On sets, functions and relations

Some solutions

Rosalie Iemhoff

December 20, 2007

1 Exercises Chapter 2

- 1. $\{n \in \mathbb{N} \mid \exists m \in \mathbb{N} (n = m^2)\}.$
- 3. For example $\{n \in \mathbb{N} \mid \exists m \in \mathbb{Z} (n = 3m)\}, \{n \in \mathbb{Z} \mid n \geq 0 \text{ and } (n/3) \in \mathbb{Z}\},$ and $\{0, 3, 6, 9, 12, \dots\}.$
- 8. $\{0,1\}$.

9.

```
\begin{array}{ll} x \in C \backslash (A \cap B) & \Leftrightarrow & x \in C \text{ and } x \not \in A \cap B \\ & \Leftrightarrow & x \in C \text{ and } (x \not \in A \text{ or } x \not \in B) \\ & \Leftrightarrow & (x \in C \text{ and } x \not \in A) \text{ or } (x \in C \text{ and } x \not \in B) \\ & \Leftrightarrow & x \in (C \backslash A) \cup (C \backslash B). \end{array}
```

- 12. $\emptyset \in P(X)$ because $\emptyset \subseteq X$, for any set X. Also $X \in P(X)$, as $X \subseteq X$.
- 13. Assume $X\subseteq Y$ and $Y\subseteq Z$. We show that $X\subseteq Z$. That is, that $\forall x(x\in X\to x\in Z)$. Therefore, assume $x\in X$. Then $x\in Y$ because $X\subseteq Y$. But then $x\in Z$ since $Y\subseteq Z$.
- 14. \emptyset , {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}.
- 15. $2^6 = 64$ subsets. N clearly has infinitely many subsets.

2 Exercises Chapter 3

- 1. $\{\langle r, s \rangle \mid r, s \in \mathbb{R}, r = \sqrt{s}\}\ \text{or}\ \{\langle r, s \rangle \in \mathbb{R}^2 \mid r^2 = s\}.$
- 2. $\{\langle a, a \rangle, \langle a, c \rangle, \langle a, d \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle b, d \rangle\}$.
- 3. The diagonal.
- 4. The negative fractions.
- 5. The pairs of reals which sum is a rational number. Let us call this relation R. R is symmetric: $\langle r,s\rangle \in R$ implies $(r+s) \in \mathbb{Q}$, which implies $(s+r) \in \mathbb{Q}$, which implies $\langle s,r\rangle \in R$. The relation is not linear: neither $\langle \pi, 2\pi\rangle \in R$, nor $\pi = 2\pi$, nor $\langle 2\pi, \pi\rangle \in R$.
- 6. The relation $R = \{\langle n, m \rangle \in \mathbb{Z}^2 \mid n^2 = m\}$ is not dense: $\langle 2, 4 \rangle \in R$ since $2^2 = 4$, but there is no $k \in \mathbb{Z}$ such that $\langle 2, k \rangle \in R$ and $\langle k, 4 \rangle \in R$, as this would imply both $k = 2^2$ and $k^2 = 4$, i.e. k = 4 and k = 2 or k = -2.
- 9. The cartesian product of two sets is a set of pairs, thus it has always arity 2.
- 10. Let us start with the following observation. If we let R denote $A \times B$, then

$$aRb \Leftrightarrow a \in A \text{ and } b \in B.$$

Now we turn to the exercise. It contains a mistake. It should read: prove that $A \times B$ is serial if and only if B is not empty or A is empty. Recall that seriality of R means $\forall a \in A \exists b \in BaRb$. Thus, using the observation above, seriality in this case boils down to $\forall a \in A \exists b \in B$. Observe that $\forall a \in A \exists b \in B$ exactly holds when A is empty or B is not empty. This proves that $A \times B$ is serial if and only if B is not empty or A is empty.

Next we show that $A \times B$ is symmetric if and only if A = B or A or B is empty (so also in this case the exercise in the notes contains a mistake). Recall that R is symmetric if $\forall a \forall b (aRb \to bRa)$. By the observation above, in this case symmetry means $\forall a \forall b (a \in A \land b \in B \to b \in A \land a \in B)$. This holds exactly when A = B or A is empty or B is empty. Thus we have shown that $A \times B$ is symmetric if and only if A = B or A is empty or B is empty.

