∨n

i=1 �Ai |∼L′ �B iff
∨n

i=1 �Ai `L′ �B.

Proof. (a) The right-to-left direction is immediate. For the other direction, suppose that
A |∼L ∆ where A is L-projective. Then there exists an L-projective unifier σ of A, such
that `L σB for some B ∈ ∆. Also A `L σB → B, so by modus ponens, A `L B.
(b) Again, the right-to-left direction is immediate. For the other direction, suppose that∨n

i=1 Ai |∼L B. Also then Ai |∼L B for i = 1 . . . n. By (a), Ai `L B for i = 1 . . . n
and hence

∨n
i=1 Ai `L B. For (c), let L′ be an extension of L and let A1, . . . , An be L-

projective formulas. Since L′ extends L, we get that A1, . . . , An are also L′-projective.
The result then follows from (b). For (d), as for (c), we get that A1, . . . , An are L′-
projective. Suppose that

∨n
i=1 �Ai |∼L′ �B. Then also �Ai |∼L′ �B for i = 1 . . . n.

Hence Ai |∼L′ B and by (a), Ai `L′ B for i = 1 . . . n. But then �Ai `L′ �B for
i = 1 . . . n and hence

∨n
i=1 �Ai `L′ �B. The other direction is almost immediate. ut

3 Modal Logics

In [9], formal systems were defined for deriving the admissible rules of extensible modal
logics by taking sequent rules as basic objects. Below, we recall this characterization
and show that it can be extended to a wider class of logics that we call mono-extensible
by taking our basic objects to be hypersequent rules.

3.1 Extensible and Mono-Extensible Modal Logics

For a comprehensive account of modal logics, see e.g. [2]. Let us just recall that for any
normal modal logic L, an L-frame is such that every model on that frame is a model
of L, and an L-model is a model based on an L-frame. L has the finite model property
FMP if every refutable formula is refutable on a finite L-frame. For a Kripke model K
with accessibility relation R, the root of K is the cluster {k : ∀l 6= k(kRl)}, and Kk

denotes the Kripke model K restricted to the domain {l : kRl or k = l}. Two Kripke
models K1, K2 are variants of one another if they have the same nodes and accessibility
relation, and their forcing relations agree on all nodes except possibly the root.

Ghilardi [5] has given a characterization for projectivity for a wide range of modal
logics (following here the terminology of [10]).

Theorem 1 (Ghilardi [5]). A class of finite modelsK has the modal extension property
if for any model K, whenever Kk ∈ K for all k not in the root of K, there is a variant
of K in K. For every normal extension L of K4 with the FMP, a formula is L-projective
iff its class of L-models has the modal extension property.



To get a handle on the modal extension property, we recall two useful constructions.

Definition 1. For frames F1, . . . , Fn, (
∑

Fj)i and (
∑

Fj)r are obtained by adding,
respectively, an irreflexive or a reflexive node beneath (connected to all nodes of) the
disjoint sum of F1 . . . Fn. A normal extension L of K4 with the FMP is extensible if for
all finite L-frames F1, . . . , Fn:

(i) (
∑

Fj)i is an L-frame unless L is reflexive;
(ii) (

∑
Fj)r is an L-frame unless L is irreflexive.

L is mono-extensible if it satisfies the above for n = 1; that is, for each finite L-frame F :
(i) F i is an L-frame, unless L is reflexive; (ii) F r is an L-frame, unless L is irreflexive.

L is linear-extensible if it is mono-extensible and linear; i.e. all rooted L-frames are
linear (or L proves �(�A → B) ∨�(�B → A)).

Every extensible logic L obeys the modal disjunction property: if `L �A ∨ �B, then
`L �A or `L �B. I.e. �p∨�q .�p, �q is L-admissible. Significant examples of these
logics include K4, S4, Grz, and GL. Linear-extensible logics (treated in [10]), which
include the logics S4.3, K4.3, and GL.3, and clearly do not satisfy the modal disjunction
property, are the most obvious examples of mono-extensible but not extensible logics.
Other interesting examples include the logics S4.2, K4.2, and GL.2 (also discussed in
[10]) which are mono-extensible but neither extensible nor linear-extensible.

3.2 Sequent Systems for Extensible Logics

Gentzen systems for derivability in many non-classical logics, in particular core modal
logics, can be obtained in the framework of sequents. Since order and multiplicity of
formulas is unimportant in the context of modal logics, we define a sequent S here as
an ordered pair of finite sets of formulas, written Γ ⇒ ∆. Such a sequent is said to be
L-derivable, written `L S, iff `L I(S) where I(Γ ⇒ ∆) =def

∧
Γ →

∨
∆.

To obtain Gentzen-style proof systems for admissibility in extensible modal logics,
it is convenient again to use sequents, but this time at the level of rules. A generalized
sequent rule (gs-rule for short) R is an ordered pair of finite sets of sequents, written:

{Γi ⇒ ∆i}n
i=1 . {Πj ⇒ Σj}m

j=1

– R is L-admissible, written |∼L R, iff {I(Γi ⇒ ∆i)}n
i=1

|∼L {I(Πj ⇒ Σj)}m
j=1.

– R is L-derivable, written `L R, iff
∧n

i=1 I(Γi ⇒ ∆i) `L

∨m
j=1 I(Πj ⇒ Σj).

