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Abstract. Within ZFC, we develop a general technique to topologize trees that provides
a uniform approach to topological completeness results in modal logic with respect to zero-
dimensional Hausdorff spaces. Embeddings of these spaces into well-known extremally dis-
connected spaces then gives new completeness results for logics extending S4.2.

1. Introduction

Topological semantics of modal logic has a long history. It was shown by McKinsey and
Tarski [22] that if we interpret � as interior and hence ♦ as closure, then S4 is the modal
logic of all topological spaces. Many topological completeness results have been obtained
since the inception of topological semantics. Below we give a short list for the logics that
play an important role in the paper.

• S4 is the logic of any crowded metric space [22, 25]. This result is often referred to
as the McKinsey-Tarski theorem.
• Grz is the logic of any ordinal space α ≥ ωω [1, 14].
• Grzn (for nonzero n ∈ ω) is the logic of any ordinal space α satisfying ωn−1 + 1 ≤
α ≤ ωn [1] (see also [12, Sec. 6]).
• S4.1 is the logic of the Pe lczyński compactification of the discrete space ω (that is,

the compactification of ω whose remainder is homeomorphic to the Cantor space)
[11, Cor. 3.19].

If in the second bullet we restrict to a countable α, then all the above completeness results
concern metric spaces. In fact, as was shown in [7], the logics above are the only ones arising
as the logic of a metric space.

It is a consequence of the McKinsey-Tarski theorem that S4 is the logic of the Cantor
space. An alternative proof of this result was given in [23] (see also [2]), where the infinite
binary tree was utilized. Kremer [21] used the infinite binary tree with limits to prove that
S4 is strongly complete for any crowded metric space. Further utility of trees with limits is
demonstrated in [8].

Herein we develop a general technique of topologizing trees which allows us to pro-
vide a uniform approach to topological completeness results for zero-dimensional Hausdorff
spaces. It also allows us to obtain new topological completeness results with respect to non-
metrizable spaces. Embedding these spaces into well-known extremally disconnected spaces
(ED-spaces for short) then yields new completeness results for the logics above S4.2 indicated
in Figure 1.

It was proved in [10] that S4.1.2 is the logic of the Čech-Stone compactification βω of the
discrete space ω, and this result was utilized in [11] to show that S4.2 is the logic of the
Gleason cover of the real unit interval [0, 1]. However, these results require a set-theoretic
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Figure 1. Some well-known extensions of S4.

axiom beyond ZFC, and it remains an open problem whether these results are true in ZFC.
In contrast, all our results are obtained within ZFC.

We briefly outline some of the techniques employed to obtain the indicated completeness
results. A unified way of obtaining a zero-dimensional topology on an infinite tree with
limits, say T , is by designating a particular Boolean algebra of subsets of T as a basis. If
T has countable branching, then the topology ends up being metrizable. If the branching
is 1, then the obtained space is homeomorphic to the ordinal space ω + 1; if the branching
is ≥ 2 but finite, then it is homeomorphic to the Pe lczyński compactification of ω; and if
the branching is countably infinite, then there are subspaces homeomorphic to the space
of rational numbers, the Baire space, as well as to the ordinal spaces ωn + 1. The latter
subspaces can be thought of as being recursively built from ω + 1, which is (homeomorphic
to) the one-point compactification of ω.

For uncountable branching, it is required to designate a Boolean σ-algebra as a basis for
the topology. This leads to topological completeness results for S4, S4.1,Grz, and Grzn with
respect to non-metrizable zero-dimensional Hausdorff spaces. This increase in cardinality
results in the one-point compactification of ω being replaced by the one-point Lindelöfication
of an uncountable discrete space.

To obtain topological completeness results for logics extending S4.2, we select a dense
subspace of either the Čech-Stone compactification βD of a discrete space D with large
cardinality or the Gleason cover E of a large enough power of [0, 1]. This selection is realized
by embedding a subspace of an uncountable branching tree with limits into either βD or E.
The latter gives rise to S4.2, while the former yields the other logics of interest extending
S4.2. We point out that these constructions can be done in ZFC.

The paper is organized as follows. In Section 2 we recall pertinent definitions and re-
sults from both modal logic and topology. In Section 3 we introduce the main object of
study, trees with limits, and define multiple topologies on such trees. Section 4 proves
some mapping theorems for countable branching trees with limits, which lead to alternate
proofs of some well-known topological completeness results with respect to zero-dimensional
metrizable spaces in Section 5. In Section 6 we generalize the patch topology on trees with
limits to the σ-patch topology. Section 7 calculates the logics of certain subspaces associated
with the aforementioned σ-patch topology, yielding topological completeness results for non-
metrizable zero-dimensional Hausdorff spaces. The paper concludes with Section 8, which
proves new topological completeness results for extremally disconnected Tychonoff spaces.
These results are obtained by embedding some of the spaces defined in Section 6 into either
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the Čech-Stone compactification of a (large) discrete space or the Gleason cover of a (large)
power of the closed real unit interval.

2. Background

We assume the reader’s familiarity with modal logic and topology. We use [16, 13] as our
main references for modal logic, and [18, 20] as our main references for topology.

2.1. Some basic modal logic. The logic S4 is the least set of formulas of the basic modal
language containing the classical tautologies, the axioms �(p→ q)→ (�p→ �q), �p→ p,
�p→ ��p, and closed under the inference rules of modus ponens (MP) ϕ, ϕ→ψ

ψ
, substitution

(S) ϕ(p1,...,pn)
ϕ(ψ1,...,ψn)

, and necessitation (N) ϕ
�ϕ .

For a modal formula ϕ and a modal logic L, we denote by L + ϕ the logic realized as
the least set of formulas containing L and ϕ, and closed under MP, S, and N. The modal
formulas in Table 1 are used to define the modal logics of interest appearing in Table 2. As
usual ♦ϕ is an abbreviation for ¬�¬ϕ.

Notation Formula

ma �♦p→ ♦�p
ga ♦�p→ �♦p
grz �(�(p→ �p)→ p)→ p
bd1 ♦�p1 → p1

bdn+1 ♦(�pn+1 ∧ ¬bdn)→ pn+1 for n ≥ 1

Table 1. Formulas of interest.

Logic Axiomatization

S4.1 S4 + ma
S4.2 S4 + ga
S4.1.2 S4 + ma + ga
Grz S4 + grz
Grz.2 Grz + ga
Grzn Grz + bdn for n ≥ 1
Grz.2n Grz.2 + bdn for n ≥ 1

Table 2. Logics of interest.

