
TRANSLATIONAL EMBEDDINGS VIA STABLE CANONICAL

RULES

NICK BEZHANISHVILI AND ANTONIO M. CLEANI

Abstract. This paper presents a new uniform method for studying modal
companions of superintuitionistic deductive systems and related notions, based

on the machinery of stable canonical rules. Using our method, we obtain an al-

ternative proof of the Blok-Esakia theorem both for logics and for rule systems,
and prove an analogue of the Dummett-Lemmon conjecture for rule systems.

Since stable canonical rules may be developed for any rule system admitting
filtration, our method generalises smoothly to richer signatures. We illustrate

this by applying our techniques to prove analogues of the Blok-Esakia theorem

(for both logics and rule systems) and of the Dummett-Lemmon conjecture (for
rule systems) in the setting of tense companions of bi-superintuitionistic de-

ductive systems. We also use our techniques to prove that the lattice of rule

systems (logics) extending the modal intuitionistic logic KM and the lattice of
rule systems (logics) extending the provability logic GL are isomorphic.

1. Introduction

A modal companion of a superintuitionistic logic L is defined as any normal modal
logic M extending S4 such that the Gödel translation fully and faithfully embeds L

into M. The notion of a modal companion has sparked a remarkably prolific line of
research, documented, e.g., in the surveys [16] and [60]. The jewel of this research
line is the celebrated Blok-Esakia theorem, first proved independently by Blok [11]
and Esakia [24]. The theorem states that the lattice of superintuitionistic logics is
isomorphic to the lattice of normal extensions of Grzegorczyk’s modal logic GRZ, via
the mapping which sends each superintuitionistic logic L to the normal extension
of GRZ with the set of all Gödel translations of formulae in L.

Zakharyashchev [61] developed a unified approach to the theory of modal com-
panions, via his technique of canonical formulae. These formulae generalise the
subframe formulae of Fine [27]. Like a subframe formula, a canonical formula syn-
tactically encodes the structure of a finite refutation pattern, i.e., a finite transitive
frame together with a (possibly empty) set of parameters. By applying a version of
the selective filtration construction, every formula can be matched with a finite set
of finite refutation patterns, in such a way that the conjunction of all the canon-
ical formulae associated with the refutation patterns is equivalent to the original
formula. By studying how the Gödel translation affects superintuitionistic canon-
ical formulae, Zakharyashchev gave alternative proofs of classic theorems in the
theory of modal companions, and extended this theory with several novel results.
Among these, he confirmed the Dummett-Lemmon conjecture, formulated in [21],
which states that a superintuitionistic logic is Kripke complete iff its weakest modal
companion is. Jeřábek [34] generalized canonical formulae to canonical rules, and
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applied this notion to extend Zakharyaschev’s approach to theory of modal com-
panions to rule systems (also known as multi-conclusion consequence relations.)

In [4, 5, 2], stable canonical formulae and rules were introduced as an alternative
to Zakharyaschev and Jeřábek-style canonical rules and formulae. The basic idea
is the same: a stable canonical formula or rule syntactically encodes the semantic
structure of a finite refutation pattern. The main difference lies in how such struc-
ture is encoded, which affects how refutation patterns are constructed in the process
of rewriting a formula (or rule) into a conjunction of stable canonical formulae (or
rules). Namely, in the case of stable canonical formulae and rules finite refutation
patterns are constructed by taking filtrations rather than selective filtrations of
countermodels. A survey of stable canonical formulae and rules can be found in [3].

This paper applies stable canonical rules to develop a novel, uniform approach
to the study of modal companions and related notions. Our approach echoes the
Zakharyaschev-Jeřábek approach in using rules encoding finite refutation patterns,
but also bears circumscribed similarities with Blok’s original algebraic approach
in some proof strategies (see Remark 3.40). Our techniques deliver central results
in the theory of modal companions in a notably uniform fashion, and with high
potential for further generalisation. In particular, we obtain an alternative proof
of the Blok-Esakia theorem for both logics and rule systems, and generalise the
Dummett-Lemmon conjectures to rule systems. Moreover, due to the flexibility of
filtration, our techniques easily generalise to rule systems in richer signatures. We
illustrate this via two case studies. Firstly, we apply our methods to study the
notion of tense companions of bi-superintuitionistic deductive systems, introduced
by Wolter [57] for logics. Here we generalise [57, Theorem 23], an analogue of the
Blok-Esakia theorem, from logics to rule systems. Moreover, we obtain an analogue
of the Dummett-Lemmon conjecture. Notably, these results are obtained via min-
imal adaptations of our technique, whereas extending the Zakharyaschev-Jeřábek
technique to this setting is far from straightforward, as we argue in Section 4.2.3.
Secondly, we apply our methods to study a Gödel translation-like correspondence
between normal extensions of the intuitionistic provability logic KM and the normal
extensions of the Gödel-Löb provability logic GL. Here we prove that the lattice
of normal modal superintuitionistic rule systems extending KM is isomorphic to the
lattice of normal modal rule systems extending GL. The corresponding result for
logics, known as the Kuznetsov-Muravitsky theorem [37, Proposition 3] follows as a
corollary. In pursuing these two generalisations of our technique, we also develop
new kinds of stable (or stable-like) canonical rules: for bi-superintuitionistic and
tense logics on the one hand, and (more significantly) for modal superintuitionistic
rule systems over KM and modal rule systems over GL on the other.

The techniques described in this paper can also be used to obtain axiomatic
characterizations of the modal companion maps (and their counterparts in the
richer signatures discussed here) in terms of stable canonical rules, as well as some
results concerning the notion of stability [6]. These results can be found in the
recent master’s thesis [18], on which the present paper is based.

The paper is organised as follows. Section 2 reviews general preliminaries. Each
subsequent section presents and applies our methods to deductive systems in a spe-
cific pair of signature. Section 3 studies modal companions of superintuitionistic
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deductive systems. Section 4 studies tense companions of bi-superintuitionistic de-
ductive system. Section 5 studies the Kuznetsov-Muravitsky isomorphism between
normal extensions of KM and normal extensions of GL. We conclude in Section 6.

2. General Preliminaries

This section fixes notational conventions and reviews the background theory
needed throughout the paper. We collect here all definitions and results which
all subsequent sections rely on. Preliminary information specific to the topic of a
particular section is instead presented therein. We use [14] as our standard reference
for universal algebra, and [32] for rule systems.

2.1. Relations. We begin by fixing some notation concerning binary relations. Let
X be a set, R a transitive binary relation on X, and U ⊆ X. We define:

qmaxR(U) := {x ∈ U : for all y ∈ U , if Rxy then Ryx}(1)

maxR(U) := {x ∈ U : for all y ∈ U , if Rxy then x = y}(2)

qminR(U) := {x ∈ U : for all y ∈ U , if Ryx then Rxy}(3)

minR(U) := {x ∈ U : for all y ∈ U , if Ryx then x = y}.(4)

The elements of qmaxR(U) and maxR(U) are called R-quasi-maximal and R-
maximal elements of U respectively, and similarly the elements of qminR(U) and
minR(U) are called R-quasi-minimal and R-minimal elements of U respectively.
Note that if R is a partial order then both qmaxR(U) = maxR(U) and qminR(U) =
minR(U). Lastly, we say that an element x ∈ U isR-passive in U if for all y ∈ XrU ,
if Rxy then there is no z ∈ U such that Ryz. Intuitively, an R-passive element of
U is an x ∈ U such that one cannot “leave” and “re-enter” U starting from x and
“moving through” R. The set of all R-passive elements of U is denoted by pasR(U).

2.2. Deductive Systems. We now review deductive system, which span both
propositional logics and rule systems. The set Frmν(X) of formulae in signa-
ture ν over a set of variables X is the least set containing X and such that for
every f ∈ ν and ϕ1, . . . , ϕn ∈ Frmν(X) we have f(ϕ1, . . . , ϕn) ∈ Frmν(X), where
n is the arity of f . Henceforth we will take Prop to be a fixed arbitrary countably
infinite set of variables and write simply Frmν for Frmν(Prop). We occasionally
write formulae in the form ϕ(p1, . . . , pn) to indicate that the variables occurring in
ϕ are among p1, . . . , pn. A substitution is a map s : Prop → Frmν(Prop). Every
substitution may be extended to a map s̄ : Frmν(Prop)→ Frmν(Prop) recursively,
by setting s̄(p) = s(p) if p ∈ Prop, and s̄(f(ϕ1, . . . , ϕn)) = f(s̄(ϕ1), . . . , s̄(ϕn)).

Definition 2.1. A logic over Frmν is a set L ⊆ Frmν , such that

(structurality) ϕ ∈ L⇒ s̄(ϕ) ∈ L for every substitution s.

Interesting examples of logics, including those discussed in this paper, are normally
closed under conditions other than structurality. If Γ,∆ are sets of formulae and S
is a set of logics, we write Γ⊕S ∆ for the least logic in S extending both Γ,∆.

For any sets X,Y , write X ⊆ω Y to mean that X ⊆ Y and |X| is finite. A
(multi-conclusion) rule in signature ν over a set of variables X is a pair (Γ,∆)
such that Γ,∆ ⊆ω Frmν(X). In case ∆ = {ϕ} we write Γ/∆ simply as Γ/ϕ, and
analogously if Γ = {ψ}. We use ; to denote union between finite sets of formulae,
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so that Γ; ∆ = Γ∪∆ and Γ;ϕ = Γ∪ {ϕ}. We write Rulν(X) for the set of all rules
in ν over X, and simply Rulν when X = Prop.

Definition 2.2. A rule system is a set S ⊆ Rulν(X) satisfying the following con-
ditions.

(1) If Γ/∆ ∈ S then s̄[Γ]/s̄[∆] ∈ S for all substitutions s (structurality).
(2) ϕ/ϕ ∈ S for every formula ϕ (reflexivity).
(3) If Γ/∆ ∈ S then Γ; Γ′/∆; ∆′ ∈ S for any finite sets of formulae Γ′,∆′

(monotonicity).
(4) If Γ/∆;ϕ ∈ S and Γ;ϕ/∆ ∈ S then Γ/∆ ∈ S (cut).

Remark 2.3. Rule systems are also called multiple-conclusion consequence rela-
tions (e.g., in [4, 32]). We prefer the terminology of rule systems (used in [34]) for
brevity.

If S is a set of rule systems and Σ,Ξ are sets of rules, we write Ξ⊕S Σ for the least
rule system in S extending both Ξ and Σ. A set of rules Σ is said to axiomatise a
rule system S ∈ S over some rule system S′ ∈ S if S′ ⊕S Σ = S.

If S is a rule system we let the set of tautologies of S be the set

Taut(S) := {ϕ ∈ Frmν : /ϕ ∈ S}.
By the structurality condition for rule systems, it follows that Taut(S) is a logic for
every rule system S.

We interpret deductive systems over algebras in the same signature. If A is a
ν-algebra we denote its carrier as A. Let A be some ν-algebra. A valuation on A
is a map V : Prop → A. Every valuation V on A may be recursively extended to a
map V̄ : Frmν → A, by setting

V̄ (p) := V (p)

V̄ (f(ϕ1, . . . , ϕn)) := fA(V̄ (ϕ1), . . . , V̄ (ϕn)).

A pair (A, V ) where A is a ν-algebra and V a valuation on A is called a model. A
rule Γ/∆ is valid on a ν-algebra A if the following holds: for any valuation V on
A, if V̄ (γ) = 1 for all γ ∈ Γ, then V̄ (δ) = 1 for some δ ∈ ∆. When this holds
we write A |= Γ/∆, otherwise we write A 2 Γ/∆ and say that A refutes Γ/∆. As
a special case, a formula ϕ is valid on a ν-algebra A if the rule /ϕ is. We write
A |= ϕ when this holds, A 2 ϕ otherwise. The notion of validity extends to classes
of ν-algebras: K |= Γ/∆ means that A |= Γ/∆ for every A ∈ K, and K 2 Γ/∆
means that A 2 Γ/∆ for some A ∈ K. Analogous notation is used for formulae.
Finally, if Ξ is a set of formulae or rules and A a ν-algebra, A |= Ξ means that
every formula or rule in Ξ is valid on A, A 2 Ξ means that some formula or rule in
Ξ is not valid on A, and similarly for classes of ν-algebras.

Write Aν for the class of all ν-algebras. For every deductive system S we define

Alg(S) := {A ∈ Aν : A |= S}.
Conversely, if K is a class of ν-algebras we set

ThR(K) := {Γ/∆ ∈ Rulν : K |= Γ/∆}
Th(K) := {ϕ ∈ Frmν : K |= ϕ}

We also interpret deductive systems over ν-formulae on expansions of Stone
spaces dual to ν-algebras, which for the moment we refer to as ν-spaces. Precise
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definitions of these topological sturctures and of valuations over them are given in
each subsequent section. If X is a ν-space we denote its underlying domain as X,
its family of open sets as O, and its family of clopen sets as Clop(X). Moreover,
if U ⊆ X we write −U for X r U . Given a valuation V on a ν-space X and a
point x ∈ X, we call (X, V ) a (global) model. A formula ϕ is satisfied on a model
(X, V ) at a point x if x ∈ V̄ (ϕ). In this case we write X, V, x |= ϕ, otherwise we
write X, V, x 2 ϕ and say that the model (X, V ) refutes ϕ at a point x. A rule
Γ/∆ is valid on a model (X, V ) if the following holds: if for every x ∈ X we have
X, V, x |= γ for each γ ∈ Γ, then for every x ∈ X we have X, V, x |= δ for some
δ ∈ ∆. In this case we write X, V |= Γ/∆, otherwise we write X, V 2 Γ/∆ and say
that the model (X, V ) refutes ϕ. A rule Γ/∆ is valid on a ν-space X if it is valid on
the model (X, V ) for every valuation V on X, otherwise X refutes Γ/∆. We write
X |= Γ/∆ to mean that Γ/∆ is valid on X, and X 2 Γ/∆ to mean that X refutes
Γ/∆. As in the case of algebras we define validity on models and ν-spaces for a
formula ϕ as validity of the rule /ϕ, and write X |= ϕ if ϕ is valid in X, otherwise
X 2 ϕ. The notion of validity generalises to classes of ν-spaces, so that if K is a
class of ν-space then K |= Γ/∆ means X |= Γ/∆ for every X ∈ K, and K 2 Γ/∆
means X 2 Γ/∆ for some X ∈ K. We extend the present notation for validity to
sets of formulae or rules the same way as for algebras.

Write Sν for the class of all ν-spaces. For every deductive system S we define

Spa(S) := {X ∈ Sν : X |= S}.

Conversely, if K is a class of ν-spaces we set

ThR(K) := {Γ/∆ ∈ Rulν : K |= Γ/∆}
Th(K) := {ϕ ∈ Frmν : K |= ϕ}

Throughout the paper we study the structure of lattices of deductive systems
via semantic methods. This is made possible by the following fundamental result,
connecting the syntactic types of deductive systems to closure conditions on the
classes of algebras validating them. Item 1 is widely known as Birkhoff’s theorem,
after [9].

Theorem 2.4 ([14, Theorems II.11.9 and V.2.20]). For every class K of ν-algebras,
the following conditions hold:

(1) K is a variety iff K = Alg(S) for some set of ν-formulae S.
(2) K is a universal class iff K = Alg(S) for some set of ν-rules S.

In this sense, ν-logics correspond to varieties of ν-algebras, whereas ν-rule systems
correspond to universal classes of ν-algebras.

This concludes our general preliminaries. We now begin the study of modal
companions via stable canonical rules.

3. Modal Companions of Superintuitionistic Deductive Systems

This section studies the theory of modal companions of superintuitionistic de-
ductive systems via stable canonical rules. Its main purpose is to present our
method in detail and show that it performs as expected. After some brief prelimi-
naries (Section 3.1), we present superintuitionistic and modal stable canonical rules
(Section 3.2). The main results of this section are included in Section 3.3.3 and
Section 3.3.4. The former uses stable canonical rules to give a characterisation of
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the set of modal companions of a superintuitionistic deductive system, and proves
the Blok-Esakia theorem for both logics and rule systems. The latter proves an
extension of the Dummett-Lemmon conjecture to rule systems, again using stable
canonical rules.

The techniques presented in this section can also be applied to obtain axiomatic
characterisations of the modal companion maps via stable canonical rules, as well
as some results concerning the preservation of stability by the modal companion
maps. More details on these topics can be found in [18, Sections 2.3.3, 2.3.4].

3.1. Modal and Superintuitionistic Deductive Systems. We begin with a
brief overview of the semantic and syntactic structures discussed throughout the
present section.

3.1.1. Superintuitionistic Deductive Systems, Heyting Algebras, and Esakia Spaces.
We work with the superintuitionistic signature,

si := {∧,∨,→,⊥,>}.

The set Frmsi of superintuitionistic (si) formulae is defined recursively as follows.

ϕ ::= p | ⊥ |> |ϕ ∧ ϕ |ϕ ∨ ϕ |ϕ→ ϕ.

We abbreviate ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ). We let IPC denote the intuitionistic
propositional calculus, and point the reader to [17, Ch. 2] for an axiomatisation.

Definition 3.1. A superintuitionistic logic, or si-logic for short, is a logic L over
Frmsi satisfying the following additional conditions:

(1) IPC ⊆ L;
(2) ϕ→ ψ,ϕ ∈ L implies ψ ∈ L (MP).

A superintuitionistic rule system, or si-rule system for short, is a rule system L over
Frmsi satisfying the following additional requirements.

(1) /ϕ ∈ L whenever ϕ ∈ IPC.
(2) ϕ,ϕ→ ψ/ψ ∈ L (MP-R).

For every si-logic L write Ext(L) for the set of si-logics extending L, and similarly
for si-rule systems. Then Ext(IPC) is the set of all si-logics. It is well known that
Ext(IPC) admits the structure of a complete lattice, with ⊕Ext(IPC) serving as join
and intersection as meet. Clearly, for every L ∈ Ext(IPC) there exists a least si-rule
system LR containing /ϕ for each ϕ ∈ L. Hence IPCR is the least rule system. The
set Ext(IPCR) is also a lattice when endowed with ⊕Ext(IPCR) as join and intersection
as meet. Slightly abusing notation, we refer to these lattices as we refer to their
underlying sets, i.e., Ext(IPC) and Ext(IPCR) respectively. Additionally, we make
use of systematic ambiguity and write both ⊕Ext(IPC) and ⊕Ext(IPCR) simply as ⊕,
leaving context to clarify which operation is meant.

The following proposition is central for transferring results about si-rule systems
to si-logics. Its proof is routine.

Proposition 3.2. The mappings (·)R and Taut(·) are mutually inverse complete
lattice isomorphisms between Ext(IPC) and the sublattice of Ext(IPCR) consisting
of all si-rule systems L such that Taut(L)R = L.
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A Heyting algebra is a tuple H = (H,∧,∨,→, 0, 1) such that (H,∧,∨, 0, 1) is a
bounded distributive lattice and for every a, b, c ∈ A we have

c ≤ a→ b ⇐⇒ a ∧ c ≤ b.

We let HA denote the class of all Heyting algebras. By Theorem 2.4, HA is a variety.
If V ⊆ HA is a variety (resp: universal class) we write Var(V) and Uni(V) respec-
tively for the lattice of subvarieties (resp: of universal subclasses) of V. The con-
nections between Ext(IPC) and Var(HA) on the one hand, and between Ext(IPCR)
and Uni(HA) on the other, are as intimate as they come.

Theorem 3.3. The following maps are pairs of mutually inverse dual isomor-
phisms:

(1) Alg : Ext(IPC)→ Var(HA) and Th : Var(HA)→ Ext(IPC);
(2) Alg : Ext(IPCR)→ Uni(HA) and ThR : Uni(HA)→ Ext(IPCR).

Item 1 is proved in [17, Theorem 7.56], whereas Item 2 follows from [34, Theorem
2.2] by standard techniques.

Corollary 3.4. Every si-logic (resp. si-rule system) is complete with respect to
some variety (resp. universal class) of Heyting algebras.

An Esakia space is a tuple X = (X,≤,O), such that (X,O) is a Stone space, ≤
is a partial order on X, and

(1) ↑x := {y ∈ X : x ≤ y} is closed for every x ∈ X;
(2) ↓U := {x ∈ X : ↑x ∩ U 6= ∅} ∈ Clop(X) for every U ∈ Clop(X).

We let Esa denote the class of all Esakia spaces. If X,Y are Esakia spaces, a map
f : X → Y is called a bounded morphism if for all x, y ∈ X we have that x ≤ y
implies f(x) ≤ f(y), and h(x) ≤ y implies that there is z ∈ X with x ≤ z and
h(z) = y.

If X is an Esakia space and U ⊆ X, we say that U is an upset if ↑[U ] = U . We
let ClopUp(X) denote the set of clopen upsets in X. A valuation on an Esakia space
X is a map V : Prop → ClopUp(X). A valuation V on X extends to a truth-set
assignment V̄ : Frmsi → ClopUp(X) in the standard way, with

V̄ (ϕ→ ψ) := −↓(V̄ (ϕ) r V̄ (ψ)).

The following result recalls some important properties of Esakia spaces, used
throughout the paper. For proofs the reader may consult [26, Lemma 3.1.5, Theo-
rem 3.2.1].