Note that A1, . . . , An |∼L B1, . . . , Bm iff |∼L (⇒A1), . . . , (⇒An) . (⇒B1), . . . , (⇒
Bm). Hence a proof system for the admissibility of gs-rules is also a proof system for
the admissibility of generalized rules, and of course, rules in the usual sense.

Rules (now at the next level up) for gs-rules are sets of rule instances, each con-
sisting of a set of premises R1, . . . , Rn and a conclusion R; instances with no premises
being called initial gs-rules. They are defined here schematically, using p, q to stand
for variables, A,B for formulas, Γ,Π, Σ, ∆,Θ, Ψ for sets of formulas, S for sequents,
and G,H for sets of sequents. We call all sequents not in G or H for instances of such
rules, principal sequents. Such rules are L-sound if whenever |∼L Ri for i = 1 . . . n,
then |∼L R, and L-invertible, if whenever |∼L R, then |∼L Ri for i = 1 . . . n. Calculi for
extensible modal logics are defined in this framework as follows:



Initial GS-Rules and Structural Rules

G . (Γ, A ⇒ A, ∆),H
(ID)

G . H
G, S . H

(W).
G . H
G . S,H

.(W)

Anti-Cut and Projection Rules

G, (Γ, A ⇒ ∆), (Π ⇒ A, Σ), (Γ, Π ⇒ Σ, ∆) . H
G, (Γ, A ⇒ ∆), (Π ⇒ A, Σ) . H

(AC)
G, S . (Γ, �I(S) ⇒ ∆),H

G, S . H
(PJ)

where (Γ ⇒ ∆) ∈ H ∪ {⇒}

Right Logical Rules

G . (Γ,⊥ ⇒ ∆),H
.(⊥⇒)

G . (Γ ⇒ ∆),H
G . (Γ ⇒ ⊥, ∆),H

.(⇒⊥)

G . (Γ ⇒ A, ∆),H G . (Γ ⇒ B, ∆),H
G . (Γ ⇒ A ∧ B, ∆),H

.(⇒∧)
G . (Γ, A, B ⇒ ∆),H
G . (Γ, A ∧ B ⇒ ∆),H

.(∧⇒)

G . (Γ, A ⇒ ∆),H G . (Γ, B ⇒ ∆),H
G . (Γ, A ∨ B ⇒ ∆),H

.(∨⇒)
G . (Γ ⇒ A, B, ∆),H
G . (Γ ⇒ A ∨ B, ∆),H

.(⇒∨)

G . (Γ ⇒ A, ∆),H G . (Γ, B ⇒ ∆),H
G . (Γ, A → B ⇒ ∆),H

.(→⇒)
G . (Γ, A ⇒ B, ∆),H
G . (Γ ⇒ A → B, ∆),H

.(⇒→)

Left Logical Rules

G . H
G, (Γ,⊥ ⇒ ∆) . H

(⊥⇒).
G, (Γ ⇒ ∆) . H
G, (Γ ⇒ ⊥, ∆) . H

(⇒⊥).

G, (Γ, A, B ⇒ ∆) . H
G, (Γ, A ∧ B ⇒ ∆) . H

(∧⇒).
G, (Γ ⇒ A, ∆), (Γ ⇒ B, ∆) . H

G, (Γ ⇒ A ∧ B, ∆) . H
(⇒∧).

G, (Γ ⇒ A, B, ∆) . H
G, (Γ ⇒ A ∨ B, ∆) . H

(⇒∨).
G, (Γ, A ⇒ ∆), (Γ, B ⇒ ∆) . H

G, (Γ, A ∨ B ⇒ ∆) . H
(∨⇒).

G, (Γ, B ⇒ ∆), (Γ ⇒ A, ∆) . H
G, (Γ, A → B ⇒ ∆) . H

(→⇒).
G, (Γ, A ⇒ B, ∆) . H
G, (Γ ⇒ A → B, ∆) . H

(⇒→).

G, (Γ, �p ⇒ ∆), (A ⇒ p) . H
G, (Γ, �A ⇒ ∆) . H

(�⇒).
G, (Γ ⇒ �p, ∆), (p ⇒ A) . H

G, (Γ ⇒ �A, ∆) . H
(⇒�).

where p does not occur in G,H, Γ , ∆, A in (�⇒). and (⇒�)..

Fig. 1. Core Modal Rules

[G, (�Γ ⇒ �∆), (�Γ ⇒ A) . H]A∈∆

G, (�Γ ⇒ �∆) . H (Vi)

[G, (Γ ≡ �Γ ⇒ �∆), (�Γ ⇒ A) . H]A∈∆

G, (Γ ≡ �Γ ⇒ �∆) . H
(Vr )

G, (Γ, Θ ⇒ ∆), (Π ⇒ Ψ, Σ), (Γ, Π, A ↔ �A ⇒ Σ, ∆) . H
G, (Γ, Θ ⇒ ∆), (Π ⇒ Ψ, Σ) . H

(AC�)

where Θ ∪ Ψ ⊆ {A, �A} and Θ, Ψ 6= ∅.

