Inleveropgave 2

Max Knobbout

November 27, 2008

- 1. This question can be divided into two parts:
 - The set $P(A \times B)$ has $2^{|A \times B|}$ elements. Because $|A \times B| = |A| \times |B|$, we can simplify this by saying that it has $2^{|A| \times |B|}$ elements.
 - If $a \in A$, it holds that $\{a\} \notin A \times B$. The set $A \times B$ is a set of relations, and $\{a\}$ is not a relation, thus it is not in $A \times B$.
- 2. This question can be divided into two parts:
 - The relation $A \times B$ is serial iff $A = \emptyset$ or $B \neq \emptyset$ (non-exclusive). The definition of seriality is $\forall a \in A, \exists b \in B(Rab)$. It follows from the definition of the cartesian product on pp9 that this always holds if A is empty or if B is non-empty.
 - If $A \neq B$, $A \times B$ can still be symmetrical. Suppose $A = \emptyset$ and $B \neq \emptyset$ (clearly $A \neq B$ holds). The cartesian product $A \times B = \emptyset$. But since the empty relation is also symmetrical, we found an example where $A \neq B$ holds, and also $A \times B$ is symmetrical.
- 5. All properties:
- **Reflexive** The relation is reflexive iff $\forall z \in \mathbb{Z}(Rzz)$. But, for example, $\langle 1, 1 \rangle$ is not in the relation, because $1-1 \neq 2$. This is a counter example, so we must conclude that the relation is not reflexive.
- **Transitive** The relation is transitive iff $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, \forall z \in \mathbb{Z} (Rxy \land Ryz \rightarrow Rxz)$. But for example, $\langle 6, 4 \rangle$ and $\langle 4, 2 \rangle$ are in the relation (because 6-4=2 and 4-2=2), but $\langle 6, 2 \rangle$ is not (because $6-2 \neq 2$). This is a counter example, so we must conclude that the relation is not transitive.
- **Symmetric** The relation is symmetric iff $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}(Rxy \to Ryx)$. But for example, $\langle 6, 4 \rangle$ is in the relation (because 6 4 = 2), but $\langle 4, 6 \rangle$

is not (because $4-6 \neq 2$). This is a counter example, so we must conclude that the relation is not symmetric.

- 6. All properties:
- **Reflexive** The relation is reflexive iff $\forall w \in W(Rww)$. This is true, because l(w) = l(w).
- **Transitive** The relation is transitive iff $\forall x \in W, \forall y \in W, \forall z \in W(Rxy \land Ryz \to Rxz)$. Suppose we have an arbitrary $a \in W, b \in W$ and $c \in W$ for which Rab and Rbc holds. We must conclude that l(a) = l(b) and also l(b) = l(c). It follows from this that l(a) = l(c), and so also Rac must be in the relation. Because a, b and c were chosen arbitrarily, we conclude that it follows for every element in W.
- **Symmetric** The relation is symmetric iff $\forall x \in W, \forall y \in W(Rxy \to Ryz)$. Suppose we have an arbitrary $a \in W$ and $b \in W$ for which *Rab* holds. We can conclude that l(a) = l(b), but also l(b) = l(a), and so also *Rba* must be in the relation. Because a and b were chosen arbitrarily, we conclude that it follows for every element in W.

The equivalence class [w] is a set containing all elements that are equivalent to w. Since every element in W that has the same length as w is equivalent to w, we can conclude that $[w] = \{w' \mid l(w') = n\}$. It can be seen that this set has exactly 2^n elements (all rows we can construct from zero's and one's of length n).