Proposition 3.5. Let X ∈ Esa. Then for all x, y ∈ X we have:

(1) If x 6≤ y then there is U ∈ ClopUp(X) such that x ∈ U and y /∈ U ;
(2) For all U ∈ Clop(U) and x ∈ U , there is y ∈ max≤(U) such that x ≤ y.

Esakia [22] proved that the category of Heyting algebras with corresponding ho-
momorphisms is dually equivalent to the category of Esakia spaces with continuous
bounded morphisms. The reader may consult [26, §3.4] for a detailed proof of this
result. We denote the Esakia space dual to a Heyting algebra H as H∗, and the
Heyting algebra dual to an Esakia space X as X∗.
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3.1.2. Modal Deductive Systems, Modal Algebras, and Modal Spaces. We shall now
work in the modal signature,

md := {∧,∨,¬,�,⊥,>}.

The set Frmmd of modal formulae is defined recursively as follows.

ϕ ::= p | ⊥ |> |ϕ ∧ ϕ |ϕ ∨ ϕ | ¬ϕ |�ϕ.

As usual we abbreviate ♦ϕ := ¬�¬ϕ. Further, we let ϕ → ψ := ¬ϕ ∨ ψ and
ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ).

Definition 3.6. A normal modal logic, henceforth simply modal logic, is a logic M

over Frmmd satisfying the following conditions:

(1) CPC ⊆ M, where CPC is the classical propositional calculus;
(2) �(ϕ→ ψ)→ (�ϕ→ �ψ) ∈ M;
(3) ϕ→ ψ,ϕ ∈ M implies ψ ∈ M (MP);
(4) ϕ ∈ M implies �ϕ ∈ M (NEC).

We denote the least modal logic as K. A normal modal rule system, henceforth
simply modal rule system, is a rule system M over Frmmd, satisfying the following
additional requirements:

(1) /ϕ ∈ M whenever ϕ ∈ K;
(2) ϕ→ ψ,ϕ/ψ ∈ M (MP-R);
(3) ϕ/�ϕ ∈ M (NEC-R).

If M is a modal logic let NExt(M) be the set of modal logics extending M, and
similarly for modal rule systems. Obviously, the set of modal logics coincides with
NExt(K). It is well known that NExt(K) forms a lattice under the operations
⊕NExt(K) as join and intersection as meet. Clearly, for each M ∈ NExt(K) there is
always a least modal rule system KR containing /ϕ for each ϕ ∈ M. Therefore, KR is
the least modal rule system. The set NExt(KR) is also a lattice when endowed with
⊕NExt(KR) as join and intersection as meet. With slight abuse of notation, we refer
to these lattices as we refer to their underlying sets, i.e., NExt(K) and NExt(KR)
respectively. Additionally, we make use of systematic ambiguity and write both
⊕NExt(K) and ⊕NExt(KR) simply as ⊕, leaving context to clarify which operation is
meant.

We have a modal counterpart of Proposition 3.2.

Proposition 3.7. The mappings (·)R and Taut(·) are mutually inverse complete
lattice isomorphisms between NExt(K) and the sublattice of NExt(KR) consisting
of all si-rule systems M such that Taut(M)R = M.

A modal algebra is a tuple A = (A,∧,∨,¬,�, 0, 1) such that (A,∧,∨,¬, 0, 1) is
a Boolean algebra and the following equations hold:

�1 = 1,(5)

�(a ∧ b) = �a ∧�b.(6)

We let MA denote the class of all modal algebras. By Theorem 2.4, MA is a
variety. We let Var(MA) and Uni(MA) be the lattice of subvarieties and the
lattice of universal subclasses of MA respectively. We have the following analogue
of Theorem 3.3.
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Theorem 3.8. The following maps are pairs of mutually inverse dual isomor-
phisms:

(1) Alg : NExt(K)→ Var(MA) and Th : Var(MA)→ NExt(K);
(2) Alg : NExt(KR)→ Uni(MA) and ThR : Uni(MA)→ NExt(KR).

Item 2 is proved in [17, Theorem 7.56], whereas Item 2 follows from [8, Theorem
2.5].

Corollary 3.9. Every modal logic (resp. modal rule system) is complete with re-
spect to some variety (resp. universal class) of modal algebras.

A modal space is a tuple X = (X,R,O), such that (X,O) is a Stone space,
R ⊆ X ×X is a binary relation, and

(1) R[x] := {y ∈ X : Rxy} is closed for every x ∈ X;
(2) R−1(U) := {x ∈ X : R[x] ∩ U 6= ∅} ∈ Clop(X) for every U ∈ Clop(X).

We let Mod denote the class of all modal spaces. If X,Y are modal spaces, a map
f : X → Y is called a bounded morphism when for all x, y ∈ X, if Rxy then
Rf(x)f(y), and Rf(x)y implies that there is z ∈ X with Rxz and f(z) = y. A
valuation on a modal space X is a map V : Prop → Clop(X). A valuation extends
to a full truth-set assignment V̄ : Frm → Clop(X) in the usual way.

By a generalisation of Stone duality, the category of modal algebras with cor-
responding homomorphisms is dually equivalent to the category of modal spaces
with continuous bounded morphisms. A proof of this result can be found, e.g., in
[49, Sections 3, 4]. We denote the modal space dual to a modal algebra A as A∗,
and the modal algebra dual to an modal space X as X∗.

In this paper we are mostly concerned with modal algebras and modal spaces
validating one of the following modal logics.

K4 := K⊕�p→ ��p
S4 := K4⊕�p→ p

We let K4 := Alg(K4) and S4 := Alg(S4). We call algebras in K4 transitive algebras,
and algebras in S4 closure algebras. It is obvious that for every A ∈ MA, A ∈ K4
iff ��a ≤ �a for every a ∈ A, and A ∈ S4 iff A ∈ K4 and additionally �a ≤ a
for every a ∈ A. Moreover, it is easy to see that a modal space validates K4 iff it
has a transitive relation, and that it validates S4 iff it has a reflexive and transitive
relation (see, e.g., Chagrov and Zakharyaschev 17, Section 3.8).

Let X ∈ Spa(K4). A subset C ⊆ X is called a cluster if it is an equivalence class
under the relation ∼ defined by x ∼ y iff Rxy and Ryx. A cluster is called improper
if it is a singleton, otherwise we call it proper.

We recall some basic properties of K4- and S4-spaces.

Proposition 3.10. Let X ∈ Spa(S4) and U ∈ Clop(X). Then the following condi-
tions hold:

(1) The set qmaxR(U) is closed;
(2) If x ∈ U then there is y ∈ qmaxR(U) such that Rxy.

Moreover, let X ∈ Spa(K4) and U ∈ Clop(X). Then the following conditions hold:

(3) The structure (X,R+), with the same topology as X, is a S4-space, where
for all x, y ∈ X we have R+xy iff Rxy or x = y;

(4) The set qmaxR(U) is closed;
(5) If x ∈ U then there is y ∈ qmaxR(U) such that Rxy.
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Properties 1, 2 are proved in [26, Theorems 3.2.1, 3.2.3]. Property 3 is straightfor-
ward to check, and properties 4, 5 are immediate consequences of 1, 2, and 3.

Among extensions of S4, the modal logic GRZ plays a particularly central role in
this paper.

GRZ : = K⊕�(�(p→ �p)→ p)→ p

= S4⊕�(�(p→ �p)→ p)→ p

We let GRZ := Alg(GRZ). It is not difficult to see that GRZ coincides with the class
of all closure algebras A such that for every a ∈ A we have

�(�(a→ �a)→ a) ≤ a

or equivalently,

a ≤ ♦(a ∧ ¬♦(♦a ∧ ¬a)).

A poset (X,R) is called Noetherian if it contains no infinite R-ascending chain
of pairwise distinct points. It is well known that GRZ is complete with respect to
the class of Noetherian partially ordered Kripke frames [17, Corollary 5.52]. In
general, GRZ-spaces may fail to be partially ordered. Still, clusters cannot occur
just anywhere in a GRZ-space, as the following result clarifies.

Proposition 3.11. For every GRZ-space X and U ∈ Clop(X), the following hold:

(1) qmaxR(U) ⊆ maxR(U);
(2) The set maxR(U) is closed;
(3) For every x ∈ U there is y ∈ pasR(U) such that Rxy;
(4) maxR(U) ⊆ pasR(U).

Item 1 is proved in [26, Theorem 3.5.6]. Item 2 follows from Item 1 and Propo-
sition 3.10. Item 3 is immediate from the GRZ-axiom. Item 4 then follows from
Proposition 3.10, Item 1, and Item 3.

Let us say that U ⊆ X cuts a cluster C ⊆ X if both U ∩C 6= ∅ and U rC 6= ∅.
As an immediate consequence of Item 4 in Proposition 3.11 we obtain that for any
U ∈ Clop(X), neither maxR(U) or pasR(U) cut any clusters in X.

3.2. Stable Canonical Rules for Superintuitionistic and Modal Rule Sys-
tems. In both the si and the modal cases, the filtration technique can be used to
construct finite countermodels to a non-valid rule Γ/∆. Roughly, this construction
consists of expanding finitely generated subreducts in a locally finite signature of
arbitrary counter-models to Γ/∆, in such a way that the new operation added to
the subreduct agrees with the original one on selected elements. Si and modal stable
canonical rules are essentially syntactic devices for encoding finite filtrations. The
present section briefly reviews this method in both the si and modal case. We point
the reader to [4, 5, 2, 3] and [33, Ch. 5] for more in-depth discussion.

3.2.1. Supertintuitionistic Case. We begin by defining si stable canonical rules.

Definition 3.12. Let H ∈ HA be finite and D ⊆ A×A. For every a ∈ H introduce
a fresh propositional variable pa. The si stable canonical rule of (H, D), is defined
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as the rule η(H, D) = Γ/∆, where

Γ ={p0 ↔ 0} ∪ {p1 ↔ 1}∪
{pa∧b ↔ pa ∧ pb : a, b ∈ H} ∪ {pa∨b ↔ pa ∨ pb : a, b ∈ H}∪
{pa→b ↔ pa → pb : (a, b) ∈ D}

∆ ={pa ↔ pb : a, b ∈ H with a 6= b}.

We write si stable canonical rules of the form η(H,∅) simply as η (H), and call them
stable rules.

If H,K ∈ HA, let us call a map h : H → K stable if h is a bounded lattice
homomorphism, i.e., if it preserves 0, 1,∧, and ∨. If D ⊆ H × H, we say that h
satisfies the bounded domain condition (BDC) for D if

h(a→ b) = h(a)→ h(b)

for every (a, b) ∈ D. It is not difficult to check that every stable map h : H → K
satisfies h(a→ b) ≤ h(a)→ h(b) for every (a, b) ∈ H.

Remark 3.13. The BDC was originally called closed domain condition in, e.g.,
[4, 2], following Zakharyaschev’s terminology for a similar notion in the theory of
his canonical formulae. The name stable domain condition was later used in [3] to
stress the difference with Zakharyaschev’s notion. However, this choice may create
confusion between the BDC and the property of being a stable map. The termi-
nology used in this paper is meant to avoid this, while concurrently highlighting
the similarity between the geometric version of the BDC, to be presented in a few
paragraphs, and the definition of a bounded morphism.

The next two results characterise refutation conditions for si stable canonical
rules. For detailed proofs the reader may consult [5, Proposition 3.2].

Proposition 3.14. For every finite H ∈ HA and D ⊆ H×H, we have H 2 η(H, D).

Proof sketch. Use the valuation V (pa) = a. �

Proposition 3.15. For every H,K ∈ HA with H finite, and every D ⊆ H ×H, we
have K 2 η(H, D) iff there is a stable embedding h : H → K satisfying the BDC for
D.

Proof sketch. (⇒) Assume K 2 η(H, D), and take a valuation V on K such that
K, V 2 η(H, D). Define a map h : H → K by setting h(a) = V (pa). Then h is the
desired stable embedding satisfying the BDC for D.

(⇐) Assume we have a stable embedding h : H → K satisfying the BDC for D.
By the proof of Proposition 3.14 we know that the valuation V with V (pa) = a
witnesses H 2 η(H, D). So put V (pa) = h(a). �

Si stable canonical rules also have uniform refutation conditions on Esakia spaces.
If X,Y are Esakia spaces, a map f : X → Y is called stable if x ≤ y implies
f(x) ≤ f(y), for all x, y ∈ X. If d ⊆ Y we say that f satisfies the BDC for d if for
all x ∈ X,

↑f(x) ∩ d 6= ∅⇒ f [↑x] ∩ d 6= ∅.
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If D ⊆ ℘(Y ) then we say that f satisfies the BDC for D if it does for each d ∈ D. If H
is a finite Heyting algebra and D ⊆ H, for every (a, b) ∈ D set d(a,b) := β(a)rβ(b).
Finally, put

D := {d(a,b) : (a, b) ∈ D}.
The following result follows straightforwardly from [2, Lemma 4.3].

Proposition 3.16. For every Esakia space X and any si stable canonical rule
η(H, D), we have X 2 η(H, D) iff there is a continuous stable surjection f : X→ H∗
satisfying the BDC for the family D := {d(a,b) : (a, b) ∈ D}.

In view of Proposition 3.16, when working with Esakia spaces we shall often write
a si stable canonical rule η(H, D) as η(H∗,D).

Stable maps and the BDC are closely related to the filtration construction. We
recall its definition in an algebraic setting, and state the fundamental theorem used
in most of its applications.

Definition 3.17. Let H be a Heyting algebra, V a valuation on A, and Θ a finite,
subformula closed set of formulae. A (finite) model (K′, V ′) is called a (finite)
filtration of (H, V ) through Θ if the following hold:

(1) K′ = (K,→), where K is the bounded sublattice of H generated by V̄ [Θ];
(2) V (p) = V ′(p) for every propositional variable p ∈ Θ;
(3) The inclusion ⊆: H → K is a stable embedding satisfying the BDC for the

set
{(V̄ ′(ϕ), V̄ ′(ψ)) : ϕ→ ψ ∈ Θ}.

Theorem 3.18 (Filtration theorem for Heyting algebras). Let H ∈ HA be a Heyting
algebra, V a valuation on H, and Θ a a finite, subformula closed set of formulae.
If (K′, V ′) is a filtration of (H, V ) through Θ then for every ϕ ∈ Θ we have

V̄ (ϕ) = V̄ ′(ϕ).

Consequently, for every rule Γ/∆ such that γ, δ ∈ Θ for each γ ∈ Γ and δ ∈ ∆ we
have

H, V |= Γ/∆ ⇐⇒ K, V ′ |= Γ/∆.

A proof of the filtration theorem above follows from, e.g., the proof of [2, Lemma
3.6].

The next result establishes that every si rule is equivalent to finitely many si
stable canonical rules. This lemma was proved in [5, Proposition 3.3], but we
rehearse the proof here to illustrate the exact role of filtration in the machinery of
stable canonical rules.

Lemma 3.19. For every si rule Γ/∆ there is a finite set Ξ of si stable canonical
rules such that for any K ∈ HA we have K 2 Γ/∆ iff there is η(H, D) ∈ Ξ such that
K 2 η(H, D).

Proof. Since bounded distributive lattices are locally finite there are, up to isomor-
phism, only finitely many pairs (H, D) such that

• H is at most k-generated as a bounded distributive lattice, where k =
|Sfor(Γ/∆)|;

• D = {(V̄ (ϕ), V̄ (ψ)) : ϕ → ψ ∈ Sfor(Γ/∆)}, where V is a valuation on H
refuting Γ/∆.
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Let Ξ be the set of all rules η(H, D) for all such pairs (H, D), identified up to
isomorphism.

(⇒) Assume K 2 Γ/∆ and take a valuation V on K refuting Γ/∆. Consider the
bounded distributive sublattice J of K generated by V̄ [Sfor(Γ/∆)]. Since bounded
distributive lattices are locally finite, J is finite. Define a binary operation  on J
by setting, for all a, b ∈ J ,

a b :=
∨
{c ∈ J : a ∧ c ≤ b}.

Clearly, J′ := (J, ) is a Heyting algebra. Define a valuation V ′ on J′ with V ′(p) =
V (p) if p ∈ Θ, V ′(p) arbitrary otherwise. Since J′ is a sublattice of K, the inclusion
⊆ is a stable embedding. Now let ϕ→ ψ ∈ Θ. Then V̄ ′(ϕ)→ V̄ ′(ψ) ∈ J . From the
fact that ⊆ is a stable embedding it follows that V̄ ′(ϕ) V̄ ′(ψ) ≤ V̄ ′(ϕ)→ V̄ ′(ψ).
Conversely, by definition of we find V̄ ′(ϕ) V̄ ′(ψ)∧V̄ ′(ϕ) ≤ V̄ ′(ψ). But then by
the properties of Heyting algebras it follows that V̄ ′(ϕ)→ V̄ ′(ψ) ≤ V̄ ′(ϕ) V̄ ′(ψ).
Thus V̄ ′(ϕ)  V̄ ′(ψ) = V̄ ′(ϕ) → V̄ ′(ψ) as desired. We have shown that the
model (J′, V ′) is a filtration of the model (K, V ) through Sfor(Γ/∆), which implies
J′, V ′ 2 Γ/∆.

(⇐) Assume that there is η(H, D) ∈ Ξ such that K 2 η(H, D). Let V be the
valuation associated with D in the sense spelled out above. Then H, V 2 Γ/∆.
Moreover (H, V ) is a filtration of the model (K, V ), so by the filtration theorem it
follows that K, V 2 Γ/∆. �

As an immediate consequence we obtain a uniform axiomatisation of all si-rule
systems by means of si stable canonical rules.

Theorem 3.20 ([5, Proposition 3.4]). Any si-rule system L ∈ Ext(IPCR) is axiom-
atisable over IPCR by some set of si stable canonical rules.

Proof. Let L ∈ Ext(IPCR), and take a set of rules Ξ such that L = IPCR ⊕ Ξ. By
Lemma 3.19 and the completeness of IPCR (Corollary 3.4), for every Γ/∆ ∈ Ξ there
is a finite set ΠΓ/∆ of si stable canonical rules whose conjunction is equivalent to
Γ/∆. But then L = IPCR ⊕

⋃
∆/Γ∈Ξ ΠΓ/∆. �

3.2.2. Modal Case. We now turn to modal stable canonical rules.

Definition 3.21. Let A ∈ MA be finite and D ⊆ A. For every a ∈ A introduce a
fresh propositional variable pa. The modal stable canonical rule of (A, D) is defined
as the rule µ(A, D) = Γ/∆, where

Γ = {p¬a ↔ ¬pa : a ∈ A}∪
{pa∧b ↔ pa ∧ pb : a, b ∈ A} ∪ {pa∨b ↔ pa ∨ pb : a, b ∈ A}∪
{p�a → �pa : a ∈ A} ∪ {�pa → p�a : a ∈ D}

∆ = {pa : a ∈ Ar {1}}.

As in the si case, a modal stable canonical rule of the form µ(A,∅) is written simply
as µ (A) and called a stable rule.

If A,B ∈ MA are modal algebras, let us call a map h : A→ B stable if for every
a ∈ A we have h(�a) ≤ �h(a). If D ⊆ A, we say that h satisfies the bounded
domain condition (BDC) for D if h(�a) = �h(a) for every a ∈ D.
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The following two propositions are modal counterparts to Propositions 3.14
and 3.15. Their proofs are similar to the latter’s, and can be found in [4, Lemma
5.3, Theorem 5.4].

Proposition 3.22. For every finite A ∈ MA and D ⊆ A, we have A 2 µ(A, D).

Proposition 3.23. For every A,B ∈ MA with A finite, and every D ⊆ A, we have
B 2 µ(A, D) iff there is a stable embedding h : A→ B satisfying the BDC for D.

Refutation conditions for modal stable canonical rules on modal spaces are
obtained in analogous fashion to the si case. If X,Y are modal spaces, a map
f : X→ Y is called stable if for all x, y ∈ X, we have that Rxy implies Rf(x)f(y).
If d ⊆ Y we say that f satisfies the BDC for d if for all x ∈ X,

R[f(x)] ∩ d 6= ∅⇒ f [R[x]] ∩ d 6= ∅.
If D ⊆ ℘(Y ) then we say that f satisfies the BDC for D if it does for each d ∈ D.
If A is a finite modal algebra and D ⊆ H, for every a ∈ D set da := −β(a). Finally,
put D := {da : a ∈ D}. The following result is proved in [4, Theorem 3.6].

Proposition 3.24. For every modal space X and any modal stable canonical rule
µ(A, D), X 2 µ(A, D) iff there is a continuous stable surjection f : X→ A∗ satisfy-
ing the BDC for D.

In view of Proposition 3.24, when working with modal spaces we may write a modal
stable canonical rule µ(A, D) as µ(A∗,D).

As in the si case, stable maps and the BDC are closely related to the filtration
technique.

Definition 3.25. Let A be a modal algebra, V a valuation on A, and Θ a finite,
subformula closed set of formulae. A (finite) model (B, V ′) is called a (finite)
filtration of (A, V ) through Θ if the following conditions hold:

(1) B = (B′,�), where B′ is the Boolean subalgebra of A generated by V̄ [Θ];
(2) V (p) = V ′(p) for every propositional variable p ∈ Θ;
(3) The inclusion ⊆: B→ A is a stable embedding satisfying the BDC for the

set
{V̄ (ϕ) : �ϕ ∈ Θ}

The following result is proved, e.g., in [4, Lemma 4.4].