Fig. 2. Additional Extensible Modal Rules



Theorem 2 ([9]). For an extensible modal logic L and gs-rule calculus GAML where:

(1) GAML extends the core modal rules of Figure 1.
(2) If L is not reflexive, then (Vi) is a rule of GAML.
(3) If L is not irreflexive, then (Vr) and (AC�) are rules of GAML.
(4) If `L S, then `GAML . S.
(5) If `GAML R, then |∼L R.

|∼L R iff `GAML R for any gs-rule R.

Note that the right logical rules of Figure 1 are just usual rules for modal logics embed-
ded into the gs-rule framework, and that the non-modal left logical rules are obtained
from these rules by replacing the conclusion sequent with the premise sequents (includ-
ing .(⊥⇒), an instance of (W). but included here for uniformity). The (non-invertible)
modal rules, (�⇒). and (⇒�)., decompose modal formulas on the left by replacing
the formula A in �A by a new variable p, soundness following from the fact that any
substitution for the conclusion can be extended (since p does not occur there) by subsi-
tuting A for p. The “projection rule” (PJ) allows sequents on the left to be used as modal
implications on the right, corresponding to the fact that derivability implies admissibil-
ity, while the “anti-cut” rule (AC) corresponds directly to the fact that the usual cut rule
is admissible in the logic. The more complicated “Visser rules” (Vi) and (Vr) reflect
the existence of non-derivable admissible rules for irreflexive and reflexive logics.

Example 2. In particular, we can obtain calculi for K4, GL, and S4 by adding (from left
to right) the first rule for K4, the second rule for GL, and the first and the third for S4:

G . (�Γ ⇒ A),H
G . (�Γ, Π ⇒ �A, ∆),H

G . (�Γ, �A ⇒ A),H
G . (�Γ, Π ⇒ �A, ∆),H

G . (�Γ, Π ⇒ ∆),H
G . (�Γ, Π ⇒ ∆),H

to the core modal rules, with (Vi) for GL, (Vr) and (AC�) for S4, and all three for K4.

3.3 Hypersequent Systems for Mono-Extensible Logics

To deal with mono-extensible modal logics, we move beyond the sequent level. In par-
ticular, adapting slightly the usual definition (see e.g. Avron [1]), we define a hyperse-
quent to be a finite non-empty set of sequents, written S1 | . . . | Sn, and let `L G iff
`L I�(G) where I�(G) =

∨n
i=1 �I(Si). Hypersequent calculi are particularly useful

for characterizing intermediate logics (see e.g. [3]) and logics characterized by linearly
ordered structures [11]. An example of both is a calculus for the intermediate and fuzzy
Gödel-Dummett Logic LC, defined by adding a single rule to a hypersequent version of
Gentzen’s calculus LJ for Intuitionistic Logic.

Extending gs-rules to the hypersequent case, a generalized hypersequent rule (gh-
rule for short) R is an ordered pair of sets of hypersequents, written:

G1, . . . , Gn . H1, . . . ,Hm

If m ≤ 1, then R is called a single-conclusion gh-rule (sgh-rule for short).



G, G . (�I�(G) ⇒ I�(H)),H
G, G . H (PJ)h where H ∈ H ∪ {⇒}

G, (G | �Γ ⇒ �∆), (G | {�Γ ⇒ C : C ∈ ∆}) . H
G, (G | �Γ ⇒ �∆) . H (Vi)h

G, (G | Γ ≡ �Γ ⇒ �∆), (G | {�Γ ⇒ C : C ∈ ∆}) . H
G, (G | Γ ≡ �Γ ⇒ �∆) . H (Vr )h

G, (G | Γ, A ⇒ ∆), (H | Π ⇒ A, Σ)(G | H | Γ, Π ⇒ Σ, ∆) . H
G, (G | Γ, A ⇒ ∆), (H | Π ⇒ A, Σ) . H (AC)h

G, (G | Γ, Θ ⇒ ∆), (H | Π ⇒ Ψ, Σ), (G | H | Γ, Π, A ↔ �A ⇒ Σ, ∆) . H
G, (G | Γ, Θ ⇒ ∆), (H | Π ⇒ Ψ, Σ) . H

(AC�)h

where (Θ ∪ Ψ) ⊆ {A, �A} and Θ, Ψ 6= ∅

Fig. 3. Additional Mono-Extensible Modal Rules

– R is L-admissible, written |∼L R, iff {I�(Gi)}n
i=1

|∼L {I�(Hj)}m
j=1.

– R is L-derivable, written `L R, iff
∧n

i=1 I�(Gi) `L

∨m
j=1 I�(Hj).

A core set of rules for mono-extensible logics is obtained from the core modal rules by
adding a context variable G in the premises and conclusion standing for an arbitrary
context hypersequent; e.g. (⇒∧). becomes:

G, (G | Γ ⇒ A, ∆), (G | Γ ⇒ B, ∆) . H
G, (G | Γ ⇒ A ∧B, ∆) . H (⇒∧).h

Hypersequent versions of the projection and anti-cut rules of Fig. 2 are given in Fig 3.

Definition 2. The gh-version Rh of a rule schema R for gs-rules is obtained by replacing
each principal sequent S in R by G | S for a fixed hypersequent variable G.

Our starting point for a calculus for a mono-extensible modal logic L is rules on the
right of the . symbol that provide a sound and complete calculus for L-derivability.
We then expand this calculus with hypersequent versions of the core modal rules, and
versions of the appropriate Visser rules (Vi) and (Vr).