It is well known that every logic in the list has the finite model property (FMP), and hence
is complete with respect to its finite Kripke frames. We recall that an S4-frame is a tuple
F = (W,R) where W is a nonempty set and R is a reflexive and transitive binary relation
on W . For w ∈ W , let R(w) = {v ∈ W | wRv} and R−1(w) = {v ∈ W | vRw}. When R
is additionally antisymmetric, and hence F is a poset, we may write ≤ for R, ↑w for R(w),
and ↓w for R−1(w).

As usual, call r ∈ W a root of F if R(r) = W , and say that F is rooted if it has a root.
A quasi-chain in F is C ⊆ W such that for any w, v ∈ C, either wRv or vRw. A chain is
a quasi-chain that is partially ordered by (the restriction of) R. A finite rooted S4-frame
F is a quasi-tree provided for each w ∈ W , we have that R−1(w) is a quasi-chain. A finite
quasi-tree is a tree if it is a poset.

Call w ∈ W quasi-maximal (resp. maximal) in F provided wRv implies vRw (resp. v = w).
Let qmax(F) (resp. max(F)) denote the set of quasi-maximal (resp. maximal) points of F.



4 G. BEZHANISHVILI, N. BEZHANISHVILI, J. LUCERO-BRYAN, J. VAN MILL

A cluster of F is an equivalence class of the equivalence relation given by w ∼ v iff wRv and
vRw. The relation R induces a partial order on the set of clusters and a maximal cluster is
a maximal element in this poset.

The depth of F is n provided there is a chain in F consisting of n elements and each chain
in F consists of at most n elements. A top-thin-quasi-tree is a quasi-tree F constructed from
a given finite quasi-tree G by inserting a new maximal point above each maximal cluster in
G, as indicated in Figure 2.

�� �����PP
P

�� �� �� ����HH
�� �� �� ��

G

�� �����PP
P

�� �� �� ����HH
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• •

F

Figure 2. Top-thin-quasi-tree F obtained from G.

For S4-frames F = (W,R) and G = (V,Q), a p-morphism is a function f : W → V such
that f−1(Q−1(v)) = R−1(f−1(v)) for each v ∈ V . An onto p-morphism preserves validity,
and hence reflects refutations, meaning that F refutes a formula ϕ whenever G does (see,
e.g., [16, Thm. 3.15]). Table 3 gathers together some well-known Kripke completeness results
for the logics of interest.

Logic is complete with respect to

S4 finite quasi-trees
S4.1 finite top-thin-quasi-trees
Grz finite trees
Grzn finite trees of depth ≤ n
S4.2 finite rooted S4-frames with a unique maximal cluster C

such that the subframe W \ C is a quasi-tree
S4.1.2 finite rooted S4-frames with a unique maximal point m

such that the subframe W \ {m} is a quasi-tree
Grz.2 finite rooted posets with a unique maximal point m such

that the subframe W \ {m} is a tree
Grz.2n finite rooted posets of depth ≤ n with a unique maximal

point m such that the subframe W \ {m} is a tree

Table 3. Kripke completeness for logics of interest.

2.2. Some basic topology. In topological semantics, the modal language is interpreted
in a topological space X by evaluating propositional variables as subsets of X, classical
connectives as Boolean operations on the powerset ℘(X), � as the interior operator, and
hence ♦ as the closure operator. A formula ϕ is valid in X, denoted X � ϕ, provided
ϕ evaluates to X under any evaluation of the propositional variables. The logic of X is
Log(X) := {ϕ | X � ϕ}, and we have S4 ⊆ Log(X).

Topological semantics generalizes Kripke semantics for S4 as follows. Given an S4-frame
F = (W,R), sets of the form R(w) for w ∈ W form a basis for the topology on W known
as the Alexandroff topology in which the closure operator is given by R−1. A formula is
valid in F iff it is valid in the corresponding Alexandroff space, so Kripke completeness
immediately transfers to topological completeness. We therefore identify an S4-frame with
its corresponding Alexandroff space. But Alexandroff spaces do not satisfy strong separation
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axioms (unless they are discrete). Thus, it is a nontrivial matter to seek out completeness
results for spaces that satisfy stronger separation axioms such as Tychonoff spaces.

We next recall some well-known definitions. A map f : X → Y between topological spaces
is continuous if the inverse image of each open in Y is open in X, it is open if the image of
each open in X is open in Y , and it is interior if it is both continuous and open. Interior
maps between topological spaces generalize p-morphisms between S4-frames, and they share
the following important feature with p-morphisms: onto interior maps reflect refutations.

A topological space X is zero-dimensional if it has a basis of clopen (closed and open)
sets, and X is extremally disconnected (ED) if the closure of each open set is open. It is easy
to see that every regular ED-space is zero-dimensional.

For a space X and A ⊆ X, let d(A) denote the set of limit points of A. By transfinite
recursion we define d0(A) = A, dα+1(A) = d(dα(A)), and dα(A) =

⋂
β<α d

β(A) if α is a limit

ordinal. By the Cantor-Bendixson theorem (see, e.g., [27, Thm. 8.5.2]), there is an ordinal
α such that dα+1(X) = dα(X), and the least such ordinal is the Cantor-Bendixson rank of
X, denoted herein by r(X).

Let Iso(X) denote the isolated points of X. Then Iso(X) = X \ d(X). Call X crowded or
dense-in-itself if Iso(X) = ∅; equivalently, in terms of the Cantor-Bendixson rank, if r(X) =
0. Call X scattered provided that X contains no nonempty crowded subspace; equivalently,
there is an ordinal α such that dα(X) = ∅. Following a suggestion by A. V. Arhangel’skii, we
call X densely discrete if Iso(X) is dense in X.1 It is routine to check that a scattered space
is densely discrete, but that the converse is not true in general. Table 4 gathers together
some well-known topological completeness results for the logics of interest.

Logic is complete with respect to

S4 the class of topological spaces
S4.1 the class of densely discrete spaces
Grz the class of scattered spaces
Grzn the class of scattered spaces of Cantor-Bendixson rank ≤ n
S4.2 the class of ED-spaces
S4.1.2 the class of densely discrete ED-spaces
Grz.2 the class of scattered ED-spaces
Grz.2n the class of scattered ED-spaces of Cantor-Bendixson rank ≤ n

Table 4. Topological completeness for logics of interest.