Theorem 3.26 (Filtration theorem for modal algebras). Let A ∈ MA be a modal
algebra, V a valuation on A, and Θ a finite, subformula closed set of formulae. If
(B′, V ′) is a filtration of (A, V ) through Θ then for every ϕ ∈ Θ we have

V̄ (ϕ) = V̄ ′(ϕ).

Consequently, for every rule Γ/∆ such that γ, δ ∈ Θ for each γ ∈ Γ and δ ∈ ∆ we
have

A, V |= Γ/∆ ⇐⇒ B, V ′ |= Γ/∆.

Unlike the si case, filtrations of a given model through a given set of formulae
are not necessarily unique when they exist. Depending on which construction is
preferred, different properties of the original model may or may not be preserved.
In this section we mainly deal with closure algebras, whence we are particularly
interested in filtrations preserving reflexivity and transitivity. It is easy to see that
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any filtration preserves reflexivity. Whilst, in general, the filtration of a transitive
model may fail to be transitive, transitive filtrations of transitive models can be
constructed in multiple ways. Here we restrict attention to one particular construc-
tion.

Definition 3.27. Let A ∈ S4, V a valuation on A and Θ a finite, subformula
closed set of formula. The (least) transitive filtration of (A, V ) is a pair (B′, V ′)
with B′ = (B,�), where B and V ′ are as per Definition 3.25, and for all b ∈ B we
have

�b :=
∨
{�a : �a ≤ �b and a,�a ∈ B}

It is easy to see that transitive filtrations of transitive models are indeed based on
closure algebras (cf., e.g., [4, Lemma 6.2]).

Transitive filtrations provide the necessary countermodels to rewrite modal rules
into (conjunctions of) modal stable canonical rules. The following lemma, which is
a modal counterpart to Lemma 3.19, explains how.

Lemma 3.28 ([4, Theorem 5.5]). For every modal rule Γ/∆ there is a finite set Ξ
of modal stable canonical rules of the form µ(A, D) with A ∈ S4, such that for any
B ∈ S4 we have that B 2 Γ/∆ iff there is µ(A, D) ∈ Ξ such that B 2 µ(A, D).

Proof. Since Boolean algebras are locally finite there are, up to isomorphism, only
finitely many pairs (A, D) such that

• A is at most k-generated as a Boolean algebra, where k = |Sfor(Γ/∆)|;
• D = {V̄ (ϕ) : �ϕ ∈ Sfor(Γ/∆)}, where V is a valuation on H refuting Γ/∆.

Let Ξ be the set of all rules µ(A, D) for all such pairs (A, D), identified up to
isomorphism. Then we reason as in the proof of Lemma 3.19, using the well-
known fact that every model (B, V ) with B ∈ S4 has a transitive filtration through
Sfor(Γ/∆) to establish the (⇒) direction. �

Exactly mirroring the si case we apply Lemma 3.28 to obtain the following
uniform axiomatisation of modal rule systems extending S4R.

Theorem 3.29. Every modal rule system M ∈ NExt(S4R) is axiomatisable over
S4R by some set of modal stable canonical rules of the form µ(A, D), for A ∈ S4.

3.3. Modal Companions of Superintuitionistic Deductive Systems via
Stable Canonical Rules. We now turn to the main topic of this section. Sec-
tion 3.3.1 reviews the basic ingredients of the theory of modal companions. Sec-
tion 3.3.3 shows how to apply stable canonical rules to give a novel proof of the
Blok-Esakia theorem. Lastly, Section 3.3.4 applies our methods to obtain an ana-
logue of the Dummett-Lemmon conjecture to rule systems.

3.3.1. Semantic Mappings. We begin by defining semantic transformation between
Heyting and closure algebras. For more details, consult [26, Section 3.5].

Definition 3.30. The mapping σ : HA→ S4 assigns every H ∈ HA to the algebra
σH := (B(H),�), where B(H) is the free Boolean extension of H and

�a :=
∨
{b ∈ H : b ≤ a}.

It can be shown that for each H ∈ HA we have that σH is in fact a GRZ-algebra [26,
Corollary 3.5.7].
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Definition 3.31. The mapping ρ : S4 → HA assigns every A ∈ S4 to the algebra
ρA := (O(A),∧,∨,→, 0, 1), where

O(A) := {a ∈ A : �Fa = a} = {a ∈ A : ♦Pa = a}
a→ b := �F (¬a ∨ b)

The algebra ρ(A) is called the Heyting algebra of open elements associated with A.
It is easy to verify that ρ(A) is indeed a Heyting algebra for any closure algebra A.

We now give a dual description of the maps σ, ρ on modal and Esakia spaces.

Definition 3.32. If X = (X,≤,O) is an Esakia space we set σX := (X,R,O) with
R :=≤. Let Y := (Y,R,O) be an S4-space. For x, y ∈ Y write x ∼ y iff Rxy and
Ryx. Define a map ρ : Y → ℘(Y ) by setting ρ(x) = {y ∈ Y : x ∼ y}. We define
ρY := (ρ[Y ],≤, ρ[O]) where ρ(x) ≤ ρ(y) iff Rxy.

Note that σ here is effectively the identity map, though we find useful to distinguish
an Esakia space X from σX notationally in order to signal whether we are treating
the space as a model for si or modal deductive systems. On the other hand, the
map ρ affects a modal space Y by collapsing its R-clusters and endowing the result
with the quotient topology. We shall refer to ρY as the Esakia skeleton of Y, and
to σρY as the modal skeleton of Y. It is easy to see that the map ρ : Y→ ρY is a
surjective bounded morphism which moreover reflects ≤.

Routine arguments show that that the algebraic and topological versions of the
maps σ, ρ are indeed dual to each other, as stated in the following proposition.

Proposition 3.33. The following hold.

(1) Let H ∈ HA. Then (σH)∗ ∼= σ(H∗). Consequently, if X is an Esakia space
then (σX)∗ ∼= σ(X)∗.

(2) Let X be an S4 modal space. Then (ρX)∗ ∼= ρ(X∗). Consequently, if A ∈ S4,
then (ρA)∗ ∼= ρ(A∗).

The dual description of ρ, σ makes the following result evident.

Proposition 3.34. For every H ∈ HA we have H ∼= ρσH. Moreover, for every
A ∈ S4 we have σρA� A.

3.3.2. The Gödel Translation. The close connection between Heyting and closure
algebras just outlined manifests syntactically as the existence of a well-behaved
translation of si formulae into modal ones, called the Gödel translation after Gödel
[31].

Definition 3.35 (Gödel translation). The Gödel translation is a mapping T :
Frmsi → Frmmd defined recursively as follows.

T (⊥) := ⊥
T (>) := >
T (p) := �p

T (ϕ ∧ ψ) := T (ϕ) ∧ T (ψ)

T (ϕ ∨ ψ) := T (ϕ) ∨ T (ψ)

T (ϕ→ ψ) := �(¬T (ϕ) ∨ T (ψ))
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We extend the Gödel translation from formulae to rules by setting

T (Γ/∆) := T [Γ]/T [∆].

We close this subsection by recalling the following key lemma due to Jeřábek
[34].

Lemma 3.36 ([34, Lemma 3.13]). For every A ∈ S4 and si rule Γ/∆,

A |= T (Γ/∆) ⇐⇒ ρA |= Γ/∆

3.3.3. Structure of Modal Companions. We now have all the material needed to
develop the theory of modal companions via the machinery of stable canonical
rules.

Definition 3.37. Let L ∈ Ext(IPCR) be a si-rule system and M ∈ NExt(S4R) a
modal rule system. We say that M is a modal companion of L (or that L is the si
fragment of M) whenever Γ/∆ ∈ L iff T (Γ/∆) ∈ M. Moreover, let L ∈ Ext(IPC) be
a si-logic and M ∈ NExt(S4) a modal logic. We say that M is a modal companion of
L (or that L is the si fragment of M) whenever ϕ ∈ L iff T (ϕ) ∈ M.

Obviously, M ∈ NExt(S4R) is a modal companion of L ∈ Ext(IPCR) iff Taut(M)
is a modal companion of Taut(L), and M ∈ NExt(S4) is a modal companion of
L ∈ Ext(IPC) iff MR is a modal companion of LR.

Define the following three maps between the lattices Ext(IPCR) and NExt(KR).

τ : Ext(IPCR)→ NExt(S4R) σ : Ext(IPCR)→ NExt(S4R)

L 7→ S4R ⊕ {T (Γ/∆) : Γ/∆ ∈ L} L 7→ GRZR ⊕ τL

ρ : NExt(S4R)→ Ext(IPCR)

M 7→ {Γ/∆ : T (Γ/∆) ∈ M}

These mappings are readily extended to lattices of logics.

τ : Ext(IPC)→ NExt(S4) σ : Ext(IPC)→ NExt(S4)

L 7→ Taut(τLR) = S4⊕ {T (ϕ) : ϕ ∈ L} L 7→ Taut(σLR) = GRZ⊕ {T (ϕ) : ϕ ∈ L}

ρ : NExt(S4)→ Ext(IPC)

M 7→ Taut(ρMR) = {ϕ : T (ϕ) ∈ M}

Furthermore, extend the mappings σ : HA → S4 and ρ : S4 → HA to universal
classes by setting

σ : Uni(HA)→ Uni(S4) ρ : Uni(S4)→ Uni(HA)

U 7→ Uni{σH : H ∈ U} W 7→ {ρA : A ∈ W}.

Finally, introduce a semantic counterpart to τ as follows.

τ : Uni(HA)→ Uni(S4)

U 7→ {A ∈ S4 : ρA ∈ U}
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The goal of this subsection is to give alternative proofs of the following two
classic results in the theory of modal companions. Firstly, that for every si-deductive
system L, the modal companions of L are exactly the elements of the interval ρ−1(L)
(Theorem 3.43). Secondly, that the syntactic mappings σ, ρ are mutually inverse
isomorphism (Theorem 3.44). This last result (restricted to logics) is widely known
as the Blok-Esakia theorem.

The main problem one needs to deal with in order to prove the results just
mentioned consists in showing that the mapping σ : Ext(IPCR) → NExt(GRZR)
is surjective. We solve this problem by first applying stable canonical rules to
show that the semantic mapping σ : Uni(HA) → Uni(GRZ) is surjective, and
subsequently establishing that the syntactic and semantic versions of σ capture
essentially the same transformation. Our key tool is the following technical lemma.

Lemma 3.38. Let A ∈ GRZ. Then for every modal rule Γ/∆, A |= Γ/∆ iff
σρA |= Γ/∆.

Proof. (⇒) This direction follows from the fact that σρA� A (Proposition 3.34).
(⇐) We prove the dual statement that A∗ 2 Γ/∆ implies σρA∗ 2 Γ/∆. Let

X := A∗. By Theorem 3.29, Γ/∆ is equivalent to a conjunction of modal stable
canonical rules of finite closure algebras, so without loss of generality we may assume
Γ/∆ = µ(B, D), for B ∈ S4 finite. So suppose X 2 µ(B, D) and let F := B∗.
By Proposition 3.16, there is a stable map f : X → F satisfying the BDC for
D := {da : a ∈ D}. We construct a stable map g : σρX → F which also satisfies
the BDC for D. By Proposition 3.16 again, this would show that σρX 2 µ(B, D),
hence would conclude the proof.

Let C ⊆ F be some cluster. Consider ZC := f−1(C). As f is continuous,
ZC ∈ Clop(X). Moreover, since f is stable ZC does not cut any cluster. It follows
that ρ[ZC ] is clopen in σρX, because σρX has the quotient topology. Enumerate
C := {x1, . . . , xn}. Then f−1(xi) ⊆ ZC is clopen. By Proposition 3.11 we find that
Mi := max (f−1(xi)) is closed. Furthermore, as X is a GRZ space and every element
of Mi is passive in Mi, by Proposition 3.11 again we have that Mi does not cut any
cluster. Therefore ρ[Mi] is closed, again because σρX has the quotient topology.
Clearly, ρ[Mi] ∩ ρ[Mj ] = ∅ for each i 6= j.

We shall now separate the closed sets ρ[M1], . . . , ρ[Mn] by disjoint clopens. That
is, we shall find disjoint clopens U1, . . . , Un ∈ Clop(σρX) with ρ[Mi] ⊆ Ui and⋃
i Ui = ρ[ZC ]. Let k ≤ n and assume that Ui has been defined for all i < k. If k = n

put Un = ρ[ZC ]r
(⋃

i<k Ui
)

and we are done. Otherwise set Vk := ρ[ZC ]r
(⋃

i<k Ui
)

and observe that it contains each ρ[Mi] for k ≤ i ≤ n. By the separation properties
of Stone spaces, for each i with k < i ≤ n there is some Uki ∈ Clop(σρX) with
ρ[Mk] ⊆ Uki and ρ[Mi] ∩ Uki = ∅. Then set Uk :=

⋂
k<i≤n Uki ∩ Vk.

Now define a map

gC : ρ[ZC ]→ C

z 7→ xi ⇐⇒ z ∈ Ui.

Note that gC is relation preserving, evidently, and continuous because g−1
C (xi) = Ui.

Finally, define g : σρX→ F by setting

g(ρ(z)) :=

{
f(z) if f(z) does not belong to any proper cluster

gC(ρ(z)) if f(z) ∈ C for some proper cluster C ⊆ F.
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Now, g is evidently relation preserving. Moreover, it is continuous because both f
and each gC are. Suppose Rg(ρ(x))y and y ∈ d for some d ∈ D. By construction,
f(x) belongs to the same cluster as g(ρ(x)), so also Rf(x)y. Since f satisfies
the BDC for D, there must be some z ∈ X such that Rxz and f(z) ∈ d. Since
f−1(f(z)) ∈ Clop(X), by Proposition 3.11 there is z′ ∈ max (f−1(f(z))) with Rzz′.
Then also Rxz′ and f(z′) ∈ d. But from z′ ∈ max (f−1(f(z)) it follows that
f(z′) = g(ρ(z′)) by construction, so we have g(ρ(z′)) ∈ d. As clearly Rρ(x)ρ(z′),
we have shown that g satisfies the BDC for D. By Proposition 3.16 this implies
σρX 6|= µ(B, D). �

Theorem 3.39. Every U ∈ Uni(GRZ) is generated by its skeletal elements, i.e.,
U = σρU .

Proof. By σρA � A (Proposition 3.34), surely σρU ⊆ U . Conversely, suppose
U 2 Γ/∆. Then there is A ∈ U with A 2 Γ/∆. By Lemma 3.38 it follows that
σρA 2 Γ/∆. This shows ThR(σρU) ⊆ ThR(U), which is equivalent to U ⊆ σρU .
Hence indeed U = σρU . �

Remark 3.40. The restriction of Theorem 3.39 to varieties plays an important
role in the algebraic proof of the Blok-Esakia theorem given by Blok [11]. The
unrestricted version is explicitly stated and proved in [52, Lemma 4.4] using a
generalisation of Blok’s approach, although it also follows from [34, Theorem 5.5].
Blok establishes the restricted version of Theorem 3.39 as a consequence of what
is now known as the Blok lemma. The proof of the Blok lemma is notoriously
involved. By contrast, our techniques afford a direct and, we believe, semantically
transparent proof of Theorem 3.39.

Given Theorem 3.39, the main result of this section can be obtained via known
routine arguments. First, we show that the syntactic modal companion maps τ, ρ, σ
commute with Alg(·).
Lemma 3.41 ([34, Theorem 5.9]). For each L ∈ Ext(IPCR) and M ∈ NExt(S4R),
the following hold:

Alg(τL) = τAlg(L)(7)

Alg(σL) = σAlg(L)(8)

Alg(ρM) = ρAlg(M)(9)

Proof. (7) For every A ∈ S4 we have A ∈ Alg(τL) iff A |= T (Γ/∆) for all Γ/∆ ∈ L

iff ρA |= Γ/∆ for all Γ/∆ ∈ L iff ρA ∈ Alg(L) iff A ∈ τAlg(L).
(8) In view of Theorem 3.39 it suffices to show that Alg(σL) and σAlg(L) have

the same skeletal elements. So let A = σρA ∈ GRZ. Assume A ∈ σAlg(L). Since
σAlg(L) is generated by {σB : B ∈ Alg(L)} as a universal class, by Proposition 3.34
and Lemma 3.36 we have A |= T (Γ/∆) for every Γ/∆ ∈ L. But then A ∈ Alg(σL).
Conversely, assume A ∈ Alg(σL). Then A |= T (Γ/∆) for every Γ/∆ ∈ L. By
Lemma 3.36 this is equivalent to ρA ∈ Alg(L), therefore σρA = A ∈ σAlg(L).

(9) Let H ∈ HA. If H ∈ ρAlg(M) then H = ρA for some A ∈ Alg(M). It follows
that for every si rule T (Γ/∆) ∈ M we have A |= T (Γ/∆), and so by Lemma 3.36
in turn H |= Γ/∆. Therefore indeed H ∈ Alg(ρM). Conversely, for all si rules Γ/∆,
if ρAlg(M) |= Γ/∆ then by Lemma 3.36 Alg(M) |= T (Γ/∆), hence Γ/∆ ∈ ρM. Thus
ThR(ρAlg(M)) ⊆ ρM, and so Alg(ρM) ⊆ ρAlg(M). �
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The result just proved leads straightforwardly to the following, purely semantic
characterisation of modal companions.

Lemma 3.42. M ∈ NExt(S4R) is a modal companion of L ∈ Ext(IPCR) iff Alg(L) =
ρAlg(M).

Proof. (⇒) Assume M is a modal companion of L. Then we have L = ρM. By
Lemma 3.41 Alg(L) = ρAlg(M).

(⇐) Assume that Alg(L) = ρAlg(M). Therefore, by Proposition 3.34, H ∈ Alg(L)
implies σH ∈ Alg(M). This implies that for every si rule Γ/∆, Γ/∆ ∈ L iff T (Γ/∆) ∈
M. �

We can now prove the main two results of this section.

Theorem 3.43 ([34, Theorem 5.5], [61, Theorem 3]). The following conditions
hold:

(1) For every L ∈ Ext(IPCR), the modal companions of L form an interval
{M ∈ NExt(S4R) : τL ≤ M ≤ σL}.

(2) For every L ∈ Ext(IPC), the modal companions of L form an interval {M ∈
NExt(S4) : τL ≤ M ≤ σL}.

Proof. (1) In view of Lemma 3.41 it suffices to prove that M ∈ NExt(S4R) is a
modal companion of L ∈ Ext(IPCR) iff σAlg(L) ⊆ Alg(M) ⊆ τAlg(L).

(⇒) Assume M is a modal companion of L. Then by Lemma 3.42 we have Alg(L) =
ρAlg(M), therefore it is clear that Alg(M) ⊆ τAlg(L). To see that σAlg(L) ⊆ Alg(M)
it suffices to show that every skeletal algebra in σAlg(L) belongs to Alg(M). So
let A ∼= σρA ∈ σAlg(L). Then ρA ∈ Alg(L) by Lemma 3.36, so there must be
B ∈ Alg(M) such that ρB ∼= ρA. But this implies σρB ∼= σρA ∼= A, and as
universal classes are closed under subalgebras, by Proposition 3.34 we conclude
A ∈ Alg(M).

(⇐) Assume σAlg(L) ⊆ Alg(M) ⊆ τAlg(L). It is an immediate consequence of
Proposition 3.34 that ρσAlg(L) = Alg(L), which gives us ρAlg(M) ⊇ Alg(L). But
by construction ρAlg(M) = ρτAlg(L), hence ρAlg(M) ⊆ Alg(L). Therefore indeed
ρAlg(M) = Alg(L), so by Lemma 3.42 we conclude that M is a modal companion of
L.

(2) Immediate from Item 1 and Propositions 3.2 and 3.7. �

Theorem 3.44 (Blok Esakia theorem). The following conditions hold:

(1) The mappings σ : Ext(IPCR) → NExt(GRZR) and ρ : NExt(GRZR) →
Ext(IPCR) are complete lattice isomorphisms and mutual inverses.

(2) The mappings σ : Ext(IPC)→ NExt(GRZ) and ρ : NExt(GRZ)→ Ext(IPC)
are complete lattice isomorphisms and mutual inverses.

Proof. (1) It is enough to show that the mappings σ : Uni(HA) → Uni(GRZ)
and ρ : NExt(GRZ) → Ext(HA) are complete lattice isomorphisms and mutual
inverses. Both maps are evidently order preserving, and preservation of infinite
joins is an easy consequence of Lemma 3.36. Let U ∈ Uni(GRZ). Then U = σρU
by Theorem 3.39, so σ is surjective and a left inverse of ρ. Now let U ∈ Uni(HA).
It is an immediate consequence of Proposition 3.34 that ρσU = U . Hence ρ is
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surjective and a left inverse of σ. Thus σ and ρ are mutual inverses, and therefore
must both be bijections.

(2) Immediate from Item 1 and Propositions 3.2 and 3.7. �

As noted earlier, the arguments given in the proofs of Theorems 3.43 and 3.44
are standard. The novelty of our strategy consists in establishing the key fact on
which these standard arguments depend on, namely Theorem 3.39, in a novel way
using stable canonical rules.