Definition 3. A calculus GAML is L-fitting for a mono-extensible modal logic L if:

(1) GAML extends the gh-versions of the core modal rules.
(2) If L is not reflexive, then (Vi)h of Fig. 3 is a rule of GAML.
(3) If L is not irreflexive, then (Vr)h and (AC�)h of Fig. 3 are rules of GAML.
(4) If `L G, then `GAML . G.
(5) If `GAML R, then |∼L R.

Example 3. For non-reflexive logics, we can use (Vi) as follows, noting that the top
gh-rule is easily seen to be derivable using rules for K4 on the right:

. � (�(�A → B) ∨�(�A ⇒ C)) ⇒ �(�A → (B ∨ C))

(�A ⇒ B | �A ⇒ C) . �(�(�A → B) ∨�(�A ⇒ C)) ⇒ �(�A → (B ∨ C))
(W).

(�A ⇒ B | �A ⇒ C) . (�A ⇒ B ∨ C)
(PJ)h

(�A ⇒ �B, �C), (�A ⇒ B | �A ⇒ C) . (�A ⇒ B ∨ C)
(W).

(�A ⇒ �B, �C) . (�A ⇒ B ∨ C)
(Vi)h



Proposition 1. Let L be a mono-extensible modal logic.

(a) All the core modal rules are L-sound.
(b) If L is irreflexive (in particular, a GL-extension), then (Vi)h is L-sound.
(c) If L is reflexive (equivalently, an S4-extension), then (Vr)h and (AC�) are L-sound.

Proof. Many parts of this proof are exactly as in the extensible case considered in [9].
It remains only to check the soundness of the Visser rules (Vi)h and (Vr)h. For the
former, it is sufficient to show I�(G | �Γ ⇒ �∆) |∼L I�(G | {�Γ ⇒ C : C ∈ ∆}).
Suppose that 6`L σI�(G | {�Γ ⇒ C : C ∈ ∆}) for some substitution σ. If ∆ = ∅,
then 6`L σI�(G) and since `L �¬�A ↔ �⊥ for any formula A, easily 6`L σI�(G |
�Γ ⇒). Suppose then that ∆ 6= ∅. Since L has the FMP, let K be a finite L-model
refuting σI�(G | {�Γ ⇒ C : C ∈ ∆}) and let F be the frame of K. L is mono-
extensible and irreflexive, so F i is also an L-frame. Consider a model on the frame F i

for which the forcing in all nodes except the root is the same as in K, and no variables
are forced at the root. �I(�σΓ ⇒ �σ∆) and �I(σS) are refuted at the root for all
S ∈ G, so 6`L σI�(G | �Γ ⇒ �∆) and we are done. Note that the extra boxes in the
interpretation I� of hypersequents is essential here, since we cannot conclude that G is
not forced at the root, but we can for I�(G).

For (Vr), we show I�(G | Γ ≡ �Γ ⇒ �∆) |∼L I�(G | {�Γ ⇒ C : C ∈ ∆}).
Suppose that 6`L σI�(G | {�Γ ⇒ C : C ∈ ∆}) for some substitution σ. If ∆ = ∅,
then 6`L σI�(G) and since `L �¬(A ↔ �A) ↔ �⊥ for any formula A, easily
6`L σI�(G | Γ ≡ �Γ ⇒). Suppose then that ∆ 6= ∅. Since L has the FMP, let K
be a finite L-model refuting σI�(G | {�Γ ⇒ C : C ∈ ∆}) and let F be the frame
of K. L is mono-extensible and reflexive, so F r is an L-frame with a reflexive root
r. By the reflexivity of r and since K forces σ(�Γ ), r forces σ(A) ↔ σ(�A) for
all A ∈ Γ . Hence r forces

∧
{σ(A) ↔ σ(�A) : A ∈ Γ} but refutes σ(

∨
�∆). So

6`L σI�(G | Γ ≡ �Γ ⇒ �∆). ut

Notice that we have considered here only logics that are either reflexive or irreflexive,
meaning that logics such as K4.2 lacking these properties are currently beyond our
scope (although we believe that very similar methods should suffice for such cases).

We now turn our attention to establishing completeness for fitting calculi, restricting
our attention (at least to start with) to the single-conclusion case. First, we show that
L-derivable sgh-rules are also GAML-derivable.

Lemma 2. Let L be a mono-extensible modal logic and let GAML be L-fitting. If `L R,
then `GAML R for any sgh-rule R.

Proof. Let R = (G .H) where |H| ≤ 1 and suppose that `L R. If H is {H}, or taking
H to be (⇒) if H = ∅, then

∧
G∈G I�(G) `L I�(H). But then since we are above K4,

using the modal deduction theorem:

`L

∧
G∈G

�I�(G) → I�(H)

GAML is L-fitting, so by repeated applications of (PJ)h, `GAML G . H as required. ut



Our task now is to reduce the L-admissibility of a gh-rule to the admissibility of more
manageable gh-rules. We introduce the following notions:

Definition 4. A gh-rule R = (G .H) is:

– modal-irreducible if G contains only variables and boxed variables.
– modal-semi-irreducible if G contains only variables and boxed variables, and on

the left of sequents possibly also equivalences of the form p ↔ �p.
– full with respect to a set of rules X if whenever R1, . . . , Rn/R is an instance of a rule

in X , then Ri ⊆ R for some i ∈ {1, . . . , n} (i.e. applying a rule in X backwards to
R adds no new sequents to the gh-rule).

