On sets, functions and relations

Some solutions

Rosalie Iemhoff

December 5, 2008

1 Exercises Chapter 2

1. $\left\{n \in \mathbb{N} \mid \exists m \in \mathbb{N}\left(n=m^{2}\right)\right\}$.
2. For example $\{n \in \mathbb{N} \mid \exists m \in \mathbb{Z}(n=3 m)\},\{n \in \mathbb{Z} \mid n \geq 0$ and $(n / 3) \in \mathbb{Z}\}$, and $\{0,3,6,9,12, \ldots\}$.
3. $\{0,1\}$.
4.

$$
\begin{aligned}
x \in C \backslash(A \cap B) & \Leftrightarrow x \in C \text { and } x \notin A \cap B \\
& \Leftrightarrow x \in C \text { and }(x \notin A \text { or } x \notin B) \\
& \Leftrightarrow(x \in C \text { and } x \notin A) \text { or }(x \in C \text { and } x \notin B) \\
& \Leftrightarrow x \in(C \backslash A) \cup(C \backslash B) .
\end{aligned}
$$

14. $\emptyset \in P(X)$ because $\emptyset \subseteq X$, for any set X. Also $X \in P(X)$, as $X \subseteq X$.
15. Assume $X \subseteq Y$ and $Y \subseteq Z$. We show that $X \subseteq Z$. That is, that $\forall x(x \in X \rightarrow x \in Z)$. Therefore, assume $x \in X$. Then $x \in Y$ because $X \subseteq Y$. But then $x \in Z$ since $Y \subseteq Z$.
16. $\emptyset,\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\},\{1,2,3\}$, $\{1,2,4\},\{1,3,4\},\{2,3,4\},\{1,2,3,4\}$.
17. $2^{6}=64$ subsets. \mathbb{N} clearly has infinitely many subsets.

2 Exercises Chapter 3

1. $\{\langle r, s\rangle \mid r, s \in \mathbb{R}, r=\sqrt{s}\}$ or $\left\{\langle r, s\rangle \in \mathbb{R}^{2} \mid r^{2}=s\right\}$.
2. $\{\langle a, a\rangle,\langle a, c\rangle,\langle a, d\rangle,\langle b, a\rangle,\langle b, c\rangle,\langle b, d\rangle\}$.
3. The diagonal.
4. The pairs of reals which sum is a rational number. Let us call this relation R. R is symmetric: $\langle r, s\rangle \in R$ implies $(r+s) \in \mathbb{Q}$, which implies $(s+r) \in \mathbb{Q}$, which implies $\langle s, r\rangle \in R$. The relation is not linear: neither $\langle\pi, 2 \pi\rangle \in R$, nor $\pi=2 \pi$, nor $\langle 2 \pi, \pi\rangle \in R$.
5. The relation $R=\left\{\langle n, m\rangle \in \mathbb{Z}^{2} \mid n^{2}=m\right\}$ is not dense: $\langle 2,4\rangle \in R$ since $2^{2}=4$, but there is no $k \in \mathbb{Z}$ such that $\langle 2, k\rangle \in R$ and $\langle k, 4\rangle \in R$, as this would imply both $k=2^{2}$ and $k^{2}=4$, i.e. $k=4$ and $k=2$ or $k=-2$.
6. Let us start with the following observation. If we let R denote $A \times B$, then