3.3.4. The Dummett-Lemmon Conjecture. We call a modal or si-rule system Kripke
complete if it is of the form L = {Γ/∆ : K |= Γ/∆} for some class of Kripke frames
K. Zakharyashchev [61, Corollary 2] applied his canonical formulae to prove the
Dummett-Lemmon conjecture [21], which states that a si-logic is Kripke complete
iff its weakest modal companion is. To our knowledge, a proof that the Dummett-
Lemmon conjecture generalises to rule systems has not been published, although
perhaps one could be given by applying Jeřábek-style canonical rule to adapt Za-
kharyaschev’s argument. Here we give a proof that the Dummett-Lemmon conjec-
ture does indeed generalise to rule systems using stable canonical rules.

It is easy to see that refutation conditions for stable canonical rules work essen-
tially the same way for Kripke frames as they do for Esakia and modal spaces: for
every Kripke frame X and si stable canonical rule η(F,D), we have that X 2 η(F,D)
iff there is a surjective stable homomorphism f : X → F satisfying the BDC for
D, and analogously for the modal case. For details the reader may consult, e.g.,
[4]. The mappings σ, τ, ρ also extend to classes of Kripke frames in an obvious
way. Finally Lemma 3.36 works for Kripke frames as well, the latter appropriately
reformulated to incorporate the refutation conditions for stable canonical rules just
stated.

We now introduce the notion of a collapsed stable canonical rule. We prefer to do
so in a geometric setting, so to emphasize the main intuition behind this concept.

Definition 3.45. Let µ(F,D) be some modal stable canonical rule, with F ∈
Spa(S4). The collapsed stable canonical rule η(ρF, ρD) is obtained by setting

ρD := {ρ[d] : d ∈ D}.

Intuitively, η(ρF, ρD) is obtained from µ(F,D) by collapsing all clusters in F and
in the set of domains D as well.

Collapsed rules obey the following refutation condition.

Lemma 3.46 (Rule collapse lemma). For all X ∈ Spa(S4) and modal stable canon-
ical rule µ(F,D) with F ∈ Spa(S4), if X 2 µ(F,D) then ρX 2 η(ρF, ρD).

Proof. Assume X 2 µ(F,D). Then there is a continuous, relation preserving map
f : X→ F that satisfies the BDC for D. Consider the map g : ρX→ ρF given by

g(ρ(x)) = ρ(f(x)).

Now ρ(x) ≤ ρ(y) implies Rxy, and since f is relation preserving also Rf(x)f(y),
which implies ρ(f(x)) ≤ ρ(f(y)). So g is relation preserving. Furthermore, again
because f is relation preserving we have that for any U ⊆ F , the set f−1(U) does
not cut clusters, whence g−1(U) = ρ[f−1(ρ−1(U))] is clopen for any U ⊆ ρ[F ], as
ρX has the quotient topology. Thus g is continuous. Let us check that g satisfies
the BDC for ρD. Assume that ↑g(ρ(x)) ∩ ρ[d] 6= ∅ for d ∈ D. Then there is some
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ρ(y) ∈ ρ[F ] with ρ(f(x)) ≤ ρ(y) and ρ(y) ∈ ρ[d]. By construction, wlog we may
assume that y ∈ d. As ρ is relation reflecting it follows that Rf(x)y, and so we
have that R[f(x)] ∩ d 6= ∅. Since f satisfies the BDC for D we conclude that
f [R[x]] ∩ d 6= ∅. So there is some z ∈ X with Rxz and f(z) ∈ d. By definition,
ρ(f(z)) ∈ ρ[d]. Hence we have shown that ρ[f [R[x]]] ∩ ρ[d] 6= ∅, and so g indeed
satisfies the BDC for D. �

We are now ready to prove the Dummett-Lemmon conjecture for rule systems.

Theorem 3.47 (Dummett-Lemmon conjecture for si-rule systems). For every si-
rule system L ∈ Ext(IPCR), we have that L is Kripke complete iff τL is.

Proof. (⇒) Let L be Kripke complete. Suppose that Γ/∆ /∈ τL. Then there is
X ∈ Spa(τL) such that X 2 Γ/∆. By Theorem 3.29, we may assume that Γ/∆ =
µ(F,D) for F a preorder. By the rule collapse lemma it follows that ρX 2 η(ρF, ρD).
Moreover, by Lemma 3.36 it follows that ρX |= L, and so we conclude η(ρF, ρD) /∈ L.
Since L is Kripke complete, there is a si Kripke frame Y such that Y 2 η(ρF, ρD).
By Proposition 3.16, there is a stable map f : Y→ ρF satisfying the BDC for ρD.
Work in ρF. For every x ∈ ρ[F ] look at ρ−1(x), let k = |ρ−1(x)| and enumerate
ρ−1(x) = {x1, . . . , xk}. Now work in Y. For every y ∈ f−1(x) replace y with a
k-cluster y1, . . . , yk and extend the relation R clusterwise: Ryizj iff either y = z
or Ryz. Call the result Z. Clearly Z is a Kripke frame, and moreover Z |= τL,
because ρZ ∼= Y. For convenience, identify ρZ = Y. For every x ∈ ρ[F ] define a
map gx : f−1(x)→ ρ−1(x) by setting gx(yi) = xi (i ≤ k). Finally, define g : Z→ F
by putting g =

⋃
x∈ρ[F ] gx.

The map g is evidently well defined, surjective, and relation preserving. We claim
that moreover, it satisfies the BDC for D. To see this, suppose that R[g(yi)]∩d 6= ∅
for some d ∈ D. Then there is xj ∈ F with xj ∈ d and Rg(yi)xj . By construction
also ρ(xj) ∈ ρ[d] and Rf(ρ(yi))ρ(xj). As f satisfies the BDC for ρD it follows
that there is some z ∈ Y such that Rρ(yi)z and f(z) ∈ ρ[d]. We may view z
as ρ(zn) where ρ−1(f(z)) has cardinality k ≥ n. Surely Ryizn. Furtheromre,
since f(z) ∈ ρ[d] there must be some m ≤ k such that f(z)m = g(zm) ∈ d. By
construction Rznzm and so in turn Ryizm. This establishes that g indeed satisfies
the BDC for D. Thus we have shown Z 2 µ(F,D). It follows that τL is Kripke
complete.

(⇐) Assume that τ(L) is Kripke complete. Suppose that Γ/∆ /∈ L. Then there is
an Esakia space X such that X 2 Γ/∆. Therefore σX 2 T (Γ/∆). Surely σX |= τL,
so T (Γ/∆) /∈ τL and thus there is a Kripke frame Y such that Y |= τL and
Y 2 T (Γ/∆). But then ρY 2 Γ/∆. ρY is a Kripke frame, and validates L by
Lemma 3.36. Therefore we have shown that L is indeed Kripke complete. �

4. Tense Companions of Super Bi-intuitionistic Deductive Systems

We now apply the techniques presented in Section 3 to the study of tense compan-
ions of bi-superintuitionistic deductive systems. We begin by reviewing some pre-
liminaries in Section 4.1. In Section 4.2 we develop tense and bi-superintuitionistic
stable canonical rules, which generalise the modal and si stable canonical rules seen
in Section 3.2. We then apply such rules to extend the results of Section 3.3 to the
bi-superintuitionistic and tense setting in Section 4.3. Here we obtain a character-
isation of the set of tense companions of a bi-superintuitionistic deductive system,
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and extensions of the Blok-Esakia theorem and of the Gödel-Dummett conjecture
to the bi-superintuitionistic and tense setting (Section 4.3.3). These results were
known for logics (cf. [57]), but are new for rule systems.

Besides the original results just mentioned, the main contribution of this sec-
tion is showcasing the uniformity of our method across signatures. The majority
of results in this section are obtained via straightforward generalisations of argu-
ments already seen in Section 3. This is a major virtue of our approach, which
Zakharyaschev and Jeřábek’s canonical formulae and rules-based approach does
not seem to share to the same extent (Section 4.2.3).

As in the case of modal companions, our techniques also yield axiomatic char-
acterisations of the tense companion maps via stable canonical rules, as well as
some results concerning the preservation of stability by the tense companion maps.
These topics are discussed in [18, Sections 3.3.3, 3.3.4, 3.3.5].

4.1. Bi-superintuitionistic and Tense Deductive Systems. We begin by re-
viewing definitions and basic facts concerning the structures dealt with in this
section.

4.1.1. Bi-superintuitionistic Deductive Systems, bi-Heyting Algebras, and bi-Esakia
Spaces. We work in the bi-superintuitionistic signature,

bsi := {∧,∨,→,←,⊥,>}.
The set Frmbsi of bi-superintuitionistic (bsi) formulae is defined recursively as fol-
lows.

ϕ ::= p | ⊥ |> |ϕ ∧ ϕ |ϕ ∨ ϕ |ϕ→ ϕ |ϕ← ϕ

We let ¬ϕ := ϕ ← > and ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ). The bi-intuitionistic
propositional calculus bi-IPC is defined as the least logic over Frmbsi containing
IPC, containing the axioms

p→ (q ∨ (q ← p)) (q ← p)→ ¬(p→ q)

(r ← (q ← p))→ ((p ∨ q)← p) ¬(p← q)→ (p→ q)

¬ ¬(p← p)

and such that if ϕ,ϕ → ψ ∈ bi-IPC then ψ ∈ bi-IPC, and if ϕ ∈ bi-IPC then
¬ ¬ϕ ∈ bi-IPC. The logic bi-IPC was introduced and extensively studied by Rauszer
[44, 45, 46]. It was also investigated by Esakia [23], and more recently by Goré [30].

Definition 4.1. A bsi-logic is a logic L over Frmbsi containing bi-IPC and satisfying
the following conditions:

• If ϕ,ϕ→ ψ ∈ L then ψ ∈ L (MP);
• If ϕ ∈ L then ¬ ¬ϕ ∈ L (DN).

A bsi-rule system is a rule system L over Frmbsi satisfying the following conditions:

• ϕ,ϕ→ ψ/ψ ∈ L (MP-R);
• ϕ/¬ ¬ϕ ∈ L (DN-R);
• /ϕ ∈ L for every ϕ ∈ bi-IPC.

If L is a bsi-logic let Ext(L) be the set of bsi-logics containing L, and similarly for
bsi-rule systems. Then Ext(bi-IPC) is the set of all bsi-logics. It is easy to see that
Ext(bi-IPC) carries a complete lattice, with ⊕Ext(bi-IPC) as join and intersection
as meet. Observe that for every L ∈ Ext(bi-IPC) there is a least bsi-rule system
containing /ϕ for each ϕ ∈ L, which we denote by LR. Then bi-IPCR is the least
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bsi-rule system and Ext(bi-IPCR) is the set of all bsi-rule systems. Again, it is not
hard to verify that Ext(bi-IPCR) forms a complete lattice with ⊕Ext(bi-IPCR) as join
and intersection as meet. Henceforth we write both ⊕Ext(bi-IPC) and ⊕Ext(bi-IPCR)

simply as ⊕, leaving context to clarify any ambiguity.
We generalise Proposition 3.2 to the bsi setting.

Proposition 4.2. The mappings (·)R and Taut(·) are mutually inverse complete
lattice isomorphisms between Ext(bi-IPC) and the sublattice of Ext(bi-IPCR) con-
sisting of all bsi-rule systems L such that Taut(L)R = L.

A bi-Heyting algebra is a tuple H = (H,∧,∨,→,←, 0, 1) such that the ←-free
reduct of H is a Heyting algebras, and such that for all a, b, c ∈ H we have

a← b ≤ c ⇐⇒ a ≤ b ∨ c.
Bi-Heyting algebras are discussed at length in [44, 45, 46] and more recently in
[53, 43]. Let bi-HA denote the class of all bi-Heyting algebras. By Theorem 2.4,
bi-HA is a variety.

Let L = (L,∧,∨, 0, 1) be a bounded lattice. The order dual of L is the lattice
L̄ = (L,∨,∧, 1, 0), where ∨ is viewed as the meet operation and ∧ as the join
operation. We have the following elementary but important fact.

Proposition 4.3 (Order duality principle for bi-Heyting algebras). For every bi-
Heyting algebra H, the order dual H̄ of H is a Heyting algebra, where implication is
defined, for all a, b ∈ H, by

a← b :=
∧
{c ∈ H : a ≤ b ∨ c}.

This observation can be leveraged to establish a number of properties about bi-
Heyting algebras via straightforward adaptations of the theory of Heyting algebras.
We shall see numerous examples of this strategy in this section.

We write Var(bi-HA) and Uni(bi-HA) respectively for the lattice of subvarieties
and of universal subclasses of bi-HA. The following result may be proved via the
same techniques used to prove Theorem 3.3. A recent self-contained proof of Item 1
may be found in [43, Theorem 2.8.3].

Theorem 4.4. The following maps are pairs of mutually inverse dual isomor-
phisms:

(1) Alg : Ext(bi-IPC)→ Var(bi-HA) and Th : Var(bi-HA)→ Ext(bi-IPC);
(2) Alg : Ext(bi-IPCR)→ Uni(bi-HA) and ThR : Uni(bi-HA)→ Ext(bi-IPCR).

Corollary 4.5. Every bsi-logic (resp. bsi-rule system) is complete with respect to
some variety (resp. universal class) of bi-Heyting algebras.

A bi-Esakia space is an Esakia space X = (X,≤,O), satisfying the following
additional conditions:

• ↓x is closed for every x ∈ X;
• ↑[U ] ∈ Clop(X) whenever U ∈ Clop(X).

Bi-Esakia spaces were introduced by Esakia [23]. We let bi-Esa denote the class of
all bi-Esakia spaces. For X ∈ bi-Esa, we write ClopDown(X) for the set of clopen
downsets in X. If X,Y ∈ bi-Esa, a map h : X→ Y is called a bounded morphism if
for all x, y ∈ X, we have that x ≤ y implies that f(x) ≤ f(y), and moreover:

• h(x) ≤ y implies that there is z ∈ X with x ≤ z and h(z) = y;
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• h(x) ≥ y implies that there is z ∈ X with x ≥ z and h(z) = y.

If X = (X,≤,O) is an Esakia space, the order dual X̄ of X is the structure
X = (X,≥,O), where ≥ is the converse of ≤. The algebraic order duality principle
of Proposition 4.3 has the following geometric counterpart.

Proposition 4.6. For every bi-Esakia space X, the order dual X̄ of X is an Esakia
space.

As in the case of algebras, a number of results from the theory of Esakia spaces can
be transferred smoothly to bi-Esakia spaces in virtue of this fact. For example, we
may generalise Proposition 3.5 to the following result.

Proposition 4.7. Let X ∈ bi-Esa. Then for all x, y ∈ X we have:

(1) If x 6≤ y then there is U ∈ ClopUp(X) such that x ∈ U and y /∈ U ;
(2) If y 6≤ x then there is U ∈ ClopDown(X) such that x ∈ U and y /∈ U .

Proof. (1) is just Proposition 3.5, whereas (2) follows from (1) and the order-duality
principle. �

A valuation on a bi-Esakia space space X is a map V : Prop → ClopUp(X) ∪
ClopDown(X). Bsi formulae are interpreted over bi-Esakia spaces the same way
si formulae are interpreted over Esakia space, except for the following additional
clause for co-implication (here X ∈ bi-Esa, x ∈ X and V is a valuation on X).

X, V, x |= ϕ← ψ ⇐⇒ there is y ∈ ↓x : X, V, x |= ϕ and X, V, x 2 ψ
It is known that the category of bi-Heyting algebras with corresponding homo-

morphisms is dually equivalent to the category of bi-Esakia spaces with continuous
bounded morphisms. This result generalizes Esakia duality, and is proved in [23].
We denote the bi-Esakia space dual to a bi-Heyting algebra H as H∗, and the
bi-Heyting algebra dual to a bi-Esakia space X as X∗.

4.1.2. Tense Deductive Systems, Tense Algebras, and Tense Spaces. We now work
in the tense signature,

ten := {∧,∨,¬,�F ,♦P ,⊥,>}.
We prefer this signature to one with two primitive boxes to strengthen the con-
nection between bi-Heyting coimplication and backwards looking modalities. As
usual, we write ♦F = ¬�F¬ and �P = ¬♦P¬. The set Frmten of tense formulae
is defined recursively as follows:

ϕ ::= p | ⊥ |> |ϕ ∧ ϕ |ϕ ∨ ϕ |�Fϕ |♦Pϕ.
We introduce tense deductive systems. Good references on tense logics include

[10, Ch. 1, Ch. 4] and [28]. Tense rule systems have not received much attention
in the literature.

Definition 4.8. A (normal) tense logic is a logic M over Frmten satisfying the
following conditions:

(1) S4�F
, S4♦P

⊆ M, where S4♥ is the normal modal logic S4 formulated in the
modal signature with modal operator ♥ ∈ {�F ,♦P };

(2) ϕ→ �F♦Pϕ ∈ M;
(3) ϕ→ ψ,ϕ ∈ M implies ψ ∈ M (MP);
(4) ϕ ∈ M implies �Fϕ ∈ M (NECF );
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(5) ϕ ∈ M implies �Pϕ ∈ M (NECP );

We let S4.t denote the least normal tense logic. A (normal) tense rule system is a
rule system M over Frmten satisfying the following requirements:

(1) ϕ,ϕ→ ψ/ψ ∈ M (MP-R);
(2) ϕ/�Fϕ ∈ M (NECF -R);
(3) ϕ/�Pϕ ∈ M (NECP -R);
(4) /ϕ ∈ M whenever ϕ ∈ S4.t.

We note that, for convenience, we are using a somewhat non-standard notion of a
tense deductive system by requiring that tense deductive system contain S4. It is
more customary to require only that tense deductive system contain K.

If M is a tense logic let NExt(M) be the set of normal tense logics containing
M, and similarly for tense rule systems. Then NExt(S4.t) is the set of all tense
logics. It is easily checked that NExt(S4.t) is a complete lattice, with ⊕NExt(S4.t)

as join and intersection as meet. Note that for every M ∈ NExt(S4.t) there is
always a least tense rule system containing /ϕ for each ϕ ∈ M, which we denote
by MR. Then S4.tR is the least tense rule system and NExt(S4.tR) is the set of all
tense rule systems. Again, one can easily verify that NExt(S4.tR) forms a complete
lattice with ⊕NExt(S4.tR) as join and intersection as meet. As usual, we write both
⊕NExt(S4.t) and ⊕NExt(S4.tR) simply as ⊕.

We have the following tense counterpart of Proposition 4.2.

Proposition 4.9. The mappings (·)R and Taut(·) are mutually inverse complete
lattice isomorphisms between NExt(S4.t) and the sublattice of NExt(S4.tR) con-
sisting of all si-rule systems L such that Taut(L)R = L.

A tense algebra is a structure A = (A,∧,∨,¬,�F ,♦P , 0, 1), such that both the
�F -free and the ♦P -free reducts of A are closure algebras, and �F ,♦P form a
residual pair, that is, for all a, b ∈ A we have the following identity:

♦Pa ≤ b ⇐⇒ a ≤ �F y.

Tense algebras are extensively discussed in, e.g., [35] and [55, Section 8.1]. We let
Ten denote the class of tense algebras. It is well known that Ten is equationally
definable (see, e.g., [55, Proposition 8.5]), and hence is a variety by Theorem 2.4. We
let Var(Ten) and Uni(Ten) be the lattice of subvarieties and of universal subclasses
of Ten respectively. The following result can be obtained by similar techniques as
Theorem 3.8.

Theorem 4.10. The following maps are pairs of mutually inverse dual isomor-
phisms:

(1) Alg : NExt(S4.t)→ Var(Ten) and Th : Var(Ten)→ NExt(S4.t);
(2) Alg : NExt(S4.tR)→ Uni(Ten) and ThR : Uni(Ten)→ NExt(S4.tR).

Corollary 4.11. Every tense logic (resp. tense rule system) is complete with respect
to some variety (resp. universal class) of tense algebras.

A tense space is an S4-modal space X = (X,R,O), satisfying the following
additional conditions:

• R−1(x) is closed for every x ∈ X;
• R[U ] ∈ Clop(X) whenever U ∈ Clop(X).
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It should be clear from the above definition that tense spaces, like bi-Esakia spaces,
also satisfy an order-duality principle.

Proposition 4.12. For every tense space X = (X,R,O), its order dual X̄ =

(X, R̆,O), where R̆ is the converse of R, is an S4-modal space.

If X,Y are tense spaces, a map f : X → Y is called a bounded morphism if for
all x, y ∈ X, if Rxy then Rf(x)f(y), and moreover for all x ∈ X and y ∈ Y the
following conditions hold:

• If Rf(x)y then there is z ∈ X such that Rxz and f(z) = y;
• If Ryf(x) then there is z ∈ X such that Rzx and f(z) = y.

A valuation on a tense space X is a map V : Prop → Clop(X). The geometrical
semantics of tense logics and rule systems over tense spaces is a routine general-
isation of the semantics of modal logics and rule systems on modal spaces, using
R to interpret �F and R̆ to interpret �P . We list some important properties of
tense spaces, which are obtained straightforwardly from Proposition 3.10 and the
order-duality principle.

Proposition 4.13. Let X ∈ Spa(S4.t) and U ∈ Clop(X). Then the following
conditions hold:

(1) The sets maxR(U), minR(U) are closed;
(2) If x ∈ U then there is y ∈ qmaxR(U) such that Rxy, and there is z ∈

qminR(U) such that Rzx

As a straightforward extension of the duality between modal algebras and modal
spaces, one can prove that the category of tense algebras with homomorphisms is
dually equivalent to the category of tense spaces with continuous bounded mor-
phisms. We denote the tense space dual to a tense algebra A as A∗, and the tense
algebra dual to an tense space X as X∗.

