Inleveropgave 1

Max Knobbout

November 24, 2008

1. Four elements of $P(\{a, b, c\})$ contain the element a, namely $\{\{a\},\{a, b\},\{a, c\},\{a, b, c\}\}$.
2. This question can be divided into three parts:

- $X \in P(P(X))$ does not hold. Suppose for example that $X=$ $\{a\}$. We can see that $P(P(X))=\{\{\{a\}, \emptyset\},\{\{a\}\},\{\emptyset\}, \emptyset\}$, and $\{a\} \notin P(P(X))$ (this is a counter-example).
$-\emptyset \in P(P(X))$ holds iff $\emptyset \subseteq P(X)$. We know the latter is always true, because the empty set is a subset of every set.
- If X has n elements, $P(P(X))$ has $2^{2^{n}}$ elements.

3. First, we can see that $|A \times B|=|A| \times|B|$. This question can be divided into two parts:

- If $|A \times B|=1$, and thus $|A| \times|B|=1$, it must mean that $|A|=1$ and $|B|=1$.
- If $|A \times B|=0$, and thus $|A| \times|B|=0$, it must mean that $|A|=0$ or $|B|=0$.

4. $X \backslash Y=X \Longleftrightarrow X \cap Y=\emptyset$. We will informally explain why this is so. The set $X \backslash Y$ is the set of elements that are in X but not in Y. If this set must equal X, we must conclude that there are no elements in both X and Y. In other words: the intersection must be empty.