For a scattered Hausdorff space, [5, Thm. 4.9] demonstrates that finite Cantor-Bendixson
rank is characterized by the concept of modal Krull dimension—a topological analogue of
the depth of an S4-frame—introduced in [4]. For a topological analogue of cluster size, we
recall that a space X is resolvable provided it contains a dense subset whose complement is
also dense. A space is irresolvable if it is not resolvable. For nonzero n ∈ ω, X is n-resolvable
provided there is a partition of X consisting of n dense subsets. By [4, Lem. 5.9], a space X
is n-resolvable iff an n-element cluster is an interior image of X.

We next recall that a closed subset F of X is irreducible if it is a join-irreducible element
in the lattice of closed subsets of X, and X is a sober space provided each irreducible closed
subset of X is the closure of a unique singleton. The space X is coherent if the set of compact

1The notion of densely discrete has appeared in the literature under the names α-scattered [26] and weakly
scattered (see, e.g., [6, 11, 7]). Since the term weakly scattered is often used for a different concept (see, e.g.,
[24, p. 120]), we adopt Arhangel’skii’s more descriptive terminology.
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open subsets of X forms a basis that is a bounded sublattice of the lattice of open subsets of
X. For a poset (X,�), we call U ⊆ X an �-upset provided x ∈ U and x � y imply y ∈ U .

Definition 2.1.
(1) A topological space is a spectral space if it is sober and coherent.
(2) A topological space is a Stone space if it is compact Hausdorff zero-dimensional.
(3) A Priestley space is a tuple (X,�) where X is a Stone space, � is a partial order on

X, and x 6� y implies that there is a clopen �-upset U such that x ∈ U and y 6∈ U .

It is well known that spectral spaces and Priestley spaces are closely related to each other.
If (X,�) is a Priestley space, then the set of open �-upsets is a spectral topology on X
in which the compact opens are exactly the clopen �-upsets. Conversely, let (X, τ) be a
spectral space and let cτ be the closure in (X, τ). Define the patch topology π to be the
topology generated by the compact opens of (X, τ) and their complements. Then (X, π,�)
is a Priestley space, where � is the specialization order of (X, τ) given by x � y iff x ∈ cτ{y}.
Moreover, the clopen �-upsets of (X, π,�) are exactly the compact opens of (X, τ). From
this it follows that there is a 1-1 correspondence between spectral spaces and Priestley spaces.

Definition 2.2.
(1) A regular space X is Lindelöf provided every open cover has a countable subcover.
(2) A Tychonoff space X is a P-space provided that each Gδ-set (countable intersection

of open sets) is open.

It is well known (see, e.g., [19, pp. 62–63]) that any P-space is zero-dimensional, and that
the Boolean algebra of clopens is a σ-algebra.

3. Topologies associated with κ-branching trees

We view cardinals as initial ordinals. Let κ be a nonzero cardinal number. We will be
interested in three cases: κ is finite and nonzero (0 6= κ < ω), κ is countably infinite (κ = ω),
and κ is uncountable (κ ≥ ω1).

A sequence in κ is a function σ : α→ κ for some α ≤ ω. Let Tκ denote the set of sequences
in κ. Call σ ∈ Tκ finite provided α < ω; otherwise call σ infinite. If σ is finite, then we say
that the length of σ is α, and write `(σ) = α. If σ is infinite, then we say that the length
of σ is infinite, and write `(σ) = ∞. Note that there is a unique element of Tκ of length 0,
namely the empty sequence ε : ∅→ κ.

For sequences σ : α→ κ and ς : β → κ, we say that σ is an initial segment of ς provided
α ≤ β and α(n) = β(n) for all n < α; in such case, we write σ ≤ ς. It is routine to
check that ≤ is a partial ordering of Tκ. For any σ ∈ Tκ, let ↑σ = {ς ∈ Tκ | σ ≤ ς} and
↓σ = {ς ∈ Tκ | ς ≤ σ}. Note that ↓σ is a chain for each σ ∈ Tκ; that is, either ς ≤ ς ′ or
ς ′ ≤ ς for any ς, ς ′ ∈ ↓σ.

For n ∈ ω, if σ : n→ κ is an initial segment of ς : n+ 1→ κ, we say that σ is the parent
of ς and that ς is a child of σ, and write ς = σ.ς(n). For an infinite sequence σ : ω → κ, we
write σ|n to denote the restriction of σ to n. Thus, σ|n is an initial segment of σ of length n.

For n ∈ ω, let T nκ = {σ ∈ Tκ | `(σ) ≤ n} be the set of finite sequences of length at most
n, let T ωκ = {σ ∈ Tκ | `(σ) < ω} be the set of all finite sequences, and let T∞κ = Tκ \ T ωκ be
the set of all infinite sequences.

Definition 3.1. We let Tκ = (Tκ,≤), T nκ = (T nκ ,≤), and T ωκ = (T ωκ ,≤).

Definition 3.2. Let Tκ = (Tκ, τ) be the topological space where τ is generated by the basis
S := {↑σ | σ ∈ T ωκ }.
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Remark 3.3. We use normal font for denoting sets, calligraphic font for denoting trees, and
boldface font for denoting the topological space whose topology is generated by S .

To see that Tκ is a spectral space, we require the following lemma.

Lemma 3.4. The compact opens of Tκ are exactly the finite unions of members of S .

Proof. Clearly each member of S is compact open, and hence so is a finite union of members
of S . Suppose U ⊆ Tκ is compact open. Because U is open in Tκ, for each σ ∈ U , there is
Uσ ∈ S such that σ ∈ Uσ ⊆ U . Therefore, C := {Uσ | σ ∈ U} is an open cover of U . As U
is compact, there is a finite subcover C0 of C . Thus, U =

⋃
C0, as desired. �

Theorem 3.5. The space Tκ is a spectral space.

Proof. Let σ, ς ∈ T ωκ . If σ′ ∈ ↑σ ∩ ↑ς, then since σ, ς ∈ ↓σ′, either σ ≤ ς or ς ≤ σ. This
implies that ↑σ ∩ ↑ς = ↑ς or ↑σ ∩ ↑ς = ↑σ. Therefore, ↑σ ∩ ↑ς is either ∅, ↑σ, or ↑ς. This
together with Lemma 3.4 yields that Tκ is coherent.