It is an easy task (see e.g. [9]) – essentially following from the soundness of the usual
logical rules for modal logics – to show that the left logical rules are all L-invertible.
Moreover, each such rule (working upwards) removes an occurrence of a logical con-
nective from a sequent in a hypersequent on the left. Hence, if we define the complexity
of a sequent as the multiset of complexities (number of symbols) of its formulas, and
the complexity of a gh-rule as the multiset of complexities of its sequents, then it is a
standard inductive proof to show the following:

Lemma 3. Each L-admissible gh-rule can be derived from an L-admissible modal-
irreducible gh-rule using the left logical rules.

But now notice that there is a finite number of different semi-modal-irreducible se-
quents built from a fixed set of variables. Hence applying any number of rules with
the subformula property backwards to a modal-irreducible gh-rule will terminate with
gh-rules full with respect to that set.

Lemma 4. Let X ⊆ {(Vi)h
, (Vr)h, (AC), (AC�), (∧⇒)., (→⇒).}. Then every modal-

irreducible L-admissible gh-rule can be derived using X from a set of semi-modal-
irreducible L-admissible gh-rules that are full with respect to X . If X does not contain
(AC�), then these gh-rules are modal-irreducible.

For the main part of the proof, we again consider only irreflexive and reflexive logics
(and single-conclusion gh-rules), treated by the following two theorems:

Theorem 3. If GAML is L-fitting for a mono-extensible irreflexive modal logic L, then
|∼L R iff `GAML R for any sgh-rule R.

Proof. The right-to-left direction follows from the definition of L-fitting and Propo-
sition 1. For the left-to-right direction, it is sufficient by Lemma 4 to assume that
R = (G . H) is an L-admissible modal-irreducible sgh-rule that is full with respect
to (Vi) and (AC). Suppose now that:

G = (G1, . . . , Gn) and Gi = (Si
1 | . . . | Si

mi
) where Si

j = (Γ i
j ⇒ ∆i

j).

Let A =
∧n

i=1 I�(Gi) =
∧n

i=1

∨mi

j=1 �I(Si
j). If A is inconsistent, then `GAML G .H

follows immediately by Lemma 2. We define:

Xj1,...,jn
= {S1

j1 , . . . , S
n
jn
} and C =

∨
j1≤m1,...,jn≤mn

∧
S∈Xj1,...,jn

�I(S).



and observe that by distributivity: `L C ↔ A.
Now we come to the crucial point of the proof. Each irreflexive logic with the FMP

contains GL. Suppose that we can show that
∧

S∈Xj1,...,jn
I(S) is GL-projective or GL-

inconsistent for each j1 ≤ m1, . . . , jn ≤ mn. For H = {H} or taking H as ⇒ if H =
∅, it follows by Lemma 1 (d), that C `L I�(H) iff C |∼L I�(H). So since `L C ↔ A
and A |∼L I�(H), we get `L G .H. But then by Lemma 2, `GAML G .H as required.
Note that the fact that H consists of at most one hypersequent plays a crucial role here.

Hence we have proved the theorem once we have shown that each
∧

S∈Xj1,...,jn
I(S)

is either GL-projective or GL-inconsistent. To achieve this we make use of the result es-
tablished in [9], that a modal irreducible gs-rule that is full with respect to (Vi) and
(AC) is either projective or inconsistent. I.e. it is sufficient to show that Xj1,...,jn

. H
is a modal irreducible gs-rule that is full with respect to (Vi) and (AC). The rest of this
proof will consist of a proof of this fact.

We call a set Xj1,...,jn
minimal if it does not contain a proper subset Xh1,...,hn

. It
suffices to establish the modal irreducibility and fullness with respect to (Vi) and (AC)
only for the gs-rules Xj1,...,jn .H for which Xj1,...,jn is minimal. For suppose that there
is a Xh1,...,hn ⊂ Xj1,...,jn for which I(Xh1,...,hn) is GL-projective or GL-inconsistent.
Then `GAML Xh1,...,hn

.H, and, since Xh1,...,hn
⊂ Xj1,...,jn

, `GAML Xj1,...,jn
.H.

Let us fix a minimal D = Xj1,...,jn
for some j1 ≤ m1, . . . , jn ≤ mn. Clearly

D .H is modal-irreducible. The following two claims establish the fullness of D .H
with respect to (Vi) and (AC), which completes the proof.

Claim. D .H is full with respect to (Vi).

Proof. Suppose that D contains a sequent (�Γ ⇒ �∆). Then G contains a hyperse-
quent (G | �Γ ⇒ �∆). We have to show that it contains a sequent (�Γ ⇒ A) for
some A ∈ ∆. By the fullness of G .H with respect to (Vi)h, it follows that G contains
the hypersequent (G | {�Γ ⇒ A | A ∈ ∆}) (just G if ∆ = ∅). By the definition of
D = Xj1,...,jn

it follows that either (�Γ ⇒ A) belongs to D, in which case we are
done, or there is a sequent S in G that belongs to D. But it is not hard to see that in
this case there is a set Xh1,...,hn

, corresponding to a disjunct of C, that is the result of
replacing (�Γ ⇒ �∆) in D by S. But then Xh1,...,hn is a proper subset of D, contra-
dicting the minimality of D. Observe that we use here the fact that no hypersequent in
G, being just a set of sequents, can contain the same sequent twice.