We will pay particular attention to tense algebras and spaces validating the tense
logic GRZ.T below.

GRZ.T := S4.t⊕�F (�F (p→ �F p)→ p)→ p

⊕ p→ ♦P (p ∧ ¬♦P (♦P p ∧ ¬p)).
We name this logic GRZ.T rather than GRZ.t to emphasize that the GRZ-axiom is
required for both operators rather than just for �F . We let GRZ.T := Alg(GRZ.T).
Clearly, for any A ∈ Ten we have A ∈ GRZ.T iff every a ∈ A satisfies both the
inequalties

�F (�F (a→ �Fa)→ a) ≤ a,
a ≤ ♦P (a ∧ ¬♦P (♦Pa ∧ ¬a)).

The following proposition is a counterpart to Proposition 3.11, and is proved
straightforwardly using the latter and the order-duality principle.

Proposition 4.14. For every GRZ-space X and U ∈ Clop(X), the following hold:

(1) qmaxR(U) ⊆ maxR(U), and qminR(U) ⊆ minR(U);
(2) The sets maxR(U) and minR(U) is closed;
(3) For every x ∈ U there are y ∈ pasR(U) such that Rxy, and z ∈ pasR̆(U)

such that Rzx;
(4) maxR(U) ⊆ pasR(U) and minR(U) ⊆ pasR̆(U).



28 NICK BEZHANISHVILI AND ANTONIO M. CLEANI

Recall that for X a GRZ.T-space, a set U ⊆ X is said to cut a cluster C ⊆ X when
both U ∩ C 6= ∅ and U r C 6= ∅. As a consequence of Item 4 in Proposition 4.14
above, we obtain in particular that in any GRZ.T-space X, no cluster C ⊆ X can be
cut by either of maxR(U), pasR(U),minR(U), pasR̆(U) for any U ∈ Clop(X).

4.2. Stable Canonical Rules for Bi-superintuitionistic and Tense Rule
Systems. In this section we generalise the si and modal stable canonical rules
from Section 3.2 to the bsi and tense setting respectively. While bsi and tense stable
canonical rules are not discussed in existing literature, the differences between their
theory and that of si and modal stable canonical rules are few and inessential. In
particular, all proofs of results in this sections are straightforward adaptations of
corresponding results in Section 3.2, which is why we omit most of them.

4.2.1. Bi-superintuitionistic Case. We begin by defining bsi stable canonical rules.

Definition 4.15. Let H ∈ bi-HA be finite and D→, D← ⊆ A × A. For every
a ∈ H introduce a fresh propositional variable pa. The bsi stable canonical rule of
(H, D→, D←), is defined as the rule ηB(H, D→, D←) = Γ/∆, where

Γ ={p0 ↔ 0} ∪ {p1 ↔ 1}∪
{pa∧b ↔ pa ∧ pb : a, b ∈ H} ∪ {pa∨b ↔ pa ∨ pb : a, b ∈ H}∪
{pa→b ↔ pa → pb : (a, b) ∈ D→} ∪ {pa←b ↔ pa ← pb : (a, b) ∈ D←}

∆ = {pa ↔ pb : a, b ∈ H with a 6= b}.

The notion of a stable map between bi-Heyting algebras is defined exactly as in
the Heyting case, i.e., stable maps are simply bounded lattice homomorphisms. We
note that for any stable map h : H → K with H,K ∈ bi-HA, for any a ∈ H we also
have

h(a← b) ≥ h(a)← h(b).

Indeed, this is obvious in view of the order-duality principle. If D ⊆ H × H and
♥ ∈ {→,←}, we say that h satisfies the ♥-bounded domain condition (BDC♥) for
D if h(a♥b) = h(a)♥h(b) for every (a, b) ∈ D. If D→, D← ⊆ H ×H, for brevity we
say that h satisfies the BDC for (D→, D←) to mean that h satisfies the BDC→ for
D→ and the BDC← for D←.

The next two results characterise algebraic refutation conditions for bsi stable
canonical rules.

Proposition 4.16. For all finite H ∈ bi-HA and D→, D← ⊆ H × H, we have
H 2 ηB(H, D→, D←).

Proposition 4.17. For every bsi stable canonical rule ηB(H, D→, D←) and every
K ∈ bi-HA, we have K 2 ηB(H, D→, D←) iff there is a stable embedding h : H → K
satisfying the BDC for (D→, D←).

We now characterise geometric refutation conditions of bsi stable canonical rules
on bi-Esakia spaces. Since bi-Esakia spaces are Esakia spaces, the notion of a stable
map applies. Let X,Y ∈ bi-Esa and d ⊆ Y . A stable map f : X → Y is said to
satisfy

• The BDC→ for d if for all x ∈ X we have

↑f(x) ∩ d 6= ∅⇒ f [↑x] ∩ d 6= ∅;
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• The BDC← for d if for all x ∈ X we have

↓f(x) ∩ d 6= ∅⇒ f [↓x] ∩ d 6= ∅.

If D ⊆ ℘(Y ), we say that f satisfies the BDC♥ for D when it does for each d ∈ D,
where ♥ ∈ {→,←}. Given D→,D← ∈ ℘(Y ) we write that f satisfies the BDC
for (D→,D←) if f satisfies the BDC→ for D→ and the BDC← for D←. Finally, if
ηB(H, D→, D←) is a bsi stable canonical rule consider X := H∗ and let

D♥ := {d♥(a,b) : (a, b) ∈ D♥}

where

d♥(a,b) := β(a) r β(b)

for ♥ ∈ {→,←}.

Proposition 4.18. For any bi-Esakia space X and any bsi stable canonical rule
ηB(H, D→, D←), we have X 2 ηB(H, D→, D←) iff there is a continuous stable sur-
jection f : X→ H∗ satisfying the BDC for (D→,D←) defined as above.

In view of Proposition 4.18, in geometric settings we prefer to write a bsi stable
canonical rule ηB(H, D→, D←) as ηB(H∗,D

→,D←).
We now elucidate the notion of filtration for bi-Heyting algebras presupposed by

our bsi stable canonical rules.

Definition 4.19. Let H be a bi-Heyting algebra, V a valuation on H, and Θ
a finite, subformula closed set of formulae. A (finite) model (K′, V ′) is called a
(finite) filtration of (H, V ) through Θ if the following hold:

(1) K′ = (K,→,←), where K is the bounded sublattice of H generated by V̄ [Θ];
(2) V (p) = V ′(p) for every propositional variable p ∈ Θ;
(3) The inclusion ⊆: K′ → H is a stable embedding satisfying the BDC for

(D→, D←), where

D♥ := {(V̄ (ϕ), V̄ (ψ)) : ϕ♥ψ ∈ Θ}

for ♥ ∈ {→,←}.

Theorem 4.20 (Filtration theorem for bi-Heyting algebras). Let H ∈ bi-HA be a
bi-Heyting algebra, V a valuation on H, and Θ a a finite, subformula closed set of
formulae. If (K′, V ′) is a filtration of (H, V ) through Θ then for every ϕ ∈ Θ we
have

V̄ (ϕ) = V̄ ′(ϕ).

Consequently, for every bsi rule Γ/∆ such that γ, δ ∈ Θ for each γ ∈ Γ and δ ∈ ∆
we have

H, V |= Γ/∆ ⇐⇒ K′, V ′ |= Γ/∆.

The next lemma is a counterpart to Lemma 3.19.

Lemma 4.21. For every bsi rule Γ/∆ there is a finite set Ξ of bsi stable canonical
rules such that for any K ∈ bi-HA we have that K 2 Γ/∆ iff there is ηB(H, D→, D←) ∈
Ξ such that K 2 ηB(H, D→, D←).
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Proof. The proof is a straightforward generalisation of the proof of Lemma 3.19,
using the fact that every finite bounded distributive lattice J may be expanded to
a bi-Heyting algebra J′ = (J, ,  ) by setting:

a b :=
∨
{c ∈ J : a ∧ b ≤ c}

a  b :=
∧
{c ∈ J : a ≤ b ∨ c}.

�

Reasoning as in the proof of Theorem 3.20 we obtain the following axiomatisation
result.

Theorem 4.22. Every bsi-rule system L ∈ Ext(bi-IPCR) is axiomatisable over
bi-IPCR by some set of bsi stable canonical rules.

4.2.2. Tense Case. We now turn to tense stable canonical rules.

Definition 4.23. Let A ∈ Ten be finite and D�F , D♦P ⊆ A. For every a ∈ A
introduce a fresh propositional variable pa. The tense stable canonical rule of
(A, D�F , D♦P ), is defined as the rule µT (H, D�F , D♦P ) = Γ/∆, where

Γ ={pa∧b ↔ pa ∧ pb : a, b ∈ A} ∪ {pa∨b ↔ pa ∨ pb : a, b ∈ A}∪
{p¬a ↔ ¬pa : a ∈ A}∪
{�F pa → p�F a : a ∈ A} ∪ {p♦P a → ♦P pa : a ∈ A}∪

{p�F a → �F pa : a ∈ D�F } ∪ {♦P pa → p♦P a : a ∈ D♦P }
∆ ={pa : a ∈ Ar {1}}.

If A,B ∈ MA are tense algebras, a map h : A→ B is called stable if for every a ∈ A
the following conditions hold:

h(�Fa) ≤ �Fh(a) ♦Ph(a) ≤ h(♦Pa).

IfD ⊆ A and♥ ∈ {�F ,♦P }, we say that h satisfies the♥-bounded domain condition
(BDC♥) for D if h(♥a) = ♥h(a) for every a ∈ D. If D�F , D♦P ⊆ A, for brevity we
say that h satisfies the BDC for (D�F , D♦P ) to mean that h satisfies the BDC�F

for D�F and the BDC♦P for D♦P .
We outline algebraic refutation conditions for tense stable canonical rules.

Proposition 4.24. For all finite A ∈ Ten and D�F , D♦P ⊆ A, we have A 2
µT (A, D�F , D♦P ).

Proposition 4.25. For every tense stable canonical rule µT (A, D�F , D♦P ) and any
B ∈ Ten, we have B 2 µT (A, D�F , D♦P ) iff there is a stable embedding h : A→ B
satisfying the BDC for (D�F , D♦P ).

Tense spaces are modal spaces, therefore the notion of a stable map applies. Let
X,Y be tense spaces. and d ⊆ Y . A stable map f : X→ Y is said to satisfy

• The BDC�F for d if for all x ∈ X we have

R[f(x)] ∩ d 6= ∅⇒ f [R[x]] ∩ d 6= ∅;

• The BDC♦P for d if for all x ∈ X we have

R̆[f(x)] ∩ d 6= ∅⇒ f [R̆[x]] ∩ d 6= ∅.
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If D ⊆ ℘(Y ), we say that f satisfies the BDC♥ for D when it does for each d ∈ D,
where ♥ ∈ {�F ,♦P }. Given D�F ,D♦P ∈ ℘(Y ) we write that f satisfies the
BDC for (D�F ,D♦P ) if f satisfies the BDC�F for D�F and the BDC♦P for D♦P .
Finally, if µT (A, D�F , D♦P ) is a tense stable canonical rule consider X := A∗ and
for ♥ ∈ {�F ,♦P } let

D♥ := {d♥a : a ∈ D♥}
where for each a ∈ A we have

d�F
a := −β(a)

d♦P
a := β(a)

Proposition 4.26. For any tense space X and any tense stable canonical rule
µT (A, D�F , D♦P ), we have X 2 µT (A, D�F , D♦P ) iff there is a continuous stable
surjection f : X→ A∗ satisfying the BDC for (D�F ,D♦P ) defined as above.

In view of Proposition 4.26, in geometric settings we prefer to write a tense stable
canonical rule µT (A, D�F , D♦P ) as µT (A∗,D

�F ,D♦P ).
We now introduce the notion of filtration implicit in tense stable canonical rules.

Filtration for tense logics was considered, e.g., in [56] from a frame-theoretic per-
spective. Here we prefer an algebraic approach in line with Section 3.

Definition 4.27. Let A be a tense algebra, V a valuation on A, and Θ a finite,
subformula closed set of formulae. A (finite) model (B′, V ′) is called a (finite)
filtration of (A, V ) through Θ if the following hold:

(1) B′ = (B,�F ,♦P ), where B is the Boolean subalgebra of A generated by
V̄ [Θ];

(2) V (p) = V ′(p) for every propositional variable p ∈ Θ;
(3) The inclusion ⊆: B′ → A is a stable embedding satisfying the BDC for

(D�F , D♦P ), where

D♥ := {V̄ (ϕ) : ♥ϕ ∈ Θ}

for ♥ ∈ {�F ,♦P }.

Theorem 4.28 (Filtration theorem for tense algebras). Let A ∈ Ten be a tense
algebra, V a valuation on A, and Θ a finite, subformula closed set of formulae. If
(B′, V ′) is a filtration of (A, V ) through Θ then for every ϕ ∈ Θ we have

V̄ (ϕ) = V̄ ′(ϕ).

Consequently, for every tense rule Γ/∆ such that γ, δ ∈ Θ for each γ ∈ Γ and δ ∈ ∆
we have

A, V |= Γ/∆ ⇐⇒ B′, V ′ |= Γ/∆.

Just like in the S4 case, not every filtration of some model based on a tense
algebra is itself based on a tense algebra, because the S4-axiom for either �F or ♦P
may not be preserved. However, given any model based on a tense algebra, there
is always a method for filtrating it through any finite set of formulae which yields
a model based on a tense algebra.

Definition 4.29. Let A ∈ Ten, V a valuation on A and Θ a finite, subformula
closed set of formula. The (least) transitive filtration of (A, V ) is the pair (B′, V ′)
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with B = (B′,�F ,�P ) where B′ and V ′ are as per Definition 3.25, and for all
b ∈ B we have

�F b :=
∨
{�Fa : �Fa ≤ �F b and a,�Fa ∈ B}

�P b :=
∧
{♦Pa : ♦P b ≤ ♦Pa and a,♦Pa ∈ B}

Via duality, it is not difficult to see that the least transitive filtration of any model
based on a tense algebra is again a tense algebra.

At this stage, reasoning as in the proof of Lemma 3.28 using transitive filtrations
we obtain the following results.

Lemma 4.30. For every tense rule Γ/∆ there is a finite set Ξ of tense stable
canonical rules such that for any K ∈ Ten we have that K 2 Γ/∆ iff there is
ηB(H, D→, D←) ∈ Ξ such that K 2 ηB(H, D→, D←).

Theorem 4.31. Every tense rule system is axiomatisable over S4.tR by some set
of tense stable canonical rules.

4.2.3. Comparison with Jeřábek-style Canonical Rules. Our bsi and tense stable
canonical rules generalise si and modal stable canonical rules in a way that mir-
rors the simple and intimate connection existing between Heyting and bi-Heyting
algebras on the one hand, and modal and tense algebras on the other, explicated
by the order-duality principles. Just like a bi-Heyting algebra is just a Heyting
algebra whose order-dual is also a Heyting algebra, so every bsi stable canonical
rule is a sort of “independent fusion” between two si stable canonical rules, whose
associated Heyting algebras are order-dual to each other. Similarly for the tense
case.

Jeřábek-style si and modal canonical rules (like Zakharyaschev-style si and modal
canonical formulae), by contrast, do not generalise as smoothly to the bsi and tense
case. Algebraically, a Jeřábek-style si canonical rule may be defined as follows (cf.
[1, 5]).

Definition 4.32. Let H ∈ HA be finite and let D ⊆ H. The si canonical rule of
(H, D) is the rule ζ(H, D) = Γ/∆, where

Γ :={p0 ↔ ⊥}∪
{pa∧b ↔ pa ∧ pb : a, b ∈ H} ∪ {pa→b ↔ pa → pb : a, b ∈ H}∪
{pa∨b ↔ pa ∨ pb : (a, b) ∈ D}

∆ :={pa ↔ pb : a, b ∈ H with a 6= b}.

Generalising the proof of [5, Corollary 5.10], one can show that every si rule is
equivalent to finitely many si canonical rules. The key ingredient in this proof is a
characterisation of the refutation conditions for si canonical rules: ζ(H, D) is refuted
by a Heyting algebra K iff there is a (∧,→, 0)-embedding h : H → K preserving ∨
on elements from D. Because (∧,→, 0)-algebras are locally finite, a result known
as Diego’s theorem, one can then reason as in the proof of, e.g., Lemma 3.19 to
reach the desired result.

It should be clear that if one defined the bsi canonical rule ζB(H, D,D′) by
combining the rules ζ(H, D) and ζ(H̄, D′) the same way bsi stable canonical rule
combine si stable canonical rules, then ζB(H, D,D′) would be refuted by a bi-
Heyting algebra K iff there is a bi-Heyting algebra embedding h : H → K. Since
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the variety of bi-Heyting algebras is not locally finite, this refutation condition is
clearly too strong to deliver a result to the effect that every bsi rule is equivalent
to a set of bsi canonical rules. Without such a result, in turn there is no hope of
axiomatising every rule system over bi-IPC by means of bsi canonical rules.

Similar remarks hold in the tense case, although in this case the details are too
complex to do them justice in the limited space we have at our disposal. We limit
ourselves to a rough sketch of the tense case. Bezhanishvili et al. [7] show that
the proof of the fact that every modal formula is equivalent, over S4, to finitely
many modal Zakharyaschev-style canonical formulae of closure algebras rests on
an application of Diego’s theorem [cf. 7, Main Lemma]. This has to do with how
selective filtrations of closure algebras are constructed. Given a closure algebra
B refuting a rule Γ/∆, a key step in constructing a finite selective filtration of B
through Sfor(Γ/∆) consists in generating a (∧,→, 0)-subalgebra of ρA from a finite
subset of O(A). This structure is guaranteed to be finite by Diego’s theorem. On
the most obvious ways of generalising this construction to tense algebras, we would
need to replace this step with one of the following:

(1) Generate both a (∧,→, 0)-subalgebra of ρA and a (∨,←, 1)-subalgebra of
ρA from a finite subset of O(A);

(2) Generate a bi-Heyting subalgebra of ρA from a finite subset of O(A).

On option 1, Diego’s theorem and its order dual would guarantee that both the
(∧,→, 0)-subalgebra of ρA and the (∨,←, 1)-subalgebra of ρA are finite. However,
it is not clear how one could then combine the two subalgebras into a bi-Heyting
algebra, which is required to obtain a selective filtration based on a tense algebra.
On option 2, on the other hand, we would indeed obtain a bi-Heyting subalgebra of
ρA, but not necessarily a finite one, since bi-Heyting algebras are not locally finite.

We realise that the argument sketches just presented are far from conclusive, so
we do not go as far as ruling out the possibility that Jeřábek-style bsi and tense
canonical rules could somehow be developed in such a way as to be a suitable tools
for developing the theory of tense companions of bsi-rule systems. What such rules
would look like, and in what sense they would constitute genuine generalisations of
Jeřábek’s canonical rules and Zakharyaschev’s canonical formulae are interesting
questions, but this paper is not the appropriate space to pursue them. At this
stage we merely wish to stress that answering this sort of questions is a non-trivial
matter, whereas generalising stable canonical rules to the bsi and tense setting and
applying them to develop the theory of tense companions is a completely routine
task. On our approach, exactly the same methods used in the si and modal case
work equally well in the bsi-tense case.

4.3. Tense Companions of Bi-superintuitionistic Rule Systems. We turn to
the main topic of this section. This section generalises the results of Section 3.3 to
the bsi-tense setting. As anticipated, this is done using exactly the same techniques
seen in the si and modal case, which is one of the main advantages of our method.

4.3.1. Semantic Mappings. We begin by generalising the semantic transformations
for turning Heyting algebras into corresponding closure algebras and vice versa,
seen in Section 3.3, to transformations between bi-Heyting and tense algebras. The
results in this section are well known, and the reader may consult [57, Section 7]
for a more detailed overview.
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Definition 4.33. The mapping σ : bi-HA → Ten assigns every H ∈ bi-HA to the
algebra σH := (B(H),�F ,♦P ), where B(H) is the free Boolean extension of H and

�Fa :=
∨
{b ∈ H : b ≤ a}

♦Pa :=
∧
{b ∈ H : a ≤ b}

That �F ,♦P are well-defined operations on B(H) follows from the order-duality
principle and the results in the previous section. It is easy to verify that σH validates
the S4 axioms for both �F and ♦P . Moreover, for any a ∈ B(H) clearly ♦Pa ∈ H,
so �F♦Pa = ♦Pa. This implies a ≤ �F♦Pa. Therefore indeed σH ∈ Ten.

Definition 4.34. The mapping ρ : Ten → bi-HA assigns every A ∈ Ten to the
algebra ρA := (O(A),∧,∨,→,←, 0, 1), where

O(A) := {a ∈ A : �Fa = a} = {a ∈ A : ♦Pa = a}
a→ b := �F (¬a ∨ b)
a← b := ♦P (a ∧ ¬b).

Using the order-duality principle, it is easy to verify that for every A ∈ Ten, the
algebra ρA is indeed a bi-Heyting algebra.