$$
a R b \Leftrightarrow a \in A \text { and } b \in B .
$$

Now we turn to the exercise. It contains a mistake. It should read: prove that $A \times B$ is serial if and only if B is not empty or A is empty. Recall that seriality of R means $\forall a \in A \exists b \in B a R b$. Thus, using the observation above, seriality in this case boils down to $\forall a \in A \exists b \in B$. Observe that $\forall a \in A \exists b \in B$ exactly holds when A is empty or B is not empty. This proves that $A \times B$ is serial if and only if B is not empty or A is empty.
Next we show that $A \times B$ is symmetric if and only if $A=B$. Recall that R is symmetric if $\forall a \forall b(a R b \rightarrow b R a)$. By the observation above, in this case symmetry means $\forall a \forall b(a \in A \wedge b \in B \rightarrow b \in A \wedge a \in B)$. This holds exactly when $A=B$. Thus we have shown that $A \times B$ is symmetric if and only if $A=B$.
10. We treat some cases. Reflexivity is subset hereditary: if $R \subseteq A^{2}$ is a reflexive relation, then $\forall x \in A R x x$ holds. Clearly, if $B \subseteq A$ also $\forall x \in$ $B R x x$ holds. Thus $R_{\uparrow B}$ is reflexive too.
Transitivity is subset hereditary: if R is transitive relation on A, then

$$
\forall x, y, z \in A: R x y \wedge R y z \rightarrow R x z .
$$

Clearly, then also $\forall x, y, z \in B: R x y \wedge R y z \rightarrow R x z$, for any subsete B of A. Thus $R_{\uparrow B}$ is transitive too.
Seriality is not subset hereditary: the relation $<$ on \mathbb{N} is serial $(\forall x \in$ $\mathbb{N} \exists y \in \mathbb{N} x<y)$. But $<$ restricted to $\{0\}$, which means $<_{\uparrow\{0\}}$, is not, since there is no $y \in\{0\}$ such that $0<y$.
11. We have to show that $(\langle a, b\rangle=\langle c, d\rangle) \Leftrightarrow(a=c \wedge b=d)$.
\Rightarrow : suppose $\langle a, b\rangle=\langle c, d\rangle$. Unwinding the definition of ordered pair this means that $\{\{a\},\{a, b\}\}=\{\{c\},\{c, d\}\}$. This implies $a=c$ and $b=d$. $\Leftarrow:$ if $a=c$ and $b=d$, then of course $\langle a, b\rangle=\langle c, d\rangle$.
12. Because with these definitions one cannot distinguish which element of the ordered pair should come first.
13. $\{\langle a, b\rangle\}$ is, by definition, the set $\{\{\{a\},\{a, b\}\}\}$. Hence $\{a\} \notin\{\langle a, b\rangle\}$ and $\{b\} \notin\{\langle a, b\rangle\}$.
14. $\{\langle 1,2\rangle\} \subseteq \mathbb{N}$ means $\langle 1,2\rangle \in \mathbb{N}$, qoud non. Thus $\{\langle 1,2\rangle\} \nsubseteq \mathbb{N}$. $\{\langle 1,2\rangle\} \subseteq$ $P(\mathbb{N})$ means $\langle 1,2\rangle \in P(\mathbb{N})$. But $\langle 1,2\rangle=\{\{1\},\{1,2\}\}$, which is not an element of $P(\mathbb{N})$ since it is not a subset of \mathbb{N}. Thus $\{\langle 1,2\rangle\} \nsubseteq P(\mathbb{N})$.
16. No, $1 R 2$ and $1 R 3$ but not $2 R 3$. To make it trasitive an arrow from 0 to 3 has to be added.
17. We treat the first relation. It is serial and well-founded, but not dense: $a_{1} R b_{1}$, but no x such that $a_{1} R x R b_{1}$.
18. \leq_{N}.
19. We have to show that \leftrightarrow is reflexive, transitive and symmetric. Reflexivity is clear: $\varphi \leftrightarrow \varphi$ for all formulas φ. Transitivity is: if $\varphi \leftrightarrow \psi$ and $\psi \leftrightarrow \phi$, then $\varphi \leftrightarrow \phi$. But this is clearly true. Finally, symmetry follows easily too: if $\varphi \leftrightarrow \psi$, then $\psi \leftrightarrow \varphi$.
22. Two elements. For with one element, say $0, P(\{0\})=\{\emptyset,\{0\}\}$ which is totally ordered, and for $\emptyset, P(\emptyset)=\{\emptyset\}$, which is totally ordered too.