Claim. D .H is full with respect to (AC).

Proof. The proof is similar to the proof of the claim above, but let us spell it out nev-
ertheless. Suppose that D contains the sequents (Γ,A ⇒ ∆) and (Π ⇒ A,Σ). We
have to show that it contains the sequent (Γ,Π ⇒ Σ, ∆). Observe that G has to contain
hypersequents of the form (G | Γ, A ⇒ ∆) and (H | Π ⇒ A,Σ) for some hyperse-
quents G and H . By the fullness of G . H with respect to (AC)h, it follows that if D
does not contain the sequent (Γ,Π ⇒ Σ, ∆) it has to contain a sequent S from G or H .
In this case, replacing the (Γ, A ⇒ ∆) in D by S in case S occurs in G and replacing
(Π ⇒ A,Σ) by S otherwise, we obtain a set Xh1,...,hn , corresponding to a disjunct of
C, that is a proper subset of D, contradicting the minimality of D. ut



Theorem 4. If GAML is L-fitting for a mono-extensible reflexive modal logic L, then
|∼L R iff `GAML R for any sgh-rule R.

Proof. Since the reasoning is similar to the completeness proof for irreflexive logics
given above, we just explain the points of divergence and leave the details to the reader.
In this case, for the left-to-right direction, it is sufficient by Lemma 4 to assume that
R = (G .H) is a modal-semi-irreducible L-admissible sgh-rule that is full with respect
to (Vr)h, (AC)h, (AC�)h, (∧⇒).h, and (→⇒).h, and obtained by applying these rules
(backwards) to a modal-irreducible gh-rule. We then define Xj1,...,jn

, C, and D as in
the irreflexive case. This time, since each reflexive extension of K4 contains S4, it is suf-
ficient to show that each

∧
S∈Xj1,...,jn

I(S) is either S4-projective or S4-inconsistent.
To achieve this we make use of the result established in [9], that a modal-semi-

irreducible gs-rule that is full with respect to (Vr)h, (AC)h, (AC�)h, (∧⇒).h, and
(→⇒).h, is either S4-projective or S4-inconsistent. I.e. it is sufficient to show that
D . H is a modal-semi-irreducible gs-rule that is full with respect to (Vr)h, (AC)h,
(AC�)h, (∧⇒).h, and (→⇒).h. The proofs of these facts are similar to the proofs of
the claims in the previous proof, and are left to the reader. ut

The obvious question remaining here (apart from extending beyond the reflexive and
irreflexive cases) is what happens in the case of multiple-conclusion rules. We just give
a partial answer here, leaving the general case for further investigation. First, we recall
from [10] that L has essentially single-conclusion admissible rules if whenever Γ |∼L ∆,
there exists A ∈ ∆∪{⊥} such that Γ |∼L A. Jeřábek has shown the following using the
notion of filtering unification investigated by Ghilardi and Sacchetti in [6].

Theorem 5 ([10]). Every extension of K4.2 has essentially single-conclusion admissi-
ble rules. Moreover, any normal extension of K4.1 with essentially single-conclusion
admissible rules is an extension of K4.2.

Corollary 1. If GAML is L-fitting for a mono-extensible reflexive or irreflexive exten-
sion L of K4.2, then |∼L R iff `GAML R for any gh-rule R.

Let us note finally for this section that concrete systems for admissiblity can be defined
for mono-extensible logics such as S4.2, GL.3, etc. by adding to our core set of rules any
kind of calculus for derivability in these logics. In particular, hypersequent calculi can
be developed for many of these cases, but we omit the details here for space reasons.

4 Intermediate Logics

We turn our attention now to intermediate logics, recalling first the result of [8] that if
an intermediate logic L admits the following Visser rules, then they form a basis for the
admissible rules of L:

(Vn) (C → (An+1 ∨An+2)) ∨D / (
n+2∨
j=1

C → Aj) ∨D



Initial GS-Rules, Structural Rules, Anti-Cut Rule, Projection Rule: as in the core modal rules.

Logical Rules: as in the core modal rules for ⊥, ∧, and ∨, plus:

G . (Γ, A → B ⇒ A, ∆),H G . (Γ, B ⇒ ∆),H
G . (Γ, A → B ⇒ ∆),H

.(→⇒)i
G . (Γ, A ⇒ B),H

G . (Γ ⇒ A → B, ∆),H
.(⇒→)i

G, (Γ, B ⇒ ∆), (Γ, A → B ⇒ A, ∆) . H
G, (Γ, A → B ⇒ ∆) . H

(→).

G, (Γ ⇒ p, ∆), (p, A ⇒ B) . H
G, (Γ ⇒ A → B, ∆) . H

(⇒→).i
G, (Γ, p → q ⇒ ∆), (p ⇒ A), (B ⇒ q) . H

G, (Γ, A → B ⇒ ∆) . H
(→⇒).i

where p and q do not occur in G,H, Γ , and ∆ in (→⇒).i, (⇒→).i.

