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1 Exercises Chapter 2

1. {n ∈ N | ∃m ∈ N(n = m2)}.

3. For example {n ∈ N | ∃m ∈ Z(n = 3m)}, {n ∈ Z | n ≥ 0 and (n/3) ∈ Z},
and {0, 3, 6, 9, 12, . . . }.

8. {0, 1}.

10.

x ∈ C\(A ∩B) ⇔ x ∈ C and x 6∈ A ∩B
⇔ x ∈ C and (x 6∈ A or x 6∈ B)
⇔ (x ∈ C and x 6∈ A) or (x ∈ C and x 6∈ B)
⇔ x ∈ (C\A) ∪ (C\B).

14. ∅ ∈ P (X) because ∅ ⊆ X, for any set X. Also X ∈ P (X), as X ⊆ X.

15. Assume X ⊆ Y and Y ⊆ Z. We show that X ⊆ Z. That is, that
∀x(x ∈ X → x ∈ Z). Therefore, assume x ∈ X. Then x ∈ Y because
X ⊆ Y . But then x ∈ Z since Y ⊆ Z.

16. ∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3},
{1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}.

17. 26 = 64 subsets. N clearly has infinitely many subsets.
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2 Exercises Chapter 3

1. {〈r, s〉 | r, s ∈ R, r =
√
s} or {〈r, s〉 ∈ R2 | r2 = s}.

2. {〈a, a〉, 〈a, c〉, 〈a, d〉, 〈b, a〉, 〈b, c〉, 〈b, d〉}.

3. The diagonal.

4. The pairs of reals which sum is a rational number. Let us call this relation
R. R is symmetric: 〈r, s〉 ∈ R implies (r+s) ∈ Q, which implies (s+r) ∈ Q,
which implies 〈s, r〉 ∈ R. The relation is not linear: neither 〈π, 2π〉 ∈ R,
nor π = 2π, nor 〈2π, π〉 ∈ R.

5. The relation R = {〈n,m〉 ∈ Z2 | n2 = m} is not dense: 〈2, 4〉 ∈ R since
22 = 4, but there is no k ∈ Z such that 〈2, k〉 ∈ R and 〈k, 4〉 ∈ R, as this
would imply both k = 22 and k2 = 4, i.e. k = 4 and k = 2 or k = −2.

8. Let us start with the following observation. If we let R denote A × B,
then

aRb ⇔ a ∈ A and b ∈ B.
Now we turn to the exercise. It contains a mistake. It should read: prove
that A × B is serial if and only if B is not empty or A is empty. Recall
that seriality of R means ∀a ∈ A∃b ∈ BaRb. Thus, using the observation
above, seriality in this case boils down to ∀a ∈ A∃b ∈ B. Observe that
∀a ∈ A∃b ∈ B exactly holds when A is empty or B is not empty. This
proves that A×B is serial if and only if B is not empty or A is empty.

Next we show that A×B is symmetric if and only if A = B. Recall that
R is symmetric if ∀a∀b(aRb → bRa). By the observation above, in this
case symmetry means ∀a∀b(a ∈ A ∧ b ∈ B → b ∈ A ∧ a ∈ B). This holds
exactly when A = B. Thus we have shown that A×B is symmetric if and
only if A = B.

10. We treat some cases. Reflexivity is subset hereditary: if R ⊆ A2 is a
reflexive relation, then ∀x ∈ ARxx holds. Clearly, if B ⊆ A also ∀x ∈
BRxx holds. Thus R↑B is reflexive too.

Transitivity is subset hereditary: if R is transitive relation on A, then

∀x, y, z ∈ A : Rxy ∧Ryz → Rxz.

Clearly, then also ∀x, y, z ∈ B : Rxy ∧ Ryz → Rxz, for any subsete B of
A. Thus R↑B is transitive too.

Seriality is not subset hereditary: the relation < on N is serial (∀x ∈
N∃y ∈ Nx < y). But < restricted to {0}, which means <↑{0}, is not,
since there is no y ∈ {0} such that 0 < y.

11. We have to show that (〈a, b〉 = 〈c, d〉) ⇔ (a = c ∧ b = d).
⇒: suppose 〈a, b〉 = 〈c, d〉. Unwinding the definition of ordered pair this
means that {{a}, {a, b}} = {{c}, {c, d}}. This implies a = c and b = d.
⇐: if a = c and b = d, then of course 〈a, b〉 = 〈c, d〉.
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12. Because with these definitions one cannot distinguish which element of
the ordered pair should come first.