To see that Tκ is sober, let F be an irreducible closed set in Tκ. Then F is a downset.
We first show that F is a chain. If not, then there are σ, ς ∈ F that are unrelated. The set
↓σ ∩ ↓ς has a ≤-greatest element (otherwise σ|n = ς|n for all n ∈ ω, giving σ = ς), say ς ′,
which is finite. Therefore, the unique child of ς ′ that is under σ is not related to the unique
child of ς ′ that is under ς. Thus, we may assume without loss of generality that both σ and
ς are finite. But then F \ ↑σ and F \ ↑ς are closed in Tκ and F = (F \ ↑σ) ∪ (F \ ↑ς). This
contradicts to F being irreducible, so F must be a chain.

We next show that F = ↓σ for some σ ∈ F . If F contains an infinite sequence σ, then it is
clear that F = ↓σ. Suppose that F contains no infinite sequences. Then since F is closed, F
has a ≤-greatest element, say σ, yielding again that F = ↓σ. Because ↓σ is the closure of σ
in Tκ, we conclude that F is the closure of a unique singleton. Thus, Tκ is sober, concluding
the proof. �

Remark 3.6. Recall that a poset (P,�) is a directed complete partial order (DCPO) pro-
vided that every directed set D ⊆ P has a supremum. A Scott open subset U of a DCPO
(P,�) is an upset such that for any directed set D, if supD ∈ U , then D ∩ U 6= ∅. The set
of Scott open subsets is a topology on P called the Scott topology. Clearly Tκ is a DCPO,
and the Scott topology on Tκ is τ . Thus, Tκ can alternatively be thought of in terms of the
Scott topology associated with Tκ. This approach is utilized in [8, Sec. 6] for the binary tree
with limits.

Definition 3.7.
(1) Let Tκ = (Tκ, π) where π is the patch topology of τ .
(2) Let Tnκ be the subspace of Tκ whose underlying set is T nκ .
(3) Let Tωκ be the subspace of Tκ whose underlying set is T ωκ .
(4) Let T∞κ be the subspace of Tκ whose underlying set is T∞κ .

Remark 3.8.
(1) Since σ ≤ ς iff σ belongs to the closure of {ς} in Tκ, it follows that (Tκ,≤) is a

Priestley space.
(2) Viewing κ as a discrete space, we have:

(a) The product space κω is homeomorphic to T∞κ as a subspace of Tκ since a basis
for the product topology consists of sets of infinite sequences in which finitely
many entries are fixed.

(b) The product space κω is also homeomorphic to T∞κ (see Theorem 3.13(1)).

We now exhibit a useful basis for Tκ. We do so in two lemmas.
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Lemma 3.9. A basis for Tκ is given by sets of the form ↑σ \
⋃n
i=0 ↑ςi where σ, ςi ∈ T ωκ .

Proof. Sets of the form U \ V where U and V are compact open subsets of Tκ constitute a
basis for the patch topology π. It follows from Lemma 3.4 that sets of the form(

m⋃
j=0

↑σj

)
\

(
n⋃
i=0

↑ςi

)
where σj, ςi ∈ T ωκ constitute a basis for π. Noting that(

m⋃
j=0

↑σj

)
\

(
n⋃
i=0

↑ςi

)
=

m⋃
j=0

(
↑σj \

n⋃
i=0

↑ςi

)
completes the proof. �

Lemma 3.10. The family
{
↑σ \

⋃
λ∈Λ ↑σ.λ | σ ∈ T ωκ and Λ ⊆ κ is finite

}
is a basis for Tκ.

Proof. By Lemma 3.9, it is sufficient to show that for each ↑ς \
⋃n
i=0 ↑ςi, where ς, ςi ∈ T ωκ ,

and each σ ∈ ↑ς \
⋃n
i=0 ↑ςi, there are ρ ∈ T ωκ and Λ ⊆ κ finite such that σ ∈ ↑ρ\

⋃
λ∈Λ ↑ρ.λ ⊆

↑ς \
⋃n
i=0 ↑ςi. First suppose that σ is infinite. Let m = max{`(ς), `(ςi) | i = 0, . . . , n}.

Claim 3.11. ↑(σ|m) ⊆ ↑ς \
⋃n
i=0 ↑ςi.

Proof. Since σ ∈ ↑ς and `(ς) ≤ m, we have that ς = σ|`(ς) ≤ σ|m. This implies that
↑(σ|m) ⊆ ↑ς. Suppose σ′ ∈ ↑(σ|m) ∩ ↑ςi for some i ≤ n. Then σ|m, ςi ∈ ↓σ′, yielding that
σ|m ≤ ςi or ςi ≤ σ|m. Because `(ςi) ≤ m, it must be the case that ςi ≤ σ|m. Since σ|m ≤ σ,
this gives that σ ∈ ↑ςi, a contradiction. Thus, ↑(σ|m) ∩ ↑ςi = ∅ for each i ≤ n, and hence
↑(σ|m) ⊆ ↑ς \

⋃n
i=0 ↑ςi. �

Taking ρ = σ|m and Λ = ∅ completes the proof for infinite σ. Next suppose that σ is
finite. Let I be the subset of {0, . . . , n} consisting of those i for which σ ≤ ςi. For each i ∈ I,
there is a unique child σ.λi of σ such that σ.λi ≤ ςi (because σ 6= ςi). Put Λ = {λi | i ∈ I}.
Then Λ ⊆ κ is finite. Since each σ.λ is a child of σ, we have that σ ∈ ↑σ \

⋃
λ∈Λ ↑σ.λ.

Claim 3.12. ↑σ \
⋃
λ∈Λ ↑σ.λ ⊆ ↑ς \

⋃n
i=0 ↑ςi.

Proof. Let σ′ ∈ ↑σ \
⋃
λ∈Λ ↑σ.λ. Then ς ≤ σ ≤ σ′ and so σ′ ∈ ↑ς. If σ′ ∈ ↑ςi for some i ≤ n,

then σ, ςi ∈ ↓σ′, so ςi ≤ σ or σ ≤ ςi. Since σ 6∈
⋃n
i=0 ↑ςi, it must be the case that σ ≤ ςi.