Visser Rule

[G, (Γ ⇒ ∆), (Γ ⇒ A) . H]A∈∆ [G, (Γ ⇒ ∆) . (Γ Π , Π ⇒ ∆),H]∅6=Π⊆Γ∆

G, (Γ ⇒ ∆) . H
(V)

where Γ contains only implications, and:

1. Γ Π = {A → B ∈ Γ : A 6∈ Π}. 2. Γ∆ = {A 6∈ ∆ : ∃B (A → B) ∈ Γ}.

Fig. 4. The Calculus GAMI

for n = 1, 2, . . ., where C =
∧n

i=1(Ai → Bi). In some cases, such as Gödel-Dummett
logic LC, the Visser rules (and hence all admissible rules) are derivable. Here we con-
sider some logics where this does not happen: in particular, de Morgan (or Jankov) logic
KC, axiomatized by adding the axiom ¬A∨¬¬A to IPC, and the family of logics with
Kripke models of bounded cardinality BCn for n = 1, 2, . . . (noting that for n = 1, 2,
the Visser rules are in fact derivable).

We also recall Ghilardi’s useful characterization of IPC-projective formulas.

Theorem 6 (Ghilardi [4]). For Kripke models K1, . . . ,Kn, let (
∑

i Ki)′ denote the
Kripke model obtained by attaching one new node below all nodes in K1, . . . ,Kn where
no variables are forced. A class of Kripke models K has the extension property if for
every finite family of models K1, . . . ,Kn ∈ K, there is a variant of (

∑
i Ki)′ in K. A

formula is IPC -projective iff its class of Kripke models has the extension property.

Figure 4 displays the gs-rule calculus GAMI for Intuitionistic Logic of [9]. In this case
it is the (non-invertible on the right) implication rules that use new variables on the left.

Theorem 7 ([9]). `GAMI R iff |∼IPC R for any gs-rule R.

Just as we stepped from extensible to mono-extensible modal logics, so we can step
here from a calculus for IPC to calculi for intermediate logics admitting the Visser
rules. Note, however, that we require a slightly different (more usual) interpretation
of hypersequents. For an intermediate logic L and hypersequent G, we write `L G iff
`L I(G) where I(G) =

∨
S∈G I(S). Also, a gh-rule R = (G1, . . . , Gn . H1, . . . ,Hm)

is L-admissible, written |∼L R, iff {I(Gi)}n
i=1

|∼L {I(Hj)}m
j=1 and L-derivable, written

`L R, iff
∧n

i=1 I(Gi) `L

∨m
j=1 I(Hj). It will also be helpful to restrict the notion of



G, (G | Γ, A ⇒ ∆), (H | Π ⇒ A, Σ)(G | H | Γ, Π ⇒ Σ, ∆) . H
G, (G | Γ, A ⇒ ∆), (H | Π ⇒ A, Σ) . H (AC)h

G, G . (I(G) ⇒ I(H)),H
G, G . H (IPJ)

where H ∈ H ∪ {⇒}

G, (G | {Γ ⇒ A}A∈∆) .H [G . (Γ Π , Π ⇒ ∆),H]Π⊆Γ∆

G, (G | Γ ⇒ ∆) .H (V)h

where Γ contains only implications, and:

1. Γ Π = {A → B ∈ Γ : A 6∈ Π}. 2. Γ∆ = {A 6∈ ∆ : ∃B (A → B) ∈ Γ}.

Fig. 5. Additional Rules for Intermediate Logics

an sgh-rule a little further to an ssgh-rule: an sgh rule where not only is there at most
one hypersequent on the right, but also this hypersequent consists of just one sequent.
Essentially, the reason for this is that completeness results for hypersequent calculi
for intermediate logics given in the literature (see e.g. [3]) are typically restricted to
sequents rather than hypersequents.

Definition 5. A calculus GAML is L-fitting for an intermediate logic L if:

(1) GAML extends the core intermediate rules: gh-versions of the initial gs-rules, struc-
tural rules, and logical rules of GAMI, and the additional rules of Fig. 5.

(2) If `L S, then `GAML . S for any sequent S.
(3) If `GAML R, then |∼L R.

Lemma 5. The core intermediate rules are L-sound for every intermediate logic L ad-
mitting the Visser rules.

Proof. Let L be an intermediate logic admitting the Visser rules. We just consider (V)h

since other proofs are very similar to those for GAMI in [9]. Suppose that σ is an L-
unifier for I(H) for all H ∈ G and I(G | Γ ⇒ ∆), where ∆ = {A1, . . . , An}.
Using the right set of premises, σ is an L-unifier for I(ΓΠ ,Π ⇒ ∆) for all Π ⊆ Γ∆.
It suffices now to show that σ is an L-unifier for I(G | {Γ ⇒ A}A∈∆). Suppose,
arguing contrapositively, that this is not the case. Then there exists a countermodel of L
for I(σ(G)) ∨

∨
A∈∆ I(σ(Γ ) ⇒ σ(A)). This implies that for every A ∈ ∆ there are

countermodels KA such that KA is a model of L, KA  σ(
∧

Γ ), and KA 6 σ(A).
Since L admits the Visser rules, there is a variant K of (

∑
A∈∆ KA)′ that is a model

of L. Let Π = {D ∈ Γ∆ : K  σ(D)}. Observe that for all B → C ∈ Γ such that
B 6∈ Π , either B ∈ ∆ or K 6 σ(B). Note also that B ∈ ∆ implies K 6 σ(B). Hence
for all B 6∈ Π it follows that K 6 σ(B), and so K  σ(B → C). It follows that
K  σ(

∧
(ΓΠ ∪Π)). Thus K  σ(

∨
∆), a contradiction. ut

The difference between the rules (V)h and (V) is essentially due to the fact that IPC has
the disjunction property, while intermediate logics in general do not.