13. {〈a, b〉} is, by definition, the set {{{a}, {a, b}}}. Hence {a} 6∈ {〈a, b〉} and
{b} 6∈ {〈a, b〉}.

14. {〈1, 2〉} ⊆ N means 〈1, 2〉 ∈ N, qoud non. Thus {〈1, 2〉} 6⊆ N. {〈1, 2〉} ⊆
P (N) means 〈1, 2〉 ∈ P (N). But 〈1, 2〉 = {{1}, {1, 2}}, which is not an
element of P (N) since it is not a subset of N. Thus {〈1, 2〉} 6⊆ P (N).

16. No, 1R2 and 1R3 but not 2R3. To make it trasitive an arrow from 0 to 3
has to be added.

17. We treat the first relation. It is serial and well-founded, but not dense:
a1Rb1, but no x such that a1RxRb1.

18. ≤N.

19. We have to show that ↔ is reflexive, transitive and symmetric. Reflexivity
is clear: ϕ ↔ ϕ for all formulas ϕ. Transitivity is: if ϕ ↔ ψ and ψ ↔ φ,
then ϕ↔ φ. But this is clearly true. Finally, symmetry follows easily too:
if ϕ↔ ψ, then ψ ↔ ϕ.

22. Two elements. For with one element, say 0, P ({0}) = {∅, {0}} which is
totally ordered, and for ∅, P (∅) = {∅}, which is totally ordered too.

3 Exercises Chapter 4

2. The domain is N and the range is the set of natural numbers divisable by
7: {n ∈ N | ∃m ∈ N(n = 7m)}.

3. {〈r, s〉 | r, s ∈ R≥0, s =
√
r}. f [R≥4] = R≥2. f−1[R≤4] = R≤16.

4. These are all the functions from {0} to {0, 1, 2}: {{〈0, 0〉}, {〈0, 1〉}, {〈0, 2〉}}.

6. f ◦ g(x) =
√
x3 and g ◦ f(x) = (

√
x)3.

7. f ◦ g(ϕ) = (p→ ϕ) → p and g ◦ f(ϕ) = p→ (ϕ→ p). For ϕ = >:

f ◦ g(>) = ((> → >) → >) ↔ >↔ (> → (> → >)) = g ◦ f(>).

8. Given the bijection f : A → B, g is defined as {〈y, x〉 | f(x) = y}, i.e.
g(y) = x iff f(x) = y. Since f ⊆ A × B, it follows that g ⊆ B × A, that
is, g indeed is a function from B to A: g : B → A.

For x ∈ A, g ◦ f(x) = g(f(x)). Suppose f(x) = y. Then by the definition
of g, g(y) = x, and thus g(f(x)) = g(y) = x. Hence g ◦ f = idA. Also, for
y ∈ B, f ◦ g(y) = f(g(y)). Suppose g(y) = x. This implies that f(x) = y
by the definition of g. Thus f(g(y)) = f(x) = y. Hence f ◦ g = idB .
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9. Suppose |X| = m and |Y | = n. Thus X = {x1, . . . , xm} and Y =
{y1, . . . , yn}. For a function f : X → Y there are n possible choices
for every f(xi). Thus in total there are n×n×· · ·×n (m times) different
functions, i.e. nm, which is |Y ||X|.

10. It is surjective since for every n ∈ Z, there is a m ∈ Z, namely m = n− 1,
such that f(m) = f(n − 1) = n − 1 + 1 = n. It is not surjective when
considered as a function on the natural numbers: e.g. there is no n ∈ N
such that f(n) = 0.

11. It is injective: x 6= y implies 2x 6= 2y. It is not surjective: e.g. there is no
x ∈ R such that 2x = 0. f [{x ∈ R | −2 ≤ x ≤ 2}] = {x ∈ R | 1/4 ≤ x ≤
4} and f−1[{x ∈ R | 4 ≤ x ≤ 16}] = {x ∈ R | 2 ≤ x ≤ 4}.

12. Consider two injective functions f : A → B and g : C → D, where
C ⊆ B. We show that g ◦ f is injective: x 6= y implies g ◦ f(x) 6= g ◦ f(y).
Therefore, consider x, y ∈ A such that x 6= y. Becasue f is injective it
follows that f(x) 6= f(y). Since g is injective it follows that then also
g(f(x)) 6= g(f(y)). But g(f(x)) = g ◦ f(x) and g(f(y)) = g ◦ f(y), and
thus g ◦ f(x) 6= g ◦ f(y).