This yields that i ∈ I and σ ≤ σ.λi ≤ ςi ≤ σ′. From this it follows that σ′ ∈
⋃
λ∈Λ ↑σ.λ, a

contradiction. Therefore, σ′ 6∈
⋃n
i=0 ↑ςi, and hence ↑σ \

⋃
λ∈Λ ↑σ.λ ⊆ ↑ς \

⋃n
i=0 ↑ςi. �

Since ↑σ \
⋃
λ∈Λ ↑σ.λ is of the required form, the proof is complete. �

The next result presents some properties of an arbitrary Tκ, as well as some properties
that depend on whether κ is finite or infinite.

Theorem 3.13.
(1) For any σ ∈ T∞κ , the family {↑(σ|n) | n ∈ ω} is a local basis of Tκ at σ.
(2) If κ ≥ 2, then T∞κ is crowded.
(3) The set T ωκ is dense in Tκ.
(4) If κ is finite, then

(a) each σ ∈ T ωκ is isolated in Tκ;
(b) Tωκ is discrete;
(c) T∞κ is closed in Tκ.

(5) If κ is infinite, then
(a) T∞κ is dense in Tκ;
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(b) Tκ is resolvable;
(c) Tκ and Tωκ are crowded.

(6) If κ is countable, then Tκ is metrizable.
(7) If κ is uncountable, then Tκ is not metrizable.

Proof. (1) This follows from Lemma 3.9 and Claim 3.11.
(2) This follows from (1) since ↑(σ|n) contains infinitely many infinite sequences for σ ∈

T∞κ , κ ≥ 2, and n ∈ ω.
(3) This is clear from Lemma 3.10 since any basic set of the form ↑σ \

⋃
λ∈Λ ↑σ.λ, with

σ ∈ T ωκ and Λ ⊆ κ finite, contains σ.
(4a) For σ ∈ T ωκ , we have {σ} = ↑σ \

⋃
λ∈κ ↑σ.λ. Thus, since κ is finite, {σ} is open by

Lemma 3.10.
(4b&c) These are immediate from (4a) since T ωκ consists of isolated points, giving that T ωκ

is open, and hence T∞κ = Tκ \ T ωκ is closed in Tκ.
(5a) This follows from Lemma 3.10 because for any basic open set ↑σ \

⋃
λ∈Λ ↑σ.λ, with

σ ∈ T ωκ and Λ ⊆ κ finite, we have κ \ Λ 6= ∅. Thus, such a basic open set has nonempty
intersection with T∞κ .

(5b) By (3) and (5a), both T ωκ and T∞κ are dense in Tκ. Since they are disjoint, it follows
that Tκ is resolvable.

(5c) Since Tκ is resolvable, it is crowded. Therefore, so is Tωκ as it is a dense subspace of
a crowded T1-space.

(6) Suppose (0 6=)κ ≤ ω. Then S = {↑σ | σ ∈ T ωκ } is countable, and so Tκ is second-
countable. This together with Tκ being a Stone space implies that Tκ is metrizable (see,
e.g., [18, Thm. 4.2.8]).

(7) Suppose κ is uncountable. It is sufficient to show that Tκ is not first-countable. Let
U := {Un | n ∈ ω} be any (countable) collection of open neighborhoods of ε. It follows
from Lemma 3.10 that for any Un ∈ U , all but finitely many children of ε are in Un. Let Cn
be the set of children of ε not contained in Un. Then C :=

⋃
n∈ω Cn is countable. Because

κ is uncountable, there is a child σ of ε such that σ 6∈ C. The set U := ↑ε \ ↑σ is a basic
open neighborhood of ε such that no Un ∈ U satisfies Un ⊆ U (indeed, σ ∈ Un because
σ 6∈ C, giving Un 6⊆ U). Thus, any local basis at ε must be uncountable, and hence Tκ is
not first-countable. �

We conclude this section by analyzing the case when κ is countable.

Theorem 3.14. Let (0 6=)κ ≤ ω.

(1) If κ = 1, then Tκ is homeomorphic to the ordinal space ω + 1.
(2) If 1 < κ < ω, then

(a) T∞κ is homeomorphic to the Cantor space;
(b) Tκ is homeomorphic to the Pe lczyński compactification of the discrete space ω.

(3) If κ = ω, then
(a) Tω is an uncountable crowded completely metrizable Stone space of countable

weight.
(b) Tωω is homeomorphic to the space of rational numbers.
(c) T∞ω is homeomorphic to the Baire space.
(d) T∞ω is homeomorphic to the space of irrational numbers.

Proof. (1) By Theorem 3.13(3 & 4b), Tω1 is a dense discrete subspace of T1. Since T∞1 is a
singleton and T ω1 is countably infinite, it follows that T1 is homeomorphic to the one-point
compactification of ω, which in turn is homeomorphic to ω + 1.
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(2a) By Theorem 3.13(4c), T∞κ is closed in Tκ. As a closed subspace of the compact zero-
dimensional metrizable space Tκ, we have that T∞κ is also compact, zero-dimensional, and
metrizable. In addition, T∞κ is crowded by Theorem 3.13(2). Thus, by Brouwer’s theorem
(see, e.g., [18, Exercise 6.2.A(c)]), T∞κ is homeomorphic to the Cantor space.

(2b) By Theorem 3.13(3 & 4b), Tωκ is a countable dense discrete subspace of Tκ. Since
the Pe lczyński compactification is, up to homeomorphism, the compactification of the dis-
crete space ω whose remainder is homeomorphic to the Cantor space, it follows that Tκ is
homeomorphic to the Pe lczyński compactification.

(3a) Clearly Tω is a Stone space (since the topology is the patch topology of Tω), is
uncountable (since ω ≥ 2), and has countable weight (since ω is countable). Moreover, Tω is
crowded by Theorem 3.13(5c). Because Tω is metrizable, the result follows by recalling that
a compact metrizable space is completely metrizable (see, e.g., [18, Thm. 4.3.28]).

(3b) Clearly T ωω is countable, and Tωω is crowded and metrizable by Theorem 3.13(5c &
6). Thus, by Sierpiński’s theorem (see, e.g., [18, Exercise 6.2.A(d)]), Tωω is homeomorphic to
the space of rational numbers.

(3c) This follows from Remark 3.8(2b) since the Baire space is homeomorphic to the
product of ω copies of the discrete space ω.