Recall the geometric mappings σ : Esa → Spa(GRZ) and ρ : Spa(S4) → Esa.
Since bi-Esakia spaces are Esakia spaces, and tense spaces are S4-spaces, we may
restrict these mappings to σ : bi-Esa → Alg(GRZ.T) and ρ : Spa(GRZ.T) → bi-Esa
and obtain geometric counterparts to the algebraic mappings between bi-Heyting
and tense algebras defined in the present subsection. Reasoning as in the proof of
Proposition 3.33 we find that the algebraic and geometric versions of the maps σ, ρ
are indeed dual to each other.

Proposition 4.35. The following hold.

(1) Let H ∈ bi-HA. Then (σH)∗ ∼= σ(H∗). Consequently, if X is a bi-Esakia
space then (σX)∗ ∼= σ(X)∗.

(2) Let X be a tense space. Then (ρX)∗ ∼= ρ(X∗). Consequently, if A ∈
Alg(S4.t), then (ρA)∗ ∼= ρ(A∗).

As an easy corollary, we obtain the following analogue of Proposition 3.34.

Proposition 4.36. For every H ∈ bi-HA we have H ∼= ρσH. Moreover, for every
A ∈ Ten we have σρA� A.

4.3.2. A Gödelian Translation. We extend the Gödel translation of the previous
section to a translation from bsi formulae to tense ones.
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Definition 4.37 (Gödelian translation - bsi to tense). The Gödelian translation is
a mapping T : Tmbsi → Tmten defined recursively as follows.

T (⊥) := ⊥
T (>) := >
T (p) := �p

T (ϕ ∧ ψ) := T (ϕ) ∧ T (ψ)

T (ϕ ∨ ψ) := T (ϕ) ∨ T (ψ)

T (ϕ→ ψ) := �F (¬T (ϕ) ∨ T (ψ))

T (ϕ← ψ) := ♦P (T (ϕ) ∧ ¬T (ψ))

An essentially equivalent translation was considered in [57], though using �P in-
stead of ♦P to interpret ←.

The following analogue of Lemma 3.36 is proved the same way as the latter.

Lemma 4.38. For every A ∈ Ten and bsi rule Γ/∆,

A |= T (Γ/∆) ⇐⇒ ρA |= Γ/∆

We note that Lemma 4.38 does not appear the literature, which only mentions a
similar results concerning formulae rather than rules.

4.3.3. Structure of Tense Companions. We are now ready to generalise Theorem 3.43
and Theorem 3.44 to the bsi-tense setting. We do so in this section. All the results
of this section are new inasmuch as they involve rule systems. Their restrictions
to logics were established by Wolter [57], although our proofs differ from Wolter’s
Blok-style algebraic approach.

We begin by formally defining the notion of a tense companion.

Definition 4.39. Let L ∈ Ext(bi-IPCR) be a bsi-rule system and M ∈ NExt(S4.tR)
a tense rule system. We say that M is a tense companion of L (or that L is the bsi
fragment of M) whenever Γ/∆ ∈ L iff T (Γ/∆) ∈ M for every bsi rule Γ/∆. Moreover,
let L ∈ Ext(bi-IPC) be a bsi-logic and M ∈ NExt(S4.t) a tense logic. We say that
M is a tense companion of L (or that L is the bsi fragment of M) whenever ϕ ∈ L iff
T (ϕ) ∈ M.

Clearly, M ∈ NExt(S4.tR) is a modal companion of L ∈ Ext(bi-IPCR) iff Taut(M)
is a modal companion of Taut(L), and M ∈ NExt(S4.t) is a modal companion of
L ∈ Ext(bi-IPC) iff MR is a modal companion of LR.

Define the following three maps between Ext(bi-IPCR) and NExt(S4.tR).

τ : Ext(bi-IPCR)→ NExt(S4.tR) σ : Ext(bi-IPCR)→ NExt(S4.tR)

L 7→ S4.tR ⊕ {T (Γ/∆) : Γ/∆ ∈ L} L 7→ GRZ.TR ⊕ τL

ρ : NExt(S4.tR)→ Ext(bi-IPCR)

M 7→ {Γ/∆ : T (Γ/∆) ∈ M}

These mappings are readily extended to lattices of logics.

τ : Ext(bi-IPC)→ NExt(S4.t) σ : Ext(bi-IPC)→ NExt(S4.t)

L 7→ Taut(τLR) = S4.t⊕ {T (ϕ) : ϕ ∈ L} L 7→ Taut(σLR) = GRZ.T⊕ {T (ϕ) : ϕ ∈ L}
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ρ : NExt(S4.t)→ Ext(bi-IPC)

M 7→ Taut(ρMR) = {ϕ : T (ϕ) ∈ M}
Furthermore, extend the mappings σ : bi-HA → Ten and ρ : Ten → bi-HA to

universal classes by setting

σ : Uni(bi-HA)→ Uni(Ten) ρ : Uni(Ten)→ Uni(bi-HA)

U 7→ Uni{σH : H ∈ U} W 7→ {ρA : A ∈ W}.
Finally, introduce a semantic counterpart to τ as follows.

τ : Uni(bi-HA)→ Uni(Ten)

U 7→ {A ∈ Ten : ρA ∈ U}
The following lemma is a counterpart to Lemma 3.38. It is proved via essen-

tially the same argument which establishes the latter, though some adaptations are
necessary which may be less than completely obvious. For this reason, as well as
for the central place this lemma occupies in our strategy, we spell out the proof in
some detail.

Lemma 4.40. Let A ∈ GRZ.T. Then for every modal rule Γ/∆, we have A |= Γ/∆
iff σρA |= Γ/∆.

Proof. (⇒) This direction follows from the fact that σρA� A (Proposition 4.36).
(⇐) We prove the dual statement that A∗ 2 Γ/∆ implies σρA∗ 2 Γ/∆. Let

X := A∗. In view of Theorem 4.31 it is enough to consider the case Γ/∆ =
µT (B, D�F , D♦P ), for B ∈ Ten finite. So suppose X 2 µ(B, D) and let F := B∗.
Then there is a stable map f : X → F satisfying the BDC for (D�F ,D♦P ). We
construct a stable map g : σρX→ F which satisfies the BDC for (D�F ,D♦P ).

Let C := {x1, . . . , xn} ⊆ F be some cluster and let ZC := f−1(C). Reasoning as
in the proof of Lemma 3.38, we obtain that ρ[ZC ] is clopen, and so is f−1(xi) for
each xi ∈ C. Now for each xi ∈ C let

Mi := maxR(f−1(xi))

Ni := minR(f−1(xi)).

By Proposition 4.14, both Mi, Ni are closed, and moreover neither cuts any cluster.
Since σρX has the quotient topology, it follows that both ρ[Mi], ρ[Ni] are closed as
well.

For each xi ∈ C let Oi := Mi ∪ Ni. Clearly, Oi ∩ Oj = ∅ for each i, j ≤ n.
Therefore, using the separation properties of Stone spaces to reason as in the proof
of Lemma 3.38, there are disjoint clopens U1, . . . , Un ∈ Clop(σρX) with ρ[Oi] ⊆ Ui
and

⋃
i≤n Ui = ρ[ZC ].

We can now define a map

gC : ρ[ZC ]→ C

z 7→ xi ⇐⇒ z ∈ Ui.
Clearly, gC is relation preserving and continuous. Finally, define g : σρX → F by
setting

g(ρ(z)) :=

{
f(z) if f(z) does not belong to any proper cluster

gC(ρ(z)) if f(z) ∈ C for some proper cluster C ⊆ F.
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Now, g is evidently relation preserving. Moreover, it is continuous because both
f and each gC are. Reasoning as in the proof of Lemma 3.38, we obtain that g
satisfies the BDC�F for D�F . The proof of the fact that g satisfies the BDC♦P for
D♦P is a straightforward adaptation of the latter, using that for all U ∈ Clop(X),
if x ∈ U there is y ∈ minR(U) such that Ryx (Proposition 4.14). �

Theorem 4.41. Every U ∈ Uni(GRZ.T) is generated by its skeletal elements, i.e.
U = σρU .

Proof. Follows easily from Lemma 4.40, reasoning as in the proof of Theorem 3.39.
�

As in the previous section, the next step is to apply Lemma 4.40 to prove that
the syntactic tense companion maps τ, ρ, σ commute with Alg(·), which leads to a
purely semantic characterisation of tense companions.

Lemma 4.42. For each L ∈ Ext(bi-IPCR) and M ∈ NExt(S4.tR), the following
hold:

Alg(τL) = τAlg(L)(10)

Alg(σL) = σAlg(L)(11)

Alg(ρM) = ρAlg(M)(12)

Proof. The proof of Equation (10) is trivial. To prove Equation (11), in view of
Theorem 4.41 it is enough to show that Alg(σL) and σAlg(L) have the same skeletal
elements. This is proved the same way as Equation (8) in Lemma 3.41. Finally,
Equation (12) is proved analogously to Equation (9) in Lemma 3.41, applying
Lemma 4.38 instead of Lemma 3.36. �

Lemma 4.43. M ∈ NExt(S4.tR) is a tense companion of L ∈ Ext(bi-IPCR) iff
Alg(L) = ρAlg(M).

Proof. Analogous to Lemma 3.42. �

The main results of this section can now be proved.

Theorem 4.44. The following conditions hold:

(1) For every L ∈ Ext(bi-IPCR), the modal companions of L form an interval

{M ∈ NExt(S4.tR) : τL ≤ M ≤ σL};
(2) For every L ∈ Ext(bi-IPC), the modal companions of L form an interval

{M ∈ NExt(S4.t) : τL ≤ M ≤ σL}.

Proof. Item 1 is proved the same way as Item 1 in Theorem 3.43. Item 2 is imme-
diate from Item 1. �

Theorem 4.45 (Blok-Esakia theorem for bsi- and tense deductive systems). The
following conditions hold:

(1) The mappings σ : Ext(bi-IPCR)→ NExt(GRZ.TR) and ρ : NExt(GRZ.TR)→
Ext(bi-IPCR) are complete lattice isomorphisms and mutual inverses.

(2) The mappings σ : Ext(bi-IPC) → NExt(GRZ.T) and ρ : NExt(GRZ.T) →
Ext(bi-IPC) are complete lattice isomorphisms and mutual inverses.
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Proof. Item 1 is proved the same way as Item 1 in Theorem 3.44. Item 2 follows
straightforwardly from Item 1 and Propositions 4.2 and 4.9. �

4.3.4. The Dummett-Lemmon Conjecture for Bsi-Rule Systems. The construction
used to prove the Dummett-Lemmon conjecture for rule systems straightforwardly
generalises to a proof of a variant of the conjecture applying to bsi-rule systems
and their weakest tense companions. To establish this result, we first extend the
notion of a collapsed rule and the rule collapse lemma to the bsi and tense setting.

Definition 4.46. Let µT (F,D�F ,D♦P ) be a tense stable canonical rule. The
collapsed tense stable canonical rule ηB(ρF, ρD→, ρD←) is defined by setting

ρD→ = {ρ[d] : d ∈ D�F }
ρD← = {ρ[d] : d ∈ D♦P }

Lemma 4.47 (Rule collapse lemma - bsi-tense). For every tense space X and every
tense stable canonical rule µT (F, D�F , D♦P ), we have that X 2 µT (F,D�F ,D♦P )
implies ρX 2 ηB(ρF, ρD→, ρD←).

Proof. Analogous to the proof of Lemma 3.46. �

At this point, we can establish the desired result via a straightforward adaptation
of our proof of Theorem 3.47.

Theorem 4.48 (Dummett-Lemmon conjecture for bsi rule systems). For every
bsi-rule system L ∈ Ext(bi-IPCR), L is Kripke complete iff τL is.

Proof. (⇒) Let L be Kripke complete. Suppose that Γ/∆ /∈ τL. Then there is X ∈
Spa(τL) such that X 2 Γ/∆. By Theorem 4.31, we may assume that Γ/∆ = µ(F,D)
for F a preorder. By Lemma 4.47 and Lemma 4.38 it follows that ρX |= L, and so
η(ρF, ρD) /∈ L. Since L is Kripke complete, there is a bsi Kripke frame Y such that
Y 2 η(ρF, ρD). Take a stable map f : Y→ ρF satisfying the BDC for ρD. Proceed
as in the proof of Theorem 3.47 to construct a Kripke frame Z with Z |= τL by
expanding clusters in Y. We identify ρZ = Y, and define a map g : Z→ F via the
same construction used in the proof of Theorem 3.47. Clearly, g is well defined,
surjective, and relation preserving. We know that g satisfies the BDC for D→ from
the proof of Theorem 3.47, and symmetric reasoning shows that g also satisfies the
BDC for D←.

(⇐) Analogous to the si and modal case. �

5. The Kuznetsov-Muravitsky Isomorphism for Logics and Rule
Systems

In this section, we generalise our techniques further to study translational em-
beddings of (normal) modal superintuitionistic rule systems and logics into modal
ones. We develop algebra-based rules for modal superintuitionistic rule systems
over the intuitionistic provability logic KM, as well as a new kind of algebra-based
rules for modal rule systems over the Gödel-Löb provability logic (Section 5.2). We
call these pre-stable canonical rules. We apply pre-stable canonical rules to prove
that the lattice of modal superintuitionistic rule systems (resp. logics) over KM is
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isomorphic to the lattice of modal rule systems (resp. logics) over GL via a Gödel-
style translational embedding (Section 5.3). This result was proved for logics by
Kuznetsov and Muravitsky [37], but appears to be new for rule systems.

For reasons of space, this section does not pursue the full theory of modal com-
panions of superintuitionistic logics in the sense of either [25] or [59, 58], although
we are confident that our techniques would work in that setting as well. Because of
this the Dummett-Lemmon conjecture has no counterpart in the present section.

Besides supplying new results, this section further highlights the flexibility and
uniformity of our techniques. Standard filtration does not work well for KM and GL,
suggesting a different, less standard notion of filtration should be used to generalise
stable canonical rules to the present setting. The rest of our approach delivers the
desired results despite this different design choice, which shows its flexibility. More-
over, it does so without needing any major changes and accommodations: the proofs
of the main results in this section follow the basic blueprints of their counterparts
from Section 3. This, once again, shows the uniformity of our approach.

5.1. Deductive Systems for Provability. We begin by briefly reviewing defini-
tions and basic properties of the structures under discussion.

5.1.1. Intuitionistic Provability, Frontons, and KM-spaces. In this subsection we
shall work with the modal superintuitionistic signature,

msi := {∧,∨,→,�,⊥,>}.
The set Frmmsi of modal superintuitionistic (msi) formulae is defined recursively
as follows.

ϕ ::= p | ⊥ |> |ϕ ∧ ϕ |ϕ ∨ ϕ |ϕ→ ϕ | � ϕ
where p ∈ Prop.

The logic IPCK is obtained by extending IPC by the K-axiom

�(p→ q)→ (�p→ �q)
and closing under necessitation, that is, requiring that whenever ϕ ∈ IPCK then
�ϕ ∈ IPCK as well.

Definition 5.1. A normal modal superintuitionistic logic, or msi-logic for short, is
a logic L over Frmmsi satisfying the following additional conditions:

(1) IPCK ⊆ L;
(2) If ϕ→ ψ,ϕ ∈ L then ψ ∈ L (MP);
(3) If ϕ ∈ L then �ϕ ∈ L (NEC).

A modal superintuitionistic rule system, or msi-rule system for short, is a rule
system L over Frmmsi satisfying the following additional requirements.

(1) /ϕ ∈ L whenever ϕ ∈ IPCK;
(2) ϕ,ϕ→ ψ/ψ ∈ L (MP-R);
(3) ϕ/� ϕ ∈ L (NEC-R).

If L is an msi-logic (resp. msi-rule system) we write NExt(L) for the set of msi-logics
(resp. rule systems) extending L. Surely, the set of msi-logics systems coincides
with NExt(IPCK). It is easy to check that NExt(IPCK) forms a lattice under
the operations ⊕NExt(K) as join and intersection as meet. If L ∈ NExt(IPCK),
let LR be the least msi-rule system containing /ϕ for each ϕ ∈ LR. Then IPCKR
is the least msi-rule system. The set NExt(IPCKR) of msi-rule systems is also a
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lattice when endowed with ⊕NExt(IPCKR) as join and intersection as meet. As usual,
we refer to these lattices as we refer to their underlying sets, i.e. NExt(IPCK) and
NExt(IPCKR) respectively. We also write both ⊕NExt(IPCK) and ⊕NExt(IPCKR) simply
as ⊕, leaving context to resolve ambiguities. Clearly, for every L ∈ NExt(IPCK) we
have that Taut(LR) = L, which establishes the following result.

Proposition 5.2. The mappings (·)R and Taut(·) are mutually inverse complete
lattice isomorphisms between NExt(IPCK) and the sublattice of NExt(IPCKR) con-
sisting of all msi-rule systems L such that Taut(L)R = L.

Rather than studying NExt(IPCKR) in its entirety, we shall focus on the sub-
lattice of NExt(IPCKR) consisting of all normal extensions of the rule system KMR,
where KM is the msi-logic axiomatised as follows.

KM := IPCK⊕ p→ �p⊕ (�p→ p)→ p⊕�p→ (q ∨ (q → p)).

The logic KM was introduced by Kuznetsov [36] (see also [37]) and later studied by
Esakia [25]. Its main motivation lies in its close connection with the Gödel-Löb
provability logic, to be discussed in the next section. An extensive overview of both
the history and theory of KM may be found in [42].

A fronton is a tuple H = (H,∧,∨,→,�, 0, 1) such that (H,∧,∨,→, 0, 1) is a
Heyting algebra and for every a, b ∈ H, � satisfies

�1 = 1(13)

�(a ∧ b) = �a ∧�b(14)

a ≤ �a(15)

�a→ a = a(16)

�a ≤ b ∨ (b→ a)(17)

Frontons are discussed in detail, e.g., in [25, 38]. We let Frt denote the class of
all frontons. By Theorem 2.4, Frt is a variety. We write Var(Frt) and Uni(Frt)
respectively for the lattice of subvarieties and of universal subclasses of Frt. Item 1
in the following result follows from, e.g., [42, Proposition 7], whereas Item 2 can be
obtained via the techniques used in the proofs of Theorems 3.3 and 3.8.

Theorem 5.3. The following maps are pairs of mutually inverse dual isomor-
phisms:

(1) Alg : NExt(KM)→ Var(Frt) and Th : Var(Frt)→ Ext(KM);
(2) Alg : NExt(KMR)→ Uni(Frt) and ThR : Uni(Frt)→ NExt(KMR).

Corollary 5.4. Every msi-logic (resp. si-rule system) extending KM is complete
with respect to some variety (resp. universal class) of Frontons.

We mention a simple yet important property of frontons, which plays a key role
in the development of algebra-based rules for rule systems in NExt(KMR).

Proposition 5.5 (cf. [25, Proposition 5]). Every fronton H satisfies the identity

�a =
∧
{b ∨ (b→ a) : b ∈ H}.

for every a ∈ H.
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It follows that for every Heyting algebra H, there is at most one way of expanding
H to a fronton, namely by setting

�a :=
∧
{b ∨ (b→ a) : b ∈ H}

A KM-space is a tuple X = (X,≤,v,O), such that (X,≤,O) is an Esakia space,
and v is a binary relation on X satisfying the following conditions, where ⇑x :=
{y ∈ X : x v y} and ⇓x := {y ∈ X : y v x}, and x < y iff x ≤ y and x 6= y:

(1) x < y implies x v y;
(2) x v y implies x ≤ y;
(3) ⇑x is closed for all x ∈ X;
(4) ⇓[U ] ∈ Clop(X) for every U ∈ ClopUp(X);
(5) For every U ∈ ClopUp(X) and x ∈ X, if x /∈ U then there is y ∈ −U such

that x ≤ y and ⇑y ⊆ U .

KM-spaces are discussed in [25], and more at length in [15].
A valuation on a KM space space X is a map V : Prop → ClopUp(X). The

geometrical semantics for msi-rule systems extending KMR over KM-spaces is obtained
straightforwardly by combining the geometrical semantics of si-rule systems and
that of modal rule systems. The relation ≤ is used to interpret the implication
connective →, and the relation v is used to interpret the modal operator �.

If X,Y are KM-spaces, a map f : X → Y is called a bounded morphism if for all
x, y ∈ X we have:

• x ≤ y implies f(x) ≤ f(y);
• x v y implies f(x) v f(y);
• f(x) ≤ y implies that there is z ∈ X with x ≤ z and f(z) = y;
• f(x) v y implies that there is z ∈ X with x v z and f(z) = y

We recall some useful properties of KM-spaces, which are proved in [15, Proposi-
tion 4.8].

Proposition 5.6. For every KM-space X, the following conditions hold:

(1) For every U ∈ ClopUp(U) we have {x ∈ X : ⇑x ⊆ U} = U ∪max≤(−U);
(2) If X is finite, then for all x, y ∈ X we have x v y iff x < y.

It is known that the category of frontons with corresponding homomorphisms is
dually equivalent to the category of KM-spaces with continuous bounded morphisms.
This result was announced in [25, 354–5], and proved in detail in [15, Theorem 4.4].
We denote the KM-space dual to a fronton H as H∗, and the fronton dual to a
KM-space X as X∗.

5.1.2. Classical Provability, Magari Algebras, and GL-spaces. We now work in the
modal signature md already discussed in Section 3. The modal logic GL is axioma-
tised by extending K with the well-known Löb formula.