3 Exercises Chapter 4

2. The domain is \mathbb{N} and the range is the set of natural numbers divisable by $7:\{n \in \mathbb{N} \mid \exists m \in \mathbb{N}(n=7 m)\}$.
3. $\left\{\langle r, s\rangle \mid r, s \in \mathbb{R}_{\geq 0}, s=\sqrt{r}\right\} . f\left[\mathbb{R}_{\geq 4}\right]=\mathbb{R}_{\geq 2} . f^{-1}\left[\mathbb{R}_{\leq 4}\right]=\mathbb{R}_{\leq 16}$.
4. These are all the functions from $\{0\}$ to $\{0,1,2\}:\{\{\langle 0,0\rangle\},\{\langle 0,1\rangle\},\{\langle 0,2\rangle\}\}$.
5. $f \circ g(x)=\sqrt{x^{3}}$ and $g \circ f(x)=(\sqrt{x})^{3}$.
6. $f \circ g(\varphi)=(p \rightarrow \varphi) \rightarrow p$ and $g \circ f(\varphi)=p \rightarrow(\varphi \rightarrow p)$. For $\varphi=\mathrm{T}:$

$$
f \circ g(\top)=((\top \rightarrow \top) \rightarrow \top) \leftrightarrow \top \leftrightarrow(\top \rightarrow(\top \rightarrow \top))=g \circ f(\top) .
$$

8. Given the bijection $f: A \rightarrow B, g$ is defined as $\{\langle y, x\rangle \mid f(x)=y\}$, i.e. $g(y)=x$ iff $f(x)=y$. Since $f \subseteq A \times B$, it follows that $g \subseteq B \times A$, that is, g indeed is a function from B to $A: g: B \rightarrow A$.
For $x \in A, g \circ f(x)=g(f(x))$. Suppose $f(x)=y$. Then by the definition of $g, g(y)=x$, and thus $g(f(x))=g(y)=x$. Hence $g \circ f=i d_{A}$. Also, for $y \in B, f \circ g(y)=f(g(y))$. Suppose $g(y)=x$. This implies that $f(x)=y$ by the definition of g. Thus $f(g(y))=f(x)=y$. Hence $f \circ g=i d_{B}$.
9. Suppose $|X|=m$ and $|Y|=n$. Thus $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=$ $\left\{y_{1}, \ldots, y_{n}\right\}$. For a function $f: X \rightarrow Y$ there are n possible choices for every $f\left(x_{i}\right)$. Thus in total there are $n \times n \times \cdots \times n$ (m times) different functions, i.e. n^{m}, which is $|Y|^{|X|}$.
10. It is surjective since for every $n \in \mathbb{Z}$, there is a $m \in \mathbb{Z}$, namely $m=n-1$, such that $f(m)=f(n-1)=n-1+1=n$. It is not surjective when considered as a function on the natural numbers: e.g. there is no $n \in \mathbb{N}$ such that $f(n)=0$.
11. It is injective: $x \neq y$ implies $2^{x} \neq 2^{y}$. It is not surjective: e.g. there is no $x \in \mathbb{R}$ such that $2^{x}=0 . f[\{x \in \mathbb{R} \mid-2 \leq x \leq 2\}]=\{x \in \mathbb{R} \mid 1 / 4 \leq x \leq$ $4\}$ and $f^{-1}[\{x \in \mathbb{R} \mid 4 \leq x \leq 16\}]=\{x \in \mathbb{R} \mid 2 \leq x \leq 4\}$.
12. Consider two injective functions $f: A \rightarrow B$ and $g: C \rightarrow D$, where $C \subseteq B$. We show that $g \circ f$ is injective: $x \neq y$ implies $g \circ f(x) \neq g \circ f(y)$. Therefore, consider $x, y \in A$ such that $x \neq y$. Becasue f is injective it follows that $f(x) \neq f(y)$. Since g is injective it follows that then also $g(f(x)) \neq g(f(y))$. But $g(f(x))=g \circ f(x)$ and $g(f(y))=g \circ f(y)$, and thus $g \circ f(x) \neq g \circ f(y)$.
13. Consider $f: A \rightarrow\{a\}$ and assume $b \in A$ for some b (A is not empty). We have to show that for all $y \in\{a\}$ there exists a $x \in A$ such that $f(x)=y$, that is, that there is a $x \in A$ such that $f(x)=a$. But $f(b)=a$, and thus we can take b for x. Only when A contains one element the function is also an injection.
14. Given an injection $f: A \rightarrow B$ we have to show that the function f : $A \rightarrow f[A]$ is a bijection, thus both an injection and a surjection. That $f: A \rightarrow f[A]$ is an injection follows immediately from the injectivity of $f: A \rightarrow B$. That $f: A \rightarrow f[A]$ is a surjection follows from the fact that for all $y \in f[A]$ there exists a $x \in A$ such that $f(x)=y$, by the definition of $f[A]$.
15. f does not have a fixed point: $\neg \varphi$ is never equal (literally the same formua) as φ. Neither are there formulas that are equivalent to their negation. Thus there are no ψ such that $\psi \leftrightarrow f(\psi)$.
16. $f^{n}(x)=f \circ f \circ \cdots \circ f(x)$. Assume that x is a fixed point of f. Then, for every n,