(3d) This follows from (3c) since the Baire space is homeomorphic to the space of irrational
numbers (see, e.g., [18, Exercise 4.3.G]). �

Remark 3.15. Despite the fact that Tωω is homeomorphic to the space of rational numbers
and T∞ω is homeomorphic to the space of irrational numbers, it is not the case that Tω =
T∞ω ∪ Tωω is homeomorphic to the space of real numbers. Indeed, Tω is a Stone space, but
the space of real numbers is not.

4. Mapping theorems for Tκ and its subspaces for countable κ

In this section we construct a continuous map from Tκ onto an arbitrary finite quasi-tree F
for large enough κ ≤ ω. It is built by combining a modification of the well-known unraveling
technique with the labelling scheme introduced in [2, Sec. 4.1]. Given any finite rooted S4-
frame F = (W,R), the scheme developed in [2] labels the infinite binary tree by elements of
W so that F is realized as an interior image of T∞2 . As the maps we construct are continuous
and onto but not necessarily open, we subsequently explore when such a map is interior, as
well as how to make it interior when it fails to be so.

4.1. The basic construction. Suppose F = (W,R) is a finite quasi-tree and |W | denotes
the cardinality of W . We let κ be such that max(|W |, 2) ≤ κ ≤ ω. Choose and fix a root r
of F. For each cluster C ⊆ W , choose and fix wC ∈ C. For each w ∈ W , fix an enumeration
{wm | m < nw} of R(w) such that w0 = w.2

Recursive definition of f : Tκ → W : Let f(ε) = r. Assuming that f(σ) = w for some
finite σ, let f(σ.m) = wm mod nw in the chosen enumeration of R(w) = R(f(σ)) for m < κ.
An inductive argument yields that f(σ)Rf(ς) for finite sequences satisfying σ ≤ ς. Assume
σ is infinite and f(σ|n) ∈ W for each n ∈ ω. Then {f(σ|n) | n ∈ ω} is an R-increasing
sequence; that is, f(σ|n)Rf(σ|n+1) for all n ∈ ω. Because W is finite, there are N ∈ ω and
a cluster C ⊆ W such that f(σ|n) ∈ C whenever n ≥ N . The sequence {f(σ|n) | n ∈ ω}
is either eventually constant in C or not. If the sequence {f(σ|n) | n ∈ ω} is eventually
constant with value w, let f(σ) = w. Otherwise, let f(σ) = wC . It is worth pointing out for
infinite σ that we have f(σ|n)Rf(σ) for all n ∈ ω. A straightforward transfinite induction
on the length of sequences yields that f is well defined.

2While this requirement is unnecessary, it makes Claims 4.6, 4.8, and 4.10 simpler.
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Lemma 4.1. Let w ∈ W . Then f−1(R(w)) =
⋃
σ∈Σ ↑σ, where Σ = {σ ∈ T ωκ | wRf(σ)}.

Proof. Let ς ∈
⋃
σ∈Σ ↑σ. Then there is σ ∈ T ωκ such that wRf(σ) and ς ∈ ↑σ. Since σ ≤ ς,

we have that wRf(σ)Rf(ς). Because R is transitive, f(ς) ∈ R(w), yielding ς ∈ f−1(R(w)).
Conversely, let ς ∈ f−1(R(w)), so wRf(ς). If ς is finite, then ς ∈ Σ and ς ∈ ↑ς ⊆

⋃
σ∈Σ ↑σ.

Assume ς is infinite. By the definition of f , there is N ∈ ω such that f(ς|n) is in the cluster
of f(ς) for all n ≥ N . Therefore, wRf(ς)Rf(ς|N). Since R is transitive, we have that
wRf(ς|N), and so ς|N ∈ Σ. As ς|N ≤ ς, it follows that ς ∈ ↑(ς|N) ⊆

⋃
σ∈Σ ↑σ. �

Theorem 4.2. The function f : Tκ → W is a continuous mapping of Tκ onto F.

Proof. By Lemmas 3.10 and 4.1, f−1(R(w)) is open in Tκ for every w ∈ W . Thus, f is
continuous. To see that f is onto, since |W | ≤ κ, we have that f({ε.m | m < |W |} = R(r) =
W . �

Remark 4.3. If κ is finite, then f need not be open. To see this, let κ ≥ 2 be finite and let
F = (W,R) be a finite quasi-tree with |W | ≥ 2. By Theorem 3.13(4a), ε is an isolated point
of Tκ, but f({ε}) = {r} is not open in F. Thus, f is not an open mapping.

4.2. The case κ = ω. We next show that if κ = ω, then f is an interior surjection, and so
are its restrictions to Tωω and T∞ω .

Theorem 4.4.
(1) The function f : Tω → W is an interior mapping of Tω onto F.
(2) The restriction g := f |Tωω is an interior mapping of Tωω onto F.
(3) The restriction h := f |T∞

ω
is an interior mapping of T∞ω onto F.

Proof. (1) By Theorem 4.2, we only need to see that f is open. For this, by Lemma 3.10, it
is sufficient to show that

f
(
↑σ \

⋃
λ∈Λ
↑σ.λ

)
= R(f(σ))

for arbitrary σ ∈ T ωω and finite Λ ⊆ ω. Let w ∈ f
(
↑σ \

⋃
λ∈Λ ↑σ.λ

)
. There is ς ∈ ↑σ \⋃

λ∈Λ ↑σ.λ such that f(ς) = w. Because σ ≤ ς, we have that f(σ)Rf(ς). Therefore, w =
f(ς) ∈ R(f(σ)). Conversely, let w ∈ R(f(σ)). In the enumeration of R(f(σ)), we have
that w = wm for some m < nf(σ). Since Λ is finite, there is M ∈ ω such that M 6∈ Λ and
M mod nf(σ) = m. We have that σ.M ∈ ↑σ \

⋃
λ∈Λ ↑σ.λ and f(σ.M) = wM mod nf(σ) = wm =

w. Thus, w ∈ f
(
↑σ \

⋃
λ∈Λ ↑σ.λ

)
, and so f is open.

(2) Since g is a restriction of f and f is continuous, so is g. To see that g is open and
onto, we use the following claim.

Claim 4.5. For arbitrary σ ∈ T ωω and finite Λ ⊆ ω,

g
((
↑σ \

⋃
λ∈Λ
↑σ.λ

)
∩ T ωω

)
= R(g(σ)).

Proof. Since g is the restriction of f to T ωω , we clearly have

g
((
↑σ \

⋃
λ∈Λ
↑σ.λ

)
∩ T ωω

)
⊆ f

(
↑σ \

⋃
λ∈Λ
↑σ.λ

)
= R(f(σ)) = R(g(σ)).