14. Consider f : A→ {a} and assume b ∈ A for some b (A is not empty). We
have to show that for all y ∈ {a} there exists a x ∈ A such that f(x) = y,
that is, that there is a x ∈ A such that f(x) = a. But f(b) = a, and thus
we can take b for x. Only when A contains one element the function is
also an injection.

16. Given an injection f : A → B we have to show that the function f :
A → f [A] is a bijection, thus both an injection and a surjection. That
f : A → f [A] is an injection follows immediately from the injectivity of
f : A → B. That f : A → f [A] is a surjection follows from the fact that
for all y ∈ f [A] there exists a x ∈ A such that f(x) = y, by the definition
of f [A].

17. f does not have a fixed point: ¬ϕ is never equal (literally the same formua)
as ϕ. Neither are there formulas that are equivalent to their negation.
Thus there are no ψ such that ψ ↔ f(ψ).

18. fn(x) = f ◦ f ◦ · · · ◦ f(x). Assume that x is a fixed point of f . Then, for
every n,

fn(x) = fn−1 ◦ f(x) = fn−1(f(x)) = fn−1(x) =
fn−2 ◦ f(x) = fn−2(f(x)) = fn−2(x) = · · · = f(x) = x.

In the chapter on induction we will see how we can prove this theorem in
a rigorous way by induction.
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19.

f(x) =

 0 if 0 < x < 1
1 if x = 0 or x = 1
−1 otherwise

20. Suppose A = {a1, . . . , am} and B = {b1, . . . , bn}.
If m > n there are no injections from A to B, so assume m ≤ n. For an
injection f from A to B, there are n choices for f(a1), namely b1 or b2
or . . . bn. There are (n − 1) choices for f(a2), namely b1 or b2 or . . . bn
except f(a1), as f has to be an injection. There are (n − 2) choices for
f(a3), namely b1 or b2 or . . . bn except f(a1) and f(a2), etc. Thus there
are n · (n− 1) . . . (n−m+ 1) many injections from A to B.

If m < n there are no surjections from A to B, therefore assume m ≥ n.
A surjection has to reach every element in B. There are (n − 1)m many
functions f from A to B such that bi 6∈ f [A] for at least one i. Since there
are nm many functions from A to B, there are nm − (n− 1)m surjections
from A to B.

21. Let R = {〈x, y〉 | f(x) = f(y)}. We have to show that R is reflexive,
transitive and symmetric. Reflexivity (xRx) follows from the fact that
f(x) = f(x), and thus xRx. For transitivity (xRyRz → xRz), observe
that if xRyRz, i.e. f(x) = f(y) and f(y) = f(z), then clearly f(x) = f(z),
and thus xRz as desired. For symmetry (xRy → yRx), if f(x) = f(y), of
course also f(y) = f(x), that is, yRx.

23. Consider a finite set A, and suppose that f : A → P (A) is a surjection.
Then for every a there is a a′ ∈ A such that f(a′) = {a}. But then all
elements of A have been “used”, and there is no b ∈ A left for e.g. f(b) = ∅.

25. No. For suppose f : N→ Z is an isomorphism between (N,≤) and (Z,≤).
Suppose f(0) = n, for some n ∈ Z. Because f is an isomorphism, every
m < n should be such that for the i ∈ N with f(i) = m, i < 0. But this
cannot be, as in N there is no i < 0.

4 Exercises Chapter 5

1. Use the fact that Z is countable and the surjection given in the proof of
the countability of the cartesian product of two countable sets.

5. f : N→ Z ∪ {〈0, n〉 | n ∈ Z} given by

f(n) =


m if n = 4m
−m if n = 4m+ 1
〈0,m〉 if n = 4m+ 2
〈0,−m〉 if n = 4m+ 3

is a surjection.
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6. We know that Q is countable, so let f : N → Q be a surjection. Then
g : Q→ Q ∪ {〈0, q〉 | q ∈ Q} given by

g(n) =
{
f(m) if n = 2m
〈0, f(m)〉 if n = 2m+ 1

is a surjection.

9. Clearly, |R≥0| ≤ |R|, and R is uncountable. Apply Theorem 12.

10. Use Theorem 12.

12. Suppose |A| ≤ |B| and that B is countable. Thus there exist an injection
f : A→ B and a surjection g : N→ B. By one of the exercises of Chapter
4, f : A → f [A] is a bijection. Let f−1 be its inverse. Choose an a ∈ A.
Now we define the function h : N→ f [A] as

h(n) =
{
g(n) if g(n) ∈ f [A]
f(a) otherwise

Because g is a surjection, so is h. Thus f−1 ◦ h is a surjection from N to
A, which implies that A is countable.

