Inleveropgave 1

Max Knobbout

November 24, 2008

- 1. Four elements of $P(\{a, b, c\})$ contain the element a, namely $\{\{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$.
- 2. This question can be divided into three parts:
 - $X \in P(P(X))$ does not hold. Suppose for example that $X = \{a\}$. We can see that $P(P(X)) = \{\{\{a\}, \emptyset\}, \{\{a\}\}, \{\emptyset\}, \emptyset\},$ and $\{a\} \notin P(P(X))$ (this is a counter-example).
 - $\emptyset \in P(P(X))$ holds iff $\emptyset \subseteq P(X)$. We know the latter is always true, because the empty set is a subset of every set.
 - If X has n elements, P(P(X)) has 2^{2^n} elements.
- 3. First, we can see that $|A \times B| = |A| \times |B|$. This question can be divided into two parts:
 - If $|A \times B| = 1$, and thus $|A| \times |B| = 1$, it must mean that |A| = 1and |B| = 1.
 - If $|A \times B| = 0$, and thus $|A| \times |B| = 0$, it must mean that |A| = 0 or |B| = 0.
- 4. $X \setminus Y = X \iff X \cap Y = \emptyset$. We will informally explain why this is so. The set $X \setminus Y$ is the set of elements that are in X but not in Y. If this set must equal X, we must conclude that there are no elements in both X and Y. In other words: the intersection must be empty.