The proof of the ⊇ direction is the same as for f . �

It follows from Lemma 3.10 and Claim 4.5 that g is open. Furthermore, Claim 4.5 gives
that g is onto since

g(T ωω ) = g(↑ε ∩ T ωω ) = g
((
↑ε \

⋃
λ∈∅
↑ε.λ

)
∩ T ωω

)
= R(g(ε)) = R(r) = W.

(3) Since h is a restriction of f and f is continuous, so is h. To see that h is open and
onto, we modify the proof of (2).
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Claim 4.6. For arbitrary σ ∈ T ωω and finite Λ ⊆ ω,

h
((
↑σ \

⋃
λ∈Λ
↑σ.λ

)
∩ T∞ω

)
= R(f(σ)).

Proof. Obviously we have that

h
((
↑σ \

⋃
λ∈Λ
↑σ.λ

)
∩ T∞ω

)
⊆ f

(
↑σ \

⋃
λ∈Λ
↑σ.λ

)
= R(f(σ)).

Let w ∈ R(f(σ)) be wm for some m < nf(σ). There is M ∈ ω\Λ such that M mod nf(σ) = m,
σ.M ∈ ↑σ \

⋃
λ∈Λ ↑σ.λ, and f(σ.M) = w. Recalling that w = w0 in the enumeration of R(w),

we define ς : ω → ω by

ς(n) =

 σ(n) n < `(σ)
M n = `(σ)
0 n > `(σ)

Then ς ∈ T∞ω , ς|`(σ) = σ, and ς|`(σ)+1 = σ.M , which yields that ς ∈ (↑σ \
⋃
λ∈Λ ↑σ.λ) ∩

T∞ω . Since w = w0 in the enumeration of R(w), it follows from the definition of f that
f(ς|`(σ)) = f(σ) and f(ς|n) = w for all n ≥ `(σ) + 1. Thus, w = f(ς) = h(ς) ∈
h
((
↑σ \

⋃
λ∈Λ ↑σ.λ

)
∩ T∞ω

)
. �

That h is open follows from Lemma 3.10 and Claim 4.6. Moreover, Claim 4.6 also implies
that

h(T∞ω ) = h(↑ε ∩ T∞ω ) = h
((
↑ε \

⋃
λ∈∅
↑ε.λ

)
∩ T∞ω

)
= R(f(ε)) = R(r) = W,

yielding that h is onto. �

4.3. The case κ < ω. It is obvious that if |W | = 1, then each of f , f |Tωκ , and f |T∞
κ

is an
interior surjection. Suppose |W | ≥ 2. Then, as we saw in Remark 4.3, f is not open, and
neither is f |Tωκ . On the other hand, we show that f |T∞

κ
is an interior surjection. The proof

is similar to that of Theorem 4.4(3).

Theorem 4.7. Let κ < ω. The restriction h := f |T∞
κ

is an interior mapping of T∞κ onto F.

Proof. The following claim, which is analogous to [2, Lem. 4.4], is the crux of the proof.

Claim 4.8. For σ ∈ T ωκ , we have that

h(↑σ ∩ T∞κ ) = R(f(σ)).

Proof. We have that h(↑σ ∩ T∞κ ) ⊆ f(↑σ) ⊆ R(f(σ)) since f(σ)Rf(ς) whenever σ ≤ ς. Let
w ∈ R(f(σ)). Then w = wm in the enumeration of R(f(σ)) for some m < nf(σ) ≤ |W | ≤ κ.
Define ς : ω → κ by

ς(n) =

 σ(n) n < `(σ)
m n = `(σ)
0 n > `(σ)

Then ς ∈ T∞κ , σ ≤ ς, and f(ς|n) = w for all n ≥ `(σ). Thus, h(ς) = f(ς) = w, giving that
w ∈ h(↑σ ∩ T∞κ ). �

For σ ∈ T ωκ and Λ ⊆ κ, we have:(
↑σ \

⋃
λ∈Λ
↑σ.λ

)
∩ T∞κ =

(
{σ} ∪

⋃
λ∈κ\Λ

↑σ.λ
)
∩ T∞κ

= ({σ} ∩ T∞κ )︸ ︷︷ ︸
∅

∪
⋃

λ∈κ\Λ
(↑σ.λ ∩ T∞κ )
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By Claim 4.8,

h
((
↑σ \

⋃
λ∈Λ
↑σ.λ

)
∩ T∞κ

)
= h

(⋃
λ∈κ\Λ

(↑σ.λ ∩ T∞κ )

)
=

⋃
λ∈κ\Λ

h (↑σ.λ ∩ T∞κ ) =
⋃

λ∈κ\Λ
R(f(σ.λ)).

Thus, h
((
↑σ \

⋃
λ∈Λ ↑σ.λ

)
∩ T∞κ

)
is open in F, yielding that h is interior. Finally, to see that

h is onto, observe that

h(T∞κ ) = h(↑ε ∩ T∞κ ) = R(f(ε)) = R(r) = W.

�

4.4. Interior mappings onto finite top-thin-quasi-trees. Although for finite κ ≥ 2,
the continuous surjection f : Tκ → F is not open (see Remark 4.3), we next show that if F
is a finite top-thin-quasi-tree, then there is a finite κ ≥ 2 such that F is an interior image of
Tκ.

Theorem 4.9. Let F = (W,R) be a finite top-thin-quasi-tree obtained from G = (V,Q).
There is 2 ≤ κ < ω such that F is an interior image of Tκ.

Proof. If V is a singleton, then F is isomorphic to the chain consisting of two points. Take
κ = 2 and define f : T2 → W by f(T∞2 ) = V and f(T ω2 ) = W \ V . Since T∞2 and T ω2 are
complements and W consists of two points, f is a well-defined surjection. We have that f
is continuous since f−1(W \ V ) = T ω2 = Iso(T2) is open in T2 (see Theorem 3.13(4a)), and
W \ V is the only proper nonempty open set in F. Let U be a nonempty open subset of T2.
If U ⊆ T ω2 , then f(U) = W \ V is open in F. If U 6⊆ T ω2 , then f(U) = W since T ω2 is dense
in T2 (see Theorem 3.13(3)). Thus, f is open and hence interior.