The core set of rules given above can be extended on the right to obtain proof sys-
tems for admissibility in various intermediate logics. In particular, we can make use of
hypersequent calculi provided for KC and BCn (n = 1, 2, . . .) in [3], to obtain:



– GAMKC consists of the core intermediate rules plus:

G . (G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2 | Γ1, Γ2 ⇒)

G . (G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2)
(J)

– GAMBCn for n = 1, 2, . . . consists of the core intermediate rules plus:

[G . (G | Γ1 ⇒ ∆1 | . . . | Γn+1 ⇒ ∆n+1 | Γi, Γj ⇒ ∆i)]1≤i<j≤n+1

G . (G | Γ1 ⇒ ∆1 | . . . | Γn+1 ⇒ ∆n+1)
(BCn)

Corollary 2. GAMKC is KC-fitting and GAMBCn is BCn-fitting for n = 1, 2, . . ..

To prove completeness for L-fitting systems GAML for intermediate logics L admitting
the Visser rules, we proceed similarly to the case of mono-extensible modal logics. First
we can show, exactly as in Lemma 2 (except replacing the application of the modal
deduction theorem with the usual deduction theorem), that L-derivable ssgh-rules are
also GAML-derivable.

Lemma 6. Let L be an intermediate logic admitting the Visser rules and let GAML be
L-fitting. If `L R, then `GAML R for any ssgh-rule R.

As for Lemmas 3 and 4, applying the invertible left logical rules backwards reduces
any gh-rule to a gh-rule of a certain form (in this case with variable implications on
the left), and then applying the rules (V)h, (→).h, and (AC)h exhaustively backwards
terminates with a set of gh-rules full with respect to these rules.

Lemma 7. A gh-rule G .H is implication-irreducible if all sequents in G contain only
variables on the right and variables and variable implications on the left. Every admis-
sible gh-rule is GAML-derivable from admissible implication-irreducible gh-rules that
are full with respect to (V)h, (→).h, and (AC)h.

The completeness theorem is then established similarly to the proof for IPC in [9], the
main complication being that (as in the mono-extensible modal case) we now have to
take care of all the different disjuncts occurring in hypersequents on the left.

Theorem 8. For any intermediate logic L admitting the Visser rules and L-fitting cal-
culus GAML, |∼L R iff `GAML R for any ssgh-rule R.

Proof. The right-to-left direction follows directly from Lemma 5. For the left-to-right
direction, it is sufficient to assume (proceeding exactly as in the IPC-case) that R =
(G . H) is an L-admissible implication-irreducible gh-rule that is full with respect to
(V)h, (→).h, and (AC)h. The proof is similar to the completeness proofs for the modal
logics given above, but since some details are essentially different we will sketch the
proof for intermediate logics briefly.

Define C and Xj1,...,jn
as in the modal completeness proofs above, but without

boxes. By Lemma 1 (d), if each I(Xj1,...,jn) is IPC-projective or IPC-inconsistent, then
`L G .H. But then by Lemma 6, `GAML G .H. It is then sufficient to show that each
consistent

∧
Xj1,...,jn

I(S) is IPC-projective or derives I(H). Recall that Xj1,...,jn
is

called minimal if there is no Xh1,...,hn that is a proper subset of Xj1,...,jn . Reasoning



as in the modal case, it suffices to consider only minimal sets. Let D denote a minimal
set Xj1,...,jn

. To show that D . H has the mentioned properties, we make use of the
result established in [9], that an implication-irreducible gs-rule that is full with respect
to (V)h, (→).h, and (AC)h is either projective or derives I(H). I.e. it is sufficient to
show that D .H is an implication-irreducible gs-rule that is full with respect to (V)h,
(→).h, and (AC)h. Proofs of these facts are similar to the claims in the completeness
proofs for modal logics. We will only treat (V)h, leaving the other cases to the reader.

Claim. D .H is full with respect to the rule (V)h.

Proof. Suppose that D contains a sequent (Γ ⇒ ∆), where Γ contains only implica-
tions. Thus G contains a hypersequent (G | Γ ⇒ ∆) for some hypersequent G. By the
fullness of (G.H) with respect to (V)h, it follows that eitherH contains (ΓΠ ,Π ⇒ ∆)
for some Π ⊆ Γ∆, or D contains a sequent (Γ ⇒ A) for some A ∈ ∆, or D contains
a sequent S of G. In the first two cases we are done. In the last case, by replacing
(Γ ⇒ ∆) by S in D, we obtain a set Xh1,...,hn

, corresponding to a disjunct of C, that
is a proper subset of D, contradicting the minimality of D. ut

Corollary 3. For L ∈ {KC,BC1,BC2, . . .}: |∼L R iff `GAML R for any ssgh-rule R.

As in the modal case, there exist essentially single-conclusion logics where the preced-
ing corollary extends to multiple-conclusion rules; indeed, we conjecture that this is the
case for all extensions of KC admitting the Visser rules.
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