$$
\begin{array}{r}
f^{n}(x)=f^{n-1} \circ f(x)=f^{n-1}(f(x))=f^{n-1}(x)= \\
f^{n-2} \circ f(x)=f^{n-2}(f(x))=f^{n-2}(x)=\cdots=f(x)=x
\end{array}
$$

In the chapter on induction we will see how we can prove this theorem in a rigorous way by induction.
19.

$$
f(x)= \begin{cases}0 & \text { if } 0<x<1 \\ 1 & \text { if } x=0 \text { or } x=1 \\ -1 & \text { otherwise }\end{cases}
$$

20. Suppose $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$.

If $m>n$ there are no injections from A to B, so assume $m \leq n$. For an injection f from A to B, there are n choices for $f\left(a_{1}\right)$, namely b_{1} or b_{2} or $\ldots b_{n}$. There are $(n-1)$ choices for $f\left(a_{2}\right)$, namely b_{1} or b_{2} or $\ldots b_{n}$ except $f\left(a_{1}\right)$, as f has to be an injection. There are $(n-2)$ choices for $f\left(a_{3}\right)$, namely b_{1} or b_{2} or $\ldots b_{n}$ except $f\left(a_{1}\right)$ and $f\left(a_{2}\right)$, etc. Thus there are $n \cdot(n-1) \ldots(n-m+1)$ many injections from A to B.
If $m<n$ there are no surjections from A to B, therefore assume $m \geq n$. A surjection has to reach every element in B. There are $(n-1)^{m}$ many functions f from A to B such that $b_{i} \notin f[A]$ for at least one i. Since there are n^{m} many functions from A to B, there are $n^{m}-(n-1)^{m}$ surjections from A to B.
21. Let $R=\{\langle x, y\rangle \mid f(x)=f(y)\}$. We have to show that R is reflexive, transitive and symmetric. Reflexivity $(x R x)$ follows from the fact that $f(x)=f(x)$, and thus $x R x$. For transitivity $(x R y R z \rightarrow x R z)$, observe that if $x R y R z$, i.e. $f(x)=f(y)$ and $f(y)=f(z)$, then clearly $f(x)=f(z)$, and thus $x R z$ as desired. For symmetry $(x R y \rightarrow y R x)$, if $f(x)=f(y)$, of course also $f(y)=f(x)$, that is, $y R x$.
23. Consider a finite set A, and suppose that $f: A \rightarrow P(A)$ is a surjection. Then for every a there is a $a^{\prime} \in A$ such that $f\left(a^{\prime}\right)=\{a\}$. But then all elements of A have been "used", and there is no $b \in A$ left for e.g. $f(b)=\emptyset$.
25. No. For suppose $f: \mathbb{N} \rightarrow \mathbb{Z}$ is an isomorphism between (\mathbb{N}, \leq) and (\mathbb{Z}, \leq). Suppose $f(0)=n$, for some $n \in \mathbb{Z}$. Because f is an isomorphism, every $m<n$ should be such that for the $i \in \mathbb{N}$ with $f(i)=m, i<0$. But this cannot be, as in \mathbb{N} there is no $i<0$.