GL :=K⊕�(�p→ p)→ �p
=K4⊕�(�p→ p)→ �p

The logic GL was independently discovered by Boolos and the Siena logic group led
by Magari (cf. [47, 48, 40, 50, 12]) as a formalisation of the provability predicate
of Peano arithmetic. The arithmetical completeness of GL was proved by Solovay
[51] (see also [20]). The reader may consult [13] (as well as the more recent if less
comprehensive [42]) for an overview of known results concerning GL.
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A modal algebra A is called a Magari algebra (after [40]) if it satisfies the identity

�(�a→ a) = �a

for all a ∈ A. Magari algebras are also called GL-algebras, e.g. in [38]. We let
Mag denote the variety of all Magari algebras. Clearly, every Magari algebra is a
transitive modal algebra, and moreover Mag coincides with the class of all modal
algebras satisfying the equation

♦a = ♦(�¬a ∧ a).

The following result is a straightforward consequence of Theorem 3.8.

Theorem 5.7. The following maps are pairs of mutually inverse dual isomor-
phisms:

(1) Alg : NExt(GL)→ Var(Mag) and Th : Var(Mag)→ Ext(GL);
(2) Alg : NExt(GLR)→ Uni(Mag) and ThR : Uni(Mag)→ NExt(GLR).

Corollary 5.8. Every modal logic (resp. modal rule system) extending GL is com-
plete with respect to some variety (resp. universal class) of Magari algebras.

Modal spaces dual to Magari algebras are called GL-spaces. GL-spaces display
various similarities with GRZ-spaces, as the reader can appreciate by comparing the
following result with Proposition 3.11.

Proposition 5.9 (cf. [39]). For every GL-space X and U ∈ Clop(X), the following
conditions hold:

(1) If x ∈ maxR(U) then R[x] ∩ U = ∅;
(2) maxR(U) ∈ Clop(X);
(3) If x ∈ U then either x ∈ maxR(U) or there is y ∈ maxR(U) such that Rxy;
(4) If X is finite then R is irreflexive.

GL is well-known to be complete with respect to the class of irreflexive and
transitive Kripke frames containing no ascending chain. However, like GRZ-spaces,
GL-spaces may contain clusters, and a fortiori reflexive points.

5.2. Pre-stable Canonical Rules for Normal Extensions of KMR and GLR.
In this section we develop a new kind of algebra-based rules, serving as analogues
of stable canonical rules for rule systems in NExt(KMR) and NExt(GLR). These
rules encode a notion of filtration weaker than standard filtration, and are better
suited than the latter to the rule systems under discussion. We call them pre-stable
canonical rules.

5.2.1. The KMR Case. We have seen notions of filtration for both Heyting and modal
algebras. One would hope that combining the latter would yield a suitable notion
of filtration for frontons, which could then be used to develop stable canonical
rules for rule systems in NExt(KMR). This is in principle possible, but suboptimal.
The reason is that with filtrations understood this way, rule systems in NExt(KMR)
would turn out to admit very few filtrations. To see this, recall (Proposition 5.6)
that in every finite KM-space X we have that x v y iff x < y for all x, y ∈ X. Now
let X be any KM-space such that there are x, y ∈ X with x 6= y and x v y. Then
any finite image of X under a v-preserving map h with h(x) = h(y) would contain
a reflexive point, hence would fail to be a KM-space.
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We know that every finite distributive lattice has a unique Heyting algebra ex-
pansion, and moreover that every finite Heyting algebra has a unique fronton ex-
pansion. These constructions lead to a natural method for extracting finite coun-
termodels based on frontons to non-valid msi rules, which we illustrate in the proof
of Lemma 5.10. This result, in a somewhat different formulation, was first proved
by Muravitsky [41] via frame-theoretic methods.

Lemma 5.10. For any msi rule Γ/∆, if Frt 2 Γ/∆ then there is a finite fronton
H ∈ Frt such that H 2 Γ/∆.

Proof. Assume Frt 2 Γ/∆ and let H ∈ Frt be a fronton with H 2 Γ/∆. Take a
valuation V with H, V 2 Γ/∆. Put Θ = Sfor(Γ/∆) and set

D→ := {(V̄ (ϕ), V̄ (ψ)) ∈ H ×H : ϕ→ ψ ∈ Θ} ∪ {(V̄ (ϕ), a) : a ∈ D� and ϕ ∈ Θ}

D� := {V̄ (ϕ) ∈ H : �ϕ ∈ Θ}
Let K be the bounded distributive lattice generated by Θ. For all a, b ∈ K define

a b :=
∨
{c ∈ H : a ∧ c ≤ b}

�′a :=
∧
b∈K

b ∨ (b a)

Obviously (K, ) is a Heyting algebra, and by Proposition 5.5 it follows that K′ :=
(K, ,�′) is a fronton. Moreover, the inclusion ⊆: K′ → A is a bounded lattice
embedding satisfying

a b ≤ a→ b for all (a, b) ∈ K ×K
a b = a→ b for all (a, b) ∈ D→

�′a = �a for all a ∈ D�.

The first two claims are proved the same way as in the proof of Lemma 3.19. For
the third claim we reason as follows. Suppose a ∈ D�. Then (b, a) ∈ D→ for every
b ∈ K by construction. Therefore,

�′a =
∧
b∈K

b ∨ (b a) =
∧
b∈K

b ∨ (b→ a).

By the axioms of frontons we have �a ≤ b ∨ (b → a) for all b ∈ H, hence for all
b ∈ K in particular. Therefore �a ≤ �′a. Conversely, for any a ∈ K we have

�′a ≤ �a ∨�a a

≤ �a ∨�a→ a(by �a a ≤ �a→ a)

= �a.(by �a→ a = a ≤ �a)

Let V ′ be an arbitrary valuation on K′ with V ′(p) = V (p) whenever p ∈ Sfor(Γ/∆)∩
Prop. Then for every ϕ ∈ Θ we have V (ϕ) = V ′(ϕ). This is shown easily by
induction on the structure of ϕ. Therefore, K′, V ′ 2 Γ/∆. �

The proof of Lemma 5.10 motivates an alternative notion of filtration for fron-
tons. Let H,K ∈ Frt. A map h : H→ K is called pre-stable if for every a, b ∈ H we
have h(a→ b) ≤ h(a)→ h(b). For a, b ∈ H, we say that h satisfies the →-bounded
domain condition (BDC→) for (a, b) if h(a→ b) = h(a)→ h(b). For D ⊆ H, we say
that h satisfies the �-bounded domain condition (BDC�) for D if h(�a) = �h(a)
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for every a ∈ D. If D ⊆ H ×H, we say that h satisfies the BDC→ for D if it does
for each (a, b) ∈ D, and analogously for the BDC�. Lastly, if D→ ⊆ H × H and
D� ⊆ H, we say that h satisfies the BDC for (D→, D�) if h satisfies the BDC→

for D→ and the BDC� for D�.

Definition 5.11. Let H be a fronton, V a valuation on H, and Θ a finite, subformula
closed set of formulae. A (finite) model (K′, V ′), with K ∈ Frt, is called a (finite)
weak filtration of (H, V ) through Θ if the following hold:

(1) K′ = (K,→,�), where K is the bounded sublattice of H generated by V̄ [Θ];
(2) V (p) = V ′(p) for every propositional variable p ∈ Θ;
(3) The inclusion ⊆: B → A is a pre-stable embedding satisfying the BDC→

for the set {(V̄ (ϕ), V̄ (ψ)) : ϕ → ψ ∈ Θ}, and satisfying the BDC� for the
set {V̄ (ϕ) : �ϕ ∈ Θ}

A straightforward induction on structure establishes the following filtration theo-
rem.

Theorem 5.12 (Filtration theorem for frontons). Let H be a fronton, V a valuation
on H, and Θ a a finite, subformula-closed set of formulae. If (K′, V ′) is a weak
filtration of (H, V ) through Θ then for every ϕ ∈ Θ we have

V̄ (ϕ) = V̄ ′(ϕ).

Consequently, for every rule Γ/∆ such that γ, δ ∈ Θ for each γ ∈ Γ and δ ∈ ∆ we
have

H, V |= Γ/∆ ⇐⇒ K′, V ′ |= Γ/∆.

We now introduce algebra-based rules for rule systems in NExt(KMR) by syntac-
tically encoding weak filtrations as just defined. We call these pre-stable canonical
rules to emphasize the role of pre-stable maps as opposed to stable maps in their
refutation conditions.

Definition 5.13. Let H ∈ Frt be a finite fronton, and let D→ ⊆ H ×H, D� ⊆ H
be such that a ∈ D� implies (b, a) ∈ D→ for every b ∈ H. The pre-stable canonical
rule of (H, D→, D�), is defined as η�(H, D→, D�) = Γ/∆, where

Γ :={p0 ↔ 0} ∪ {p1 ↔ 1}∪
{pa∧b ↔ pa ∧ pb : a ∈ H} ∪ {pa∨b ↔ pa ∨ pb : a ∈ H}∪

{pa→b ↔ pa → pb : (a, b) ∈ D→} ∪ {p�a ↔ �pa : a ∈ D�}
∆ :={pa ↔ pb : a, b ∈ H with a 6= b}.

The next two results outline algebraic refutation conditions for msi pre-stable
canonical rules. They may be proved with straightforward adaptations of the proofs
of similar results seen in earlier sections.

Proposition 5.14. For every finite fronton H and D→ ⊆ H × H, D� ⊆ H, we
have H 2 η�(H, D→, D�).

Proposition 5.15. For every msi pre-stable canonical rule η�(H, D→, D�) and
any K ∈ Frt, we have K 2 η�(H, D→, D�) iff there is a pre-stable embedding h :
H→ K satisfying the BDC for (D→, D�).
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We now give refutation conditions for msi pre-stable canonical rules on KM-spaces.
If X,Y are KM-spaces, a map f : X→ Y is called pre-stable if for all x, y ∈ X, x ≤ y
implies f(x) ≤ f(y). Clearly, if f is pre-stable then for all x, y ∈ X, x v y implies
f(x) ≤ f(y). Now let d ⊆ Y . We say that f satisfies the BDC→ for d if for all
x ∈ X,

↑[f(x)] ∩ d 6= ∅⇒ f [↑x] ∩ d 6= ∅.
We say that f satisfies the BDC� for d if for all x ∈ X the following two conditions
hold.

⇑[h(x)] ∩ d 6= ∅⇒ h[⇑x] ∩ d 6= ∅(BDC�-back)

h[⇑x] ∩ d 6= ∅⇒ ⇑[h(x)] ∩ d 6= ∅(BDC�-forth)

If D ⊆ ℘(Y ), then we say that h satisfies the BDC→ for D if it does for every
d ∈ D, and similarly for the BDC�. Finally, if D→,D� ⊆ ℘(Y ), then we say that
h satisfies the BDC for (D→,D�) if h satisfies the BDC→ for D→ and the BDC�

for D�.
Let H be a finite fronton. If D→ ⊆ H ×H, for every (a, b) ∈ D→ set d→(a,b) :=

β(a) r β(b). If D� ⊆ H, for every a ∈ D� set d�a := −β(a). Finally, put D→ :=
{d→(a,b) : (a, b) ∈ D→}, D� := {d�a : a ∈ D�}.

Proposition 5.16. For every msi pre-stable canonical rule η�(H, D→, D�) and
any KM-space, we have X 2 η�(H, D→, D�) iff there is a continuous pre-stable
surjection f : X→ H∗ satisfying the BDC (D→,D�).

Proof. (⇒) Assume X 2 η�(H, D→, D�). Then there is a pre-stable embedding
h : H → X∗ satisfying the BDC for (D→, D�). Reasoning as in the proofs of
Proposition 3.16 and Proposition 3.24 it follows that there is a pre-stable map
f : X → H∗ satisfying the BDC→ for D→ and satisfying the BDC�-back for D�,
namely the map f = h−1. Let us check that f satisfies the BDC�-forth for D�.
Let d�a ∈ D�. Assume f [⇑x] ∩ d�a 6= ∅, i.e., that there is y ∈ ⇑x with f(y) ∈ d�a .
So x /∈ �vh(U), where U := −d�a . Since h satisfies the BDC� for d�a we have
�vh(U) = h(�vU), and so x /∈ h(�vU). This implies f(x) /∈ �v(U), therefore

there must be some z ∈ d�a such that f(x) v z, i.e. ⇑[f(x)] ∩ d�a 6= ∅.
(⇐) Assume that there is a continuous pre-stable surjection f : X→ H∗ satisfy-

ing the BDC for (D→,D�). By the proof of Proposition 3.16, f−1 : H → X∗ is a
pre-stable embedding satisfying the BDC→ for D→. Let us check that f−1 satisfies
the BDC� for D�. Let U ⊆ X be such that U = β(a) for some a ∈ D�, and reason
as follows.

x /∈ f−1(�vU) ⇐⇒ ⇑x ∩ f−1(d�a ) 6= ∅

⇐⇒ ⇑[f(x)] ∩ d�a 6= ∅(f satisfies the BDC� for d�a )

⇐⇒ x /∈ �vf−1(U).

�

In view of Proposition 5.16, when working with KM-spaces we may write an msi
pre-stable canonical rule η�(H, D→, D�) as η�(H∗,D

→,D�).
We close this subsection by proving that our msi pre-stable canonical rules are

expressive enough to axiomatise every rule system in NExt(KMR).
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Lemma 5.17. For every msi rule Γ/∆ there is a finite set Ξ of msi pre-stable
canonical rules such that for any K ∈ Frt we have K 2 Γ/∆ iff there is η�(H, D→, D�) ∈
Ξ such that K 2 η�(H, D→, D�).

Proof. Since bounded distributive lattices are locally finite there are, up to isomor-
phism, only finitely many triples (H, D→, D�) such that

• H ∈ Frt and H is at most k-generated as a bounded distributive lattice,
where k = |Sfor(Γ/∆)|;
• There is a valuation V on H refuting Γ/∆, such that

D→ ={(V̄ (ϕ), V̄ (ψ)) : ϕ→ ψ ∈ Sfor(Γ/∆)}∪
{(V̄ (ϕ), b) : �ϕ ∈ Sfor(Γ/∆) and b ∈ H}

D� ={V̄ (ϕ) : �ϕ ∈ Sfor(Γ/∆)}.

Let Ξ be the set of all msi pre-stable canonical rules η�(H, D→, D�) for all such
triples (H, D→, D�), identified up to isomorphism.

(⇒) Let K ∈ Frt and suppose H 2 Γ/∆. Take a valuation V on H such that
K, V 2 Γ/∆. Then by the proof of Lemma 5.10 there is a weak filtration (H′, V ′)
of (K, V ) through Sfor(Γ/∆), which by the filtration theorem for frontons is such
that H′, V ′ 2 Γ/∆. This implies that there is a stable embedding h : H′ → K, which
again by the proof of Lemma 5.10 satisfies the BDC for the pair (D→,D�) defined
as above. Therefore η�(H′, D→, D�) ∈ Ξ and K 2 η�(H′, D→, D�).

(⇐) Analogous to the same direction in, e.g., Lemma 3.19. �

Theorem 5.18. Every msi-rule system L ∈ NExt(KMR) is axiomatisable over KMR
by some set of msi pre-stable canonical rules of the form η�(H, D→, D�), where
H ∈ KM.

Proof. Analogous to Theorem 3.20. �

5.2.2. The GLR Case. Modal stable canonical rules as developed in Section 3.2.2
can axiomatise every rule system in NExt(GLR) [4, Theorem 5.6]. However, modal
stable canonical rules differ significantly from msi pre-stable canonical rules: they
are based on a different notion of filtration, which is stated in terms of stable rather
than pre-stable maps. Moreover, GLR admits very few filtrations. The situation is
similar to the case of NExt(KMR). For recall (Proposition 5.9) that finite GL-spaces
are strict partial orders. If X is a GL-space and f : X → Y is a stable map from
X onto some finite modal space Y such that f(x) = f(y) for some x, y ∈ X with
Rxy, then Y contains a reflexive point, hence cannot be a GL-space.

In response to this problem, an alternative notion of filtration was introduced in
[54], who note that the same technique was used already in [13]. We call it weak
filtration. As usual, we prefer an algebraic definition. If A,B are modal algebras
and D ⊆ A, let us say that a map h : A → B satisfies the �-bounded domain
condition (BDC�) for D if h(�a) = �(a) for every a ∈ D.

Definition 5.19. Let B ∈ Mag be a Magari algebra, V a valuation on B, and Θ a
finite, subformula closed set of formulae. A (finite) model (A′, V ′), with A′ ∈ Mag,
is called a (finite) weak filtration of (B, V ) through Θ if the following hold:

(1) A′ = (A,�), where B is the Boolean subalgebra of B generated by V̄ [Θ];
(2) V (p) = V ′(p) for every propositional variable p ∈ Θ;
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(3) The inclusion ⊆: A′ → B satisfies the BDC� for D := {V̄ ′(ϕ) : �ϕ ∈ Θ}.

Theorem 5.20. Let B ∈ Mag be a Magari algebra, V a valuation on B, and Θ a
finite, subformula closed set of formulae. Let (A′, V ′) be a weak filtration of (B, V ).
Then for every ϕ ∈ Θ we have

V̄ (ϕ) = V̄ ′(ϕ).

Proof. Straightforward induction on the structure of ϕ. �

Unlike weak filtrations in the msi setting, modal weak filtrations are not in
general unique. We will be particularly interested in weak filtrations satisfying an
extra condition, which we will construe as a modal counterpart to pre-stability in
the msi setting. For any modal algebra A and a ∈ A we write �+(a) := �a∧a. Let
A,B ∈ Mag be Magari algebras. A Boolean homomorphism h : A → B is called
pre-stable if for every a ∈ A we have h(�+a) ≤ �+h(a). Clearly, every stable
Boolean homomorphism h : A → B is pre-stable, since h(�a) ≤ �h(a) implies
h(�a∧a) = h(�a)∧h(a) ≤ �h(a)∧h(a). A weak filtration (A′, V ′) of some model
(B, V ) through some finite, subformula closed set of formulae Θ is called pre-stable
if the embedding ⊆: A′ → B is pre-stable.

If A,B are modal algebras and D ⊆ A, a map h : A → B satisfies the �+-

bounded domain condition (BDC�+

) for D if h(�+a) = �+h(a) for every a ∈ D.
Note that if (A′, V ′) is a filtration of (B, V ) through some Θ, then for every D ⊆ A
the inclusion ⊆: A→ B satisfies the BDC�+

for D iff it satisfies the BDC� for D.
Indeed, since Θ is subformula-closed we have that �+ϕ ∈ Θ implies �ϕ ∈ Θ, which
gives the “only if” direction, whereas the converse follows from the fact that ⊆ is
a Boolean embedding.

Our algebra-based rules encode pre-stable weak filtrations as defined above, and

explicitly include a parameterD�+

, linked to the BDC�+

, intended as a counterpart
to the parameter D→ of msi pre-stable canonical rules. We call these rules modal
pre-stable canonical rules.

Definition 5.21. Let A ∈ MA be a finite modal algebra, and let D�+

, D� ⊆ A.

Let �+ϕ := �ϕ ∧ ϕ. The pre-stable canonical rule of (A, D�+

, D�), is defined as

µ+(A, D�+

, D�) = Γ/∆, where

Γ :={pa∧b ↔ pa ∧ pb : a ∈ H} ∪ {pa∨b ↔ pa ∨ pb : a ∈ H}∪
{p¬a ↔ ¬pa : a ∈ A} ∪ {p�+a → �+pa : a ∈ a}∪

{�+pa → p�+a : a ∈ D�+

} ∪ {p�a ↔ �pa : a ∈ D�}
∆ :={pa : a ∈ Ar {1}}.

It is helpful to conceptualise modal pre-stable canonical rules as algebra-based rules
for bi-modal rule systems in the signature {∧,∨,¬,�,�+, 0, 1} (so that �+ is an
independent operator rather than defined from �) and containing �+p ↔ �p ∧ p
as an axiom.1 From this perspective, modal pre-stable canonical rules are rather
similar to msi pre-stable canonical rules.

1This view of GL as a bimodal logic is the main insight informing Litak’s [38] strategy for

deriving Item 2 of Theorem 5.35 from the theory of polymodal companions of msi-logics as de-
veloped by Wolter and Zakharyaschev [59, 58]. In that setting, msi formulae are translated into

formulae in a bimodal signature, but the two modalities of the latter can be regarded as implicitly
interdefinable in logics where one satisfies the Löb formula.
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Using by now familiar reasoning, it is easy to verify that modal pre-stable canon-
ical rules display the intended refutation conditions. For brevity, let us say that

a pre-stable map h satisfies the BDC for (D�+

, D�) if h satisfies the BDC�+

for

D�+

and the BDC� for D�.

Proposition 5.22. For every finite modal algebra A ∈ MA and D�+

, D� ⊆ A, we

have H 2 µ+(A, D�+

, D�).

Proposition 5.23. For every modal algebra B ∈ MA and any modal pre-stable

canonical rule µ+(A, D�+

, D�), we have B 2 µ+(A, D�+

, D�) iff there is a pre-

stable embedding h : B→ A satisfying the BDC (D�+

D�).

If X is any modal space, for any x, y ∈ X define R+xy iff Rxy or x = y. Let X,Y
be GL-spaces. A map f : X→ Y is called pre-stable if for all x, y ∈ X we have that

R+xy implies R+f(x)f(y). If d ⊆ Y , we say that f satisfies the BDC�+

for d if for
all x ∈ X,

R+[f(x)] ∩ d 6= ∅⇒ f [R+[x]] ∩ d 6= ∅.
Furthermore, we say that f satisfies the BDC� for d if for all x ∈ X the following
two conditions hold.