12. We treat some cases. Given the relation $R \subseteq A^2$ and set $B \subseteq A$. Reflexivity is subset-hereditary. Suppose R is reflexive. Then for every $b \in B$, bRb holds, because R is reflexive on A and $b \in A$. Thus $R_{\uparrow B}$ is reflexive. Transitivity is subset-hereditary. Suppose R is transitive, and let $a, b, c \in A$.

Fransitive is subset-nereditary. Suppose R is transitive, and let $a, b, c \in B$ and $aR_{\uparrow B}bR_{\uparrow B}c$. Then, since $R_{\uparrow B}$ is just the restriction of R to B also aRbRc. But R is transitive, whence aRc. But $a, c \in B$, thus $sR_{\uparrow B}c$, and this proves that $R_{\uparrow B}$ is transitive.

Density is not subset-hereditary. We show this by giving a counter example. The relation < on $\mathbb Q$ is dense. $\mathbb N$ is a subset of $\mathbb Q$. But < on $\mathbb N$ is not densen, that is, $<_{\uparrow \mathbb N}$ is not dense.

Seriality is not subset-hereditary. We show this by giving a counter example. The relation < on \mathbb{N} is serial. $\{0\}$ is a subset of \mathbb{N} . But there is no $x \in \{0\}$ such that 0 < x. Thus $<_{\uparrow\{0\}}$ is not serial.

- 13. We have to show that $(\langle a,b\rangle = \langle c,d\rangle) \Leftrightarrow (a=c \land b=d)$. \Rightarrow : suppose $\langle a,b\rangle = \langle c,d\rangle$. Unwinding the definition of ordered pair this means that $\{\{a\},\{a,b\}\} = \{\{c\},\{c,d\}\}$. This implies a=c and b=d. \Leftarrow : if a=c and b=d, then of course $\langle a,b\rangle = \langle c,d\rangle$.
- 14. Because with these definitions one cannot distinguish which element of the ordered pair should come first.
- 15. $\{\langle a,b\rangle\}$ is, by definition, the set $\{\{\{a\},\{a,b\}\}\}$. Hence $\{a\} \notin \{\langle a,b\rangle\}$ and $\{b\} \notin \{\langle a,b\rangle\}$.
- 16. $\{\langle 1,2\rangle\}\subseteq \mathbb{N}$ means $\langle 1,2\rangle\in \mathbb{N}$, qoud non. Thus $\{\langle 1,2\rangle\}\not\subseteq \mathbb{N}$. $\{\langle 1,2\rangle\}\subseteq P(\mathbb{N})$ means $\langle 1,2\rangle\in P(\mathbb{N})$. But $\langle 1,2\rangle=\{\{1\},\{1,2\}\}$, which is not an element of $P(\mathbb{N})$ since it is not a subset of \mathbb{N} . Thus $\{\langle 1,2\rangle\}\not\subseteq P(\mathbb{N})$.
- 18. No, 1R2 and 1R3 but not 2R3. To make it trasitive an arrow from 0 to 3 has to be added.
- 18. Serial and well-founded, but not dense: a_1Rb_1 , but no x such that a_1RxRb_1 .
- $20. <_{\mathbb{N}}.$
- 21. We have to show that \leftrightarrow is reflexive, transitive and symmetric. Reflexivity is clear: $\varphi \leftrightarrow \varphi$ for all formulas φ . Transitivity is: if $\varphi \leftrightarrow \psi$ and $\psi \leftrightarrow \varphi$, then $\varphi \leftrightarrow \varphi$. But this is clearly true. Finally, symmetry follows easily too: if $\varphi \leftrightarrow \psi$, then $\psi \leftrightarrow \varphi$.
- 24. Two elements. For with one element, say 0, $P(\{0\}) = \{\emptyset, \{0\}\}$ which is totally ordered, and for \emptyset , $P(\emptyset) = \{\emptyset\}$, which is totally ordered too.