4 Exercises Chapter 5

1. Use the fact that \mathbb{Z} is countable and the surjection given in the proof of the countability of the cartesian product of two countable sets.
2. $f: \mathbb{N} \rightarrow \mathbb{Z} \cup\{\langle 0, n\rangle \mid n \in \mathbb{Z}\}$ given by

$$
f(n)= \begin{cases}m & \text { if } n=4 m \\ -m & \text { if } n=4 m+1 \\ \langle 0, m\rangle & \text { if } n=4 m+2 \\ \langle 0,-m\rangle & \text { if } n=4 m+3\end{cases}
$$

is a surjection.
6. We know that \mathbb{Q} is countable, so let $f: \mathbb{N} \rightarrow \mathbb{Q}$ be a surjection. Then $g: \mathbb{Q} \rightarrow \mathbb{Q} \cup\{\langle 0, q\rangle \mid q \in \mathbb{Q}\}$ given by

$$
g(n)= \begin{cases}f(m) & \text { if } n=2 m \\ \langle 0, f(m)\rangle & \text { if } n=2 m+1\end{cases}
$$

is a surjection.
9. Clearly, $\left|\mathbb{R}_{\geq 0}\right| \leq|\mathbb{R}|$, and \mathbb{R} is uncountable. Apply Theorem 12.
10. Use Theorem 12.
12. Suppose $|A| \leq|B|$ and that B is countable. Thus there exist an injection $f: A \rightarrow B$ and a surjection $g: \mathbb{N} \rightarrow B$. By one of the exercises of Chapter $4, f: A \rightarrow f[A]$ is a bijection. Let f^{-1} be its inverse. Choose an $a \in A$. Now we define the function $h: \mathbb{N} \rightarrow f[A]$ as

$$
h(n)= \begin{cases}g(n) & \text { if } g(n) \in f[A] \\ f(a) & \text { otherwise }\end{cases}
$$

Because g is a surjection, so is h. Thus $f^{-1} \circ h$ is a surjection from \mathbb{N} to A, which implies that A is countable.
Suppose $|A| \leq|B|$ and A is uncountable. If B would be countable, then by the previous observation, so would A be, qoud non. Thus B is uncountable.
13. Let S be the set of finite words from 0's and 1's. One can order S as follows: first the words of length 1 , then the words of length 2 , etc. Given two words of the same length, we enmuerate them lexicographically. Thus the begin of the enumeration is: $0,1,00,01,10,11,000, \ldots$ This enumeration implies a surjection $f: \mathbb{N} \rightarrow S: f(0)=0, f(1)=1, f(2)=00, f(3)=01$, $f(4)=10, f(5)=11, f(6)=000, \ldots$

5 Exercises Chapter 6

1. The set \mathcal{F} of formulas in which the only connectives are negations and implications can be inductively defined as follows:
(a) all propositional variables and \perp and \top are in \mathcal{F},
(b) if φ and ψ belong to \mathcal{F}, then so do $\neg \varphi,(\neg \varphi), \varphi \rightarrow \psi$ and $(\varphi \rightarrow \psi)$,
(c) no other expressions than the ones obtained via (a) and (b) are in \mathcal{F}.
2. The set \mathcal{W} of binairy words in which the number of 0 's is even can be defined as follows.
(a) 1 and 00 belong to \mathcal{W},
(b) if the words w and v belong to \mathcal{W}, then so do $1 w, w 1,00 w, w 00$, $0 w 0,0 w 0 v, w 00 v$, and $w 0 v 0$,
(c) no other expressions than the ones obtained via (a) and (b) are in \mathcal{W}.
3. The case $n=0: \Sigma_{k=0}^{0} k^{2}=0^{2}=0=0(0+1)(2 \cdot 0+1) / 6$.

