Inleveropgave 2

Max Knobbout

November 27, 2008

1. This question can be divided into two parts:

- The set $P(A \times B)$ has $2^{|A \times B|}$ elements. Because $|A \times B|=|A| \times$ $|B|$, we can simplify this by saying that it has $2^{|A| \times|B|}$ elements.
- If $a \in A$, it holds that $\{a\} \notin A \times B$. The set $A \times B$ is a set of relations, and $\{a\}$ is not a relation, thus it is not in $A \times B$.

2. This question can be divided into two parts:

- The relation $A \times B$ is serial iff $A=\emptyset$ or $B \neq \emptyset$ (non-exclusive). The definition of seriality is $\forall a \in A, \exists b \in B(R a b)$. It follows from the definition of the cartesian product on pp 9 that this always holds if A is empty or if B is non-empty.
- If $A \neq B, A \times B$ can still be symmetrical. Suppose $A=\emptyset$ and $B \neq \emptyset$ (clearly $A \neq B$ holds). The cartesian product $A \times B=\emptyset$. But since the empty relation is also symmetrical, we found an example where $A \neq B$ holds, and also $A \times B$ is symmetrical.

5. All properties:

Reflexive The relation is reflexive iff $\forall z \in \mathbb{Z}(R z z)$. But, for example, $\langle 1,1\rangle$ is not in the relation, because $1-1 \neq 2$. This is a counter example, so we must conclude that the relation is not reflexive.

Transitive The relation is transitive iff $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, \forall z \in \mathbb{Z}(R x y \wedge R y z \rightarrow$ $R x z$). But for example, $\langle 6,4\rangle$ and $\langle 4,2\rangle$ are in the relation (because $6-4=2$ and $4-2=2$), but $\langle 6,2\rangle$ is not (because $6-2 \neq 2$). This is a counter example, so we must conclude that the relation is not transitive.

Symmetric The relation is symmetric iff $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}(R x y \rightarrow R y x)$. But for example, $\langle 6,4\rangle$ is in the relation (because $6-4=2$), but $\langle 4,6\rangle$
is not (because $4-6 \neq 2$). This is a counter example, so we must conclude that the relation is not symmetric.
6. All properties:

Reflexive The relation is reflexive iff $\forall w \in W(R w w)$. This is true, because $l(w)=l(w)$.
Transitive The relation is transitive iff $\forall x \in W, \forall y \in W, \forall z \in W(R x y \wedge$ $R y z \rightarrow R x z)$. Suppose we have an arbitrary $a \in W, b \in W$ and $c \in W$ for which Rab and Rbc holds. We must conclude that $l(a)=l(b)$ and also $l(b)=l(c)$. It follows from this that $l(a)=l(c)$, and so also Rac must be in the relation. Because a, b and c were chosen arbitrarily, we conclude that it follows for every element in W.
Symmetric The relation is symmetric iff $\forall x \in W, \forall y \in W(R x y \rightarrow R y z)$. Suppose we have an arbitrary $a \in W$ and $b \in W$ for which Rab holds. We can conclude that $l(a)=l(b)$, but also $l(b)=l(a)$, and so also $R b a$ must be in the relation. Because a and b were chosen arbitrarily, we conclude that it follows for every element in W.

The equivalence class $[w]$ is a set containing all elements that are equivalent to w. Since every element in W that has the same length as w is equivalent to w, we can conclude that $[w]=\left\{w^{\prime} \mid l\left(w^{\prime}\right)=n\right\}$. It can be seen that this set has exactly 2^{n} elements (all rows we can construct from zero's and one's of length n).