R[f(x)] ∩ d 6= ∅⇒ f [R[x]] ∩ d 6= ∅(BDC�-back)

f [R[x]] ∩ d 6= ∅⇒ R[f(x)] ∩ d 6= ∅.(BDC�-forth)

Finally, if D ⊆ ℘(Y ) we say that f satisfies the BDC�+

(resp. BDC�) for D if it

does for every d ∈ D, and if D�+

,D� ⊆ ℘(Y ) we write that f satisfies the BDC

for (D�+

,D�) if f satisfies the BDC�+

for D�+

and the BDC� for D�. Let A

be a finite Magari algebra. If D�+ ⊆ A, for every a ∈ D�+

set d�
+

a := −β(a). If

D� ⊆ A, for every a ∈ D� set d�a := −β(a). Finally, put D�+

:= {d�+

a : a ∈ D�+},
D� := {d�a : a ∈ D�}.

Proposition 5.24. For all GL-spaces X and any modal pre-stable canonical rule

µ+(A, D�+

, D�), we have X 2 µ+(A, D�+

, D�) iff there is a continuous pre-stable

surjection f : X→ A∗ satisfying the BDC for (D�+

,D�).

As usual, in view of Proposition 5.24 we write a modal pre-stable canonical rule

µ+(A, D�+

, D�) as µ+(A∗,D
�+

,D�) in geometric settings.
We close this section by proving that pre-stable canonical rules axiomatise any

rule system in NExt(GLR).

Lemma 5.25. For every modal rule Γ/∆ there is a finite set Ξ of modal pre-

stable canonical rules of the form µ+(A, D�+

, D�) with A ∈ K4, such that for

any B ∈ Mag we have B 2 Γ/∆ iff there is µ+(A, D�+

, D�) ∈ Ξ such that B 2
µ+(A, D�+

, D�).

Proof. Since Boolean algebras is locally finite there are, up to isomorphism, only

finitely many triples (A, D�+

, D�) such that

• A ∈ K4 and A is at most k-generated as a Boolean algebra, where k =
|Sfor(Γ/∆)|;
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• There is a valuation V on A refuting Γ/∆, such that

D�+

= {V̄ (ϕ) : �+ϕ ∈ Sfor(Γ/∆)}

D� = {V̄ (ϕ) : �ϕ ∈ Sfor(Γ/∆)}

Let Ξ be the set of all modal pre-stable canonical rules µ+(A, D�+

, D�) for all such

triples (A, D�+

, D�), identified up to isomorphism.
(⇒) Let B ∈ Mag and suppose B 2 Γ/∆. Take a valuation V on B such that

B, V 2 Γ/∆. As is well-known, there is a transitive filtration (A′, V ′) of (B, V )
through Sfor(Γ/∆). Then A′ ∈ K4. Moreover, clearly every filtration is a weak
filtration, hence so is (A′, V ′). Therefore there is a Boolean embedding h : A′ → B

satisfying the BDC for (D�+

, D�), where D�+

:= {V̄ ′(ϕ) : �+ϕ ∈ Sfor(Γ/∆)}
and D� := {V̄ ′(ϕ) : �ϕ ∈ Sfor(Γ/∆)}. Indeed, it is obvious that h is a Boolean

embedding which satisfies the BDC� for D�. The fact that h satisfies the BDC�+

follows by noting that, additionally, �ϕ ∈ Sfor(�+ϕ) for every modal formula ϕ.
Lastly, since (A′, V ′) is actually a filtration, f is stable, a fortiori pre-stable. Hence

we have shown B 2 µ+(A, D�+

, D�).
(⇐) Routine. �

Theorem 5.26. Every modal rule system M ∈ NExt(GLR) is axiomatisable over

GLR by some set of modal pre-stable canonical rules of the form µ+(A, D�+

, D�),
where A ∈ K4.

5.3. The Kuznetsov-Muravitsky Isomorphism via Stable Canonical Rules.
We are ready for the main topic of this section, the Kuznetsov-Muravitsky isomor-
phism and its extension to rule systems. We apply pre-stable canonical rules to
prove this and related results in the vicinity, using essentially the same techniques
seen in Sections 3.3 and 4.3.

5.3.1. Semantic Mappings. We begin by reviewing the constructions for transform-
ing frontons into corresponding Magari algebras and vice versa. The results in this
paragraph are known, and recent proofs can be found in, e.g., [25].

Definition 5.27. The mapping σ : Frt→ Mag assigns every H ∈ Frt to the algebra
σH := (B(H),�), where B(H) is the free Boolean extension of 1H and for every
a ∈ B(H) we have

Ia :=
∨
{b ∈ H : b ≤ a}

�a := �Ia.

Observe that if a ∈ H then Ia = a, and so �a = �a. Consequently, if a ∈ H also
�+a = �+a.

Definition 5.28. The mapping ρ : Mag → Frt assigns every Magari algebra A ∈
Mag to the algebra ρA := (O(A),∧,∨,→,�, 1, 0), where

O(A) := {a ∈ A : �+a = a}
a→ b := �+(¬a ∨ b)
�a := �a

By unpacking the definitions just presented it is not difficult to verify that the
following Proposition holds.



50 NICK BEZHANISHVILI AND ANTONIO M. CLEANI

Proposition 5.29. For every H ∈ Frt we have H ∼= ρσH. Moreover, for every
A ∈ GRZ we have σρA� A.

We call a Magari algebra A skeletal if σρA ∼= A holds.
We now give more suggestive dual descriptions of the maps σ, ρ on KM- and

GL-spaces, which also make it easier to show that σ, ρ are the intended ranges.

Definition 5.30. If X = (X,≤,v,O) is a KM-space we set σX := (X,R,O), where
R =v. Let Y := (Y,R,O) be a GL-space. For x, y ∈ Y write x ∼ y iff Rxy
and Ryx. Define a map ρ : Y → ℘(Y ) by setting ρ(x) = {y ∈ Y : x ∼ y}. We
define ρY := (ρ[Y ],≤ρ,vρ ρ[O]) where ρ(x) vρ ρ(y) iff Rxy and ρ(x) ≤ρ ρ(y) iff
R+
ρ ρ(x)ρ(y).

Proposition 5.31. The following conditions hold.

(1) Let H ∈ Frt. Then (σH)∗ ∼= σ(H∗). Consequently, if X is a KM-space then
(σX)∗ ∼= σ(X)∗.

(2) Let X be a GL-space. Then (ρX)∗ ∼= ρ(X∗). Consequently, if A ∈ Mag, then
(ρA)∗ ∼= ρ(A∗).

Proposition 5.32. For every fronton H ∈ Frt we have that σH is a Magari algebra,
and for every Magari algebra A ∈ Mag we have that ρA is a fronton.

5.3.2. A Gödelian Translation. We now show how to translate msi formulae into
modal formulae in a way which suits our current goals. The main idea, already
anticipated when developing msi stable canonical rules, is to conceptualise rule
systems in NExt(GLR) as stated in a signature containing two modal operators
�,�+, so to use � to translate � and �+ to translate →. This leads to the
following Gödelian translation function.

Definition 5.33. The Gödelian translation T : Tmmsi → Tmmd is defined recur-
sively as follows.

T (⊥) := ⊥
T (>) := >
T (p) := �p

T (ϕ ∧ ψ) := T (ϕ) ∧ T (ψ)

T (ϕ ∨ ψ) := T (ϕ) ∨ T (ψ)

T (ϕ→ ψ) := �+(¬T (ϕ) ∨ T (ψ))

T (�ϕ) := �T (ϕ)

The translation T above was originally proposed by Kuznetsov and Muravitsky
[37], and is systematically studied in [59, 58]. Our presentation contains a revised
clause for the case of T (�ϕ), which was originally defined as

T (�ϕ) := �+�T (ϕ).

However, it is not difficult to verify that Mag |= �p ↔ �+�p, which justifies our
revised clause. As usual, we extend the translation T from terms to rules by setting

T (Γ/∆) := T [Γ]/T [∆].

The following key lemma describes the semantic behaviour of T (·) in terms of
the map ρ.
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Lemma 5.34. For every A ∈ Mag and si rule Γ/∆,

A |= T (Γ/∆) ⇐⇒ ρA |= Γ/∆

Proof. A simple induction on structure shows that for every si term ϕ, every modal
space X, every valuation V on X and every point x ∈ X we have

X, V, x |= T (ϕ) ⇐⇒ ρX, ρ[V ], ρ(x) |= ϕ.

Using this equivalence and noting that every valuation V on some KM-space ρX can
be seen as of the form ρ[V ′] for some valuation V ′ on X, the rest of the proof is
easy. �

5.3.3. The Kuznetsov-Muravitsky Theorem. We are now ready to state and prove
the main result of the present section. Extend the mappings σ : Frt → Mag and
ρ : Mag→ Frt by setting

σ : Uni(Frt)→ Uni(Mag) ρ : Uni(Mag)→ Uni(Frt)

U 7→ Uni{σH : H ∈ U} W 7→ {ρA : A ∈ W}.
Now define the following two syntactic counterparts to σ, ρ between NExt(KMR)

and NExt(GLR).

σ : NExt(KMR)→ NExt(GLR) ρ : NExt(GLR)→ NExt(KMR)

L 7→ GLR ⊕ {T (Γ/∆) : Γ/∆ ∈ L} M 7→ {Γ/∆ : T (Γ/∆) ∈ M}
These maps easily extend to lattices of logics, by setting:

σ : NExt(KM)→ NExt(GL) ρ : NExt(GL)→ NExt(KM)

L 7→ Taut(σLR) = GL⊕ {T (ϕ) : ϕ ∈ L} M 7→ Taut(ρMR) = {ϕ : T (ϕ) ∈ M}
The goal of this subsection is to establish the following result using pre-stable

canonical rules.

Theorem 5.35 (Kuznetsov-Muravitsky theorem). The following conditions hold:

(1) σ : NExt(KMR) → NExt(GLR) and ρ : NExt(GLR) → NExt(KMR) are mu-
tually inverse complete lattice isomorphisms.

(2) σ : NExt(KM) → NExt(GL) and ρ : NExt(GL) → NExt(KM) are mutually
inverse complete lattice isomorphisms.

Similarly to the previous sections, the main difficulty to overcome here consists
in showing that σ : NExt(KMR) → NExt(GLR) is surjective. We approach this
problem by applying our pre-stable canonical rules, following a similar blueprint
as that used in the previous sections. The following lemma is a counterpart of
Lemma 3.38. Its proof is similar to the latter’s, thanks to the similarities existing
between GRZ- and GL-spaces.

Lemma 5.36. Let A ∈ Mag. Then for every modal rule Γ/∆ we have A |= Γ/∆
iff σρA |= Γ/∆.

Proof. (⇒) This direction follows from the fact that σρA� A (Proposition 5.29).
(⇐) We prove the dual statement that A∗ 2 Γ/∆ implies σρA∗ 2 Γ/∆. Let X :=

A∗. In view of Theorem 5.26 it suffices to consider the case Γ/∆ = µ+(B, D�+

, D�),

for B ∈ K4 finite. So suppose X 2 µ+(B, D�+

, D�) and let F := B∗. Then there
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is a pre-stable map f : X → F satisfying the BDC for (D�+

,D�). We construct a

pre-stable map g : σρX→ F which also satisfies the BDC for (D�+

,D�).
Let C be a cluster in F. Consider ZC := f−1(C). As f is continuous, ZC is

clopen. Moreover, since f is pre-stable ZC does not cut any cluster. It follows that
ρ[ZC ] is clopen in ρX, because ρX has the quotient topology.

Enumerate C := {x1, . . . , xn}. Then f−1(xi) ⊆ ZC is clopen. By Proposi-
tion 5.9, we have that Mi := maxR(f−1(xi)) is clopen. Furthermore, as every
element of Mi is maximal in Mi, by Proposition 5.9 again we have that Mi does
not cut any cluster. Therefore ρ[Mi] is clopen, because ρX has the quotient topol-
ogy. Clearly, ρ[Mi]∩ ρ[Mj ] = ∅ for each i 6= j. Therefore there are disjoint clopens
U1, . . . , Un with ρ[Mi] ⊆ Ui and

⋃
i Ui = ρ[ZC ]. Just take Ui := ρ[Mi] if i 6= n, and

Un := ρ[ZC ] r

(⋃
i<n

Ui

)
.

Now define

gC : ρ[ZC ]→ C

gC(z) = xi ⇐⇒ z ∈ Ui
Note that gC is relation preserving, evidently, and continuous by construction.
Finally, define g : σρX→ F by setting

g(ρ(z)) :=

{
f(z) if f(z) does not belong to any proper cluster

gC(ρ(z)) if f(z) ∈ C for some proper cluster C ⊆ F

Now, g is evidently pre-stable. Moreover, it is continuous because both f and each

gC are. Let us check that g satisfies the BDC for (D�+

,D�).

• (BDC�+

) This may be shown reasoning the same way as in the proof of
Lemma 3.38.

• (BDC�-back) Let d ∈ D� and ρ(x) ∈ ρ[X]. Suppose that R[g(ρ(x))] ∩
d 6= ∅. Let U := f−1(f(x)). Then x ∈ U , so by Proposition 5.9 either
x ∈ maxR(U) or there exists x′ ∈ maxR(U) such that Rxx′. We consider
the former case only, the latter is analogous. Since x ∈ maxR(U), by
construction we have g(ρ(x)) = f(x). Thus R[f(x)] ∩ d 6= ∅. Since f
satisfies the BDC for d, it follows that there is y ∈ X such that Rxy
and f(y) ∈ d. As x ∈ maxR(U) we must have f(x) 6= f(y). Now let
V := f−1(f(y)). As y ∈ V , by Proposition 5.9 either y ∈ maxR(V ) or
there exists some y′ ∈ maxR(V ) such that Ryy′. Wlog, suppose the former.
Consequently, f(y) = g(ρ(y)). But then we have shown that Rρ(x)ρ(y) and
g(ρ(y)) ∈ d, i.e. g[R[ρ(x)]] ∩ d 6= ∅.

• (BDC�-forth) Let d ∈ D� and ρ(x) ∈ ρ[X]. Suppose that g[R[ρ(x)]] ∩ d 6=
∅. Observe that g[R[ρ(x)]] ∩ d 6= ∅ is equivalent to R[ρ(x)] ∩ g−1(d) 6=
∅. Therefore there is some y ∈ d such that R[ρ(x)] ∩ g−1(y) 6= ∅. By
Proposition 5.9 there is z ∈ maxR(g−1(y)) with Rρρ(x)ρ(z). Observe that
since g is pre-stable, R+g(ρ(x))g(ρ(z)), whence if g(ρ(x)) 6= g(ρ(z)) in turn
Rg(ρ(x))g(ρ(z)) and we are done. So suppose otherwise that g(ρ(x)) =
g(ρ(z)). Distinguish two cases

– Case 1 : y /∈ R[y]. Then y cannot belong to a proper cluster, so by
construction f(x) = g(ρ(x)) and f(z) = g(ρ(z)). From Rρ(x)ρ(z) it
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follows that Rxz, whence R[x]∩f−1(d) 6= ∅ Since f satisfies the BDC-
forth for d, there must be some u ∈ d with Rf(x)u and f(u) ∈ d. Then
also Rg(ρ(x))u, i.e. R[g(ρ(x))] ∩ d 6= ∅ as desired.

– Case 2 : y ∈ R[y]. But then Rg(ρ(x))y. This shows R[g(ρ(x))]∩d 6= ∅
as desired.

�

Proposition 5.37. Every universal class U ∈ Uni(Mag) is generated by its skeletal
elements, i.e., U = σρU .

Proof. Analogous to Theorem 3.39, but applying Lemma 5.36 instead of Lemma 3.38.
�

We now apply Lemma 5.36 to characterise the maps σ : NExt(KMR)→ NExt(GLR)
and ρ : NExt(KMR)→ NExt(GLR) in terms of their semantic counterparts.

Lemma 5.38. For each L ∈ Ext(KMR) and M ∈ NExt(GLR), the following hold:

Alg(σL) = σAlg(L)(18)

Alg(ρM) = ρAlg(M)(19)

Proof. (18) By Theorem 3.39 it suffices to show that Alg(σL) and σAlg(L) have
the same skeletal elements. So let A = σρA ∈ Mag. Assume A ∈ σAlg(L). Since
σAlg(L) is generated by {σB : B ∈ Alg(L)} as a universal class, by Proposition 5.29
and Lemma 5.34 we have A |= T (Γ/∆) for every Γ/∆ ∈ L. But then A ∈ Alg(σL).
Conversely, assume A ∈ Alg(σL). Then A |= T (Γ/∆) for every Γ/∆ ∈ L. By
Lemma 5.34 this is equivalent to ρA ∈ Alg(L), therefore σρA = A ∈ σAlg(L).

(19) Let H ∈ Frt. If H ∈ ρAlg(M) then H = ρA for some A ∈ Alg(M). It follows
that for every rule T (Γ/∆) ∈ M we have A |= T (Γ/∆), and so by Lemma 5.34 in
turn H |= Γ/∆. Therefore indeed H ∈ Alg(ρM). Conversely, for all rules Γ/∆, if
ρAlg(M) |= Γ/∆ then by Lemma 5.34 Alg(M) |= T (Γ/∆), hence Γ/∆ ∈ ρM. Thus
ThR(ρAlg(M)) ⊆ ρM, and so Alg(ρM) ⊆ ρAlg(M). �

We are now ready to prove the main result of this section.

Theorem 5.39 (Kuznetsov-Muravitsky theorem). The following conditions hold:

(1) σ : NExt(KMR) → NExt(GLR) and ρ : NExt(GLR) → NExt(KMR) are mu-
tually inverse complete lattice isomorphisms.

(2) σ : NExt(KM) → NExt(GL) and ρ : NExt(GL) → NExt(KM) are mutually
inverse complete lattice isomorphisms.

Proof. (1) It suffices to show that the two mappings σ : Uni(Frt)→ Uni(Mag) and
ρ : Uni(Mag) → Uni(Frt) are complete lattice isomorphisms and mutual inverses.
Both maps are evidently order preserving, and preservation of infinite joins is an
easy consequence of Lemma 5.34.

Let U ∈ Uni(Mag). Then U = σρU by Proposition 5.37, so σ is surjective and
a left inverse of ρ. Now let U ∈ Uni(Frt). It follows immediately from Proposi-
tion 5.29 that ρσU = U . Therefore ρ is surjective and a left inverse of σ. But then
σ and ρ are mutual inverses, whence both bijections.

(2) Follows immediately from Item 1 and Proposition 5.2. �
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6. Conclusions and Future Work

This paper presented a novel approach to the study of modal companions and
related notions based on stable canonical rules. We hope to have shown that our
method is effective and quite uniform. With only minor adaptations to a fixed
collection of techniques, we provided a unified treatment of the theories of modal
and tense companions, and of the Kuznetsov-Muravitsky isomorphism. We both
offered alternative proofs of classic theorems and established new results.

The techniques presented in this paper are based on a blueprint easily applicable
across signatures. Stable canonical rules can be formulated for any class of algebras
which admits a locally finite expandable reduct in the sense of [33, Ch. 5], and once
stable canonical rules are available there is a clear recipe for adapting our strategy
to the case at hand. We propose that further research be done in this direction, in
particular addressing the following topics.

Firstly, for reasons of space we have not addressed the full theory of modal
companions of msi deductive systems, as developed in [59, 58]. We conjecture that
our techniques can recover several of the main known results in this area, and
generalise them to rule systems. We hope that further work will confirm this.

Secondly, de Groot et al. [19] recently proved an analogue of the Blok-Esakia the-
orem for extensions of the Heyting-Lemmon logic, which expands superintuitionistic
logic with a strict implication connective. Our techniques could be applied to gen-
eralise this result to rule systems, and more generally to develop a rich theory of
modal companions of deductive systems over the Heyting-Lemmon logic.

Thirdly, Goldblatt [29] formulated a Gödel-style translation giving a full and
faithful embedding of the propositional logic Ort of all ortholattices into the Brow-
erian modal logic B = K ⊕ �p → p ⊕ p → �♦p. To the best of our knowledge,
the theory of modal companions of extensions of Ort (which include quantum log-
ics) has not been developed, and in particular it is unknown whether Goldblatt’s
tranlsation gives rise to an analogue of the Blok-Esakia theorem. If a suitable ex-
pandable locally finite reduct of ortholattices can be found, stable canonical rules
for rule systems over Ort can be developed, and a clear strategy for attacking the
aforementioned problem becomes available.
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thesis, Universiteit van Amsterdam.

[44] Rauszer, C. [1974]. A Formalization of the Propositional Calculus of H-B Logic.
Studia Logica: An International Journal for Symbolic Logic, 33(1):23–34.

[45] ——— [1974]. Semi-Boolean Algebras and Their Applications to Intuitionistic
Logic with Dual Operations. Fundamenta Mathematicae, 83:219–249.

[46] ——— [1977]. Applications of Kripke Models to Heyting-Brouwer Logic. Stu-
dia Logica: An International Journal for Symbolic Logic, 36(1/2):61–71.

[47] Sambin, G. [1974]. Un’estensione del teorema di Löb. Rendiconti del Seminario
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