The induction step: suppose $\sum_{k=0}^{n} k^{2}=n(n+1)(2 n+1) / 6$. We have to show that
$\sum_{k=0}^{n+1} k^{2}=(n+1)((n+1)+1)(2(n+1)+1) / 6=(n+1)(n+2)(2 n+3) / 6$.
Now $\Sigma_{k=0}^{n+1} k^{2}=(n+1)^{2}+\Sigma_{k=0}^{n} k^{2}$. By the induction hypothesis, $\Sigma_{k=0}^{n} k^{2}=$ $n(n+1)(2 n+1) / 6$, we have $(n+1)^{2}+\sum_{k=0}^{n} k^{2}=(n+1)^{2}+n(n+1)(2 n+1) / 6$. Thus
$\sum_{k=0}^{n+1} k^{2}=(n+1)^{2}+n(n+1)(2 n+1) / 6=n^{2}+2 n+1+n(n+1)(2 n+1) / 6$.
Since

$$
\begin{aligned}
& (n+1)^{2}+n(n+1)(2 n+1) / 6=\left(6(n+1)^{2}+n(n+1)(2 n+1)\right) / 6= \\
& ((n+1)(n(2 n+1)+6(n+1)) / 6=(n+1)(n+2)(2 n+3) / 6
\end{aligned}
$$

we have showed what we wanted to show.
6. The case $n=0: \Sigma_{k=0}^{0} 3^{k}=3^{0}=1=\left(3^{1}-1\right) / 2$.

The induction step: suppose $\sum_{k=0}^{n} 3^{k}=\left(3^{n+1}-1\right) / 2$. We have to show that $\Sigma_{k=0}^{n+1} 3^{k}=\left(3^{n+2}-1\right) / 2$. This is shown by the following equalities, using the induction hypothesis, for the second equality:

$$
\begin{gathered}
\Sigma_{k=0}^{n+1} 3^{k}=3^{n+1}+\Sigma_{k=0}^{n} 3^{k}=3^{n+1}+\left(3^{n+1}-1\right) / 2= \\
\left(2 \cdot 3^{n+1}+3^{n+1}-1\right) / 2=\left(3 \cdot 3^{n+1}-1\right) / 2=\left(3^{n+2}-1\right) / 2
\end{gathered}
$$

9. The base case: If φ is a propositional formula, then clearly it contains no other connectives than \neg and \wedge since it contains no connectives at all.
The induction step: Suppose that φ and ψ are equivalent to formulas φ^{\prime} and ψ^{\prime} in which only \wedge and \neg occur (the induction hypothesis). Then $\varphi \wedge \psi$ is equivalent to $\varphi^{\prime} \wedge \psi^{\prime}$, which contains only \wedge and \neg, so that finishes the case for conjunction. Since $\neg \varphi$ is equivalent to $\neg \varphi^{\prime}$, also the negation case is done. For disjunction, observe that $\varphi \vee \psi$ is equivalent to $\neg(\neg \varphi \wedge \neg \psi)$, and thus also to $\neg\left(\neg \varphi^{\prime} \wedge \neg \psi^{\prime}\right)$, which shows that $\varphi \vee \psi$ is equivalent to a formula which contains only \wedge and \neg. For implication, note that $\varphi \rightarrow \psi$ is equivalent to $\neg \varphi \vee \psi$, and thus to $\neg(\varphi \wedge \neg \psi)$, and thus to $\neg\left(\varphi^{\prime} \wedge \neg \psi^{\prime}\right)$. This proves that $\varphi \rightarrow \psi$ is equivalent to a formula which contains only \wedge and \neg.