Suppose |A| ≤ |B| and A is uncountable. If B would be countable, then
by the previous observation, so would A be, qoud non. Thus B is un-
countable.

13. Let S be the set of finite words from 0’s and 1’s. One can order S as follows:
first the words of length 1, then the words of length 2, etc. Given two
words of the same length, we enmuerate them lexicographically. Thus the
begin of the enumeration is: 0, 1, 00, 01, 10, 11, 000, . . . This enumeration
implies a surjection f : N→ S: f(0) = 0, f(1) = 1, f(2) = 00, f(3) = 01,
f(4) = 10, f(5) = 11, f(6) = 000, . . .

5 Exercises Chapter 6

1. The set F of formulas in which the only connectives are negations and
implications can be inductively defined as follows:

(a) all propositional variables and ⊥ and > are in F ,

(b) if ϕ and ψ belong to F , then so do ¬ϕ, (¬ϕ), ϕ→ ψ and (ϕ→ ψ),

(c) no other expressions than the ones obtained via (a) and (b) are in F .

2. The set W of binairy words in which the number of 0’s is even can be
defined as follows.

(a) 1 and 00 belong to W,

(b) if the words w and v belong to W, then so do 1w, w1, 00w, w00,
0w0, 0w0v, w00v, and w0v0,
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(c) no other expressions than the ones obtained via (a) and (b) are in
W.

4. The case n = 0: Σ0
k=0k

2 = 02 = 0 = 0(0 + 1)(2 · 0 + 1)/6.
The induction step: suppose Σn

k=0k
2 = n(n + 1)(2n + 1)/6. We have to

show that

Σn+1
k=0k

2 = (n+ 1)((n+ 1) + 1)(2(n+ 1) + 1)/6 = (n+ 1)(n+ 2)(2n+ 3)/6.

Now Σn+1
k=0k

2 = (n+1)2+Σn
k=0k

2. By the induction hypothesis, Σn
k=0k

2 =
n(n+1)(2n+1)/6, we have (n+1)2+Σn

k=0k
2 = (n+1)2+n(n+1)(2n+1)/6.

Thus

Σn+1
k=0k

2 = (n+1)2 +n(n+1)(2n+1)/6 = n2 +2n+1+n(n+1)(2n+1)/6.

Since

(n+ 1)2 + n(n+ 1)(2n+ 1)/6 = (6(n+ 1)2 + n(n+ 1)(2n+ 1))/6 =
((n+ 1)(n(2n+ 1) + 6(n+ 1))/6 = (n+ 1)(n+ 2)(2n+ 3)/6,

we have showed what we wanted to show.

6. The case n = 0: Σ0
k=03

k = 30 = 1 = (31 − 1)/2.
The induction step: suppose Σn

k=03
k = (3n+1 − 1)/2. We have to show

that Σn+1
k=03k = (3n+2 − 1)/2. This is shown by the following equalities,

using the induction hypothesis, for the second equality:

Σn+1
k=03k = 3n+1 + Σn

k=03
k = 3n+1 + (3n+1 − 1)/2 =

(2 · 3n+1 + 3n+1 − 1)/2 = (3 · 3n+1 − 1)/2 = (3n+2 − 1)/2.

9. The base case: If ϕ is a propositional formula, then clearly it contains no
other connectives than ¬ and ∧ since it contains no connectives at all.
The induction step: Suppose that ϕ and ψ are equivalent to formulas ϕ′

and ψ′ in which only ∧ and ¬ occur (the induction hypothesis). Then ϕ∧ψ
is equivalent to ϕ′ ∧ ψ′, which contains only ∧ and ¬, so that finishes the
case for conjunction. Since ¬ϕ is equivalent to ¬ϕ′, also the negation case
is done. For disjunction, observe that ϕ ∨ ψ is equivalent to ¬(¬ϕ ∧ ¬ψ),
and thus also to ¬(¬ϕ′ ∧ ¬ψ′), which shows that ϕ ∨ ψ is equivalent to a
formula which contains only ∧ and ¬. For implication, note that ϕ → ψ
is equivalent to ¬ϕ ∨ ψ, and thus to ¬(ϕ ∧ ¬ψ), and thus to ¬(ϕ′ ∧ ¬ψ′).
This proves that ϕ→ ψ is equivalent to a formula which contains only ∧
and ¬.
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