Suppose V consists of κ ≥ 2 points. We may apply the basic construction to the finite
quasi-tree G, yielding a continuous surjection g : Tκ → G such that g(ε) = r is a root of
G, and hence a root of F. Note that g is neither open (by Remark 4.3) nor onto (since
g(Tκ) = V 6= W ). The idea is to define f : Tκ → W by changing the values of g on finite
sequences, i.e. the isolated points of Tκ. For each v ∈ V , choose wv ∈ W \ V = max(F) such
that vRwv. Define f : Tκ → W by setting

f(σ) =

{
g(σ) if σ ∈ T∞κ
wg(σ) if σ ∈ T ωκ

Claim 4.10. For σ ∈ T ωκ , we have f(↑σ) = R(g(σ)).

Proof. Let ς ∈ ↑σ. Then g(σ)Rg(ς) since Q is the restriction of R to V . If ς ∈ T∞κ ,
then g(σ)Rg(ς) = f(ς). If ς ∈ T ωκ , then g(σ)Rg(ς)Rwg(ς) = f(ς). In either case we have
that f(ς) ∈ R(g(σ)), hence f(↑σ) ⊆ R(g(σ)). Conversely, let w ∈ R(g(σ)). To show that
w ∈ f(↑σ), there are two cases to consider: either w ∈ W \ V or w ∈ V .

First suppose that w ∈ W \ V . Because F is a top-thin-quasi-tree, there is v ∈ qmax(G)
such that vRw. Since F is a quasi-tree in which v, g(σ) ∈ R−1(w), either vRg(σ) or g(σ)Rv,
giving that vQg(σ) or g(σ)Qv. Recalling that v is quasi-maximal in G, we have v ∈ Q(g(σ))
in both cases. By the definition of g, there is λ < κ such that g(σ.λ) = v. Since v ∈ qmax(G)
and F is a top-thin-quasi-tree obtained from G, it must be the case that wv = w. Therefore,
f(σ.λ) = wg(σ.λ) = wv = w. As σ.λ ∈ ↑σ, we conclude that w ∈ f(↑σ).

Next suppose that w ∈ V . Then w ∈ Q(g(σ)). So, by the definition of g, there is m < κ
such that g(σ.m) = w; and for any σ′ ∈ T ωκ with g(σ′) = w, we have that g(σ′.0) = w0 = w.
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Define ς : ω → κ by

ς(n) =

 σ(n) if n < `(σ)
m if n = `(σ)
0 if n > `(σ)

Then ς ∈ ↑σ and g(ς|n) = w for all n ≥ `(σ). Therefore, f(ς) = g(ς) = w. Thus,
w ∈ f(↑σ). �

Claim 4.10 immediately yields that f is onto since f(↑ε) = R(g(ε)) = R(r) = W . Utilizing
Lemma 3.10 and Claim 4.10, we show that f is open. Let σ ∈ T ωκ and Λ ⊆ κ. Then

f
(
↑σ \

⋃
λ∈Λ
↑σ.λ

)
= f

(
{σ} ∪

⋃
λ∈κ\Λ

↑σ.λ
)

= {f(σ)} ∪
⋃

λ∈κ\Λ
f (↑σ.λ) = {f(σ)} ∪

⋃
λ∈κ\Λ

R(g(σ.λ))

is open in F since f(σ) ∈ max(F).
To see that f is continuous, let w ∈ W and σ ∈ f−1(R(w)). If σ is finite, then σ is an

isolated point, hence an interior point of f−1(R(w)). Suppose σ is infinite. By definition
of g, there is N ∈ ω such that for all n ≥ N , g(σ|n) is in the same cluster as g(σ). Since
f(σ) ∈ R(w) and f(σ) = g(σ), Claim 4.10 gives that

f (↑σ|N) = R(g(σ|N)) = R(g(σ)) = R(f(σ)) ⊆ R(w).

We conclude that σ is an interior point of f−1(R(w)) since ↑σ|N is open, contains σ, and is
contained in f−1(R(w)). Therefore, f−1(R(w)) is open in Tκ, and so f is continuous. �

4.5. Trees of finite depth. If we consider the subspace Tnκ of Tκ, then our basic construc-
tion always fails to deliver an open mapping except in the trivial case when F = (W,R)
consists of a single point. Indeed, for any n ∈ ω, there is a sequence σ of length n such
that f(σ) = r. By Lemma 3.10, such σ is an isolated point of Tnκ because {σ} = ↑σ ∩ T nκ .
Therefore, f({σ}) = {r} is not open in F, showing that f is not open.

If κ is finite, then the space Tnκ is discrete (since Tωκ is discrete by Theorem 3.13(4b)). So
for any n ∈ ω, the one-point quasi-tree is the only interior image of Tnκ. In case κ = ω, we
show that the tree T nω is an interior image of Tnω. For this we utilize the following lemma,
whose straightforward proof we leave out.

Lemma 4.11. Let X, Y be topological spaces and f : X → Y an onto interior map. Suppose
C ⊆ Y and D = f−1(C). Then the restriction of f to D is an interior mapping onto C.

Theorem 4.12.
(1) The Alexandroff space T ωω is an interior image of Tωω.
(2) For n ∈ ω, the Alexandroff space T nω is an interior image of Tnω.

Proof. (1) Let {Kn | n ∈ ω} be a partition of ω such that each Kn is infinite. Recursively
define f : T ωω → T ωω by f(ε) = ε and f(σ.m) = f(σ).n whenever f(σ) is defined and m ∈ Kn.
A straightforward inductive argument on the length of σ ∈ T ωω shows that f is a well-defined
onto mapping such that for each σ ∈ T ωω , f({σ.m | m ∈ ω}) = {f(σ).n | n ∈ ω} and
`(σ) = `(f(σ)). This yields that f is a p-morphism, and hence an interior mapping of T ωω
onto T ωω . Since the Alexandroff topology of T ωω is coarser than the topology of Tωω, it follows
that f is a continuous mapping from Tωω onto T ωω .

We show that f is open. By Lemma 3.10, sets of the form(
↑σ \

⋃
λ∈Λ
↑σ.λ

)
∩ T ωω
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constitute a basis for Tωω where σ ∈ T ωω and Λ ⊆ ω is finite. Consider U = ↑σ \
⋃
λ∈Λ ↑σ.λ.

Since Kn \ Λ 6= ∅ for each n ∈ ω, we have:

f ({σ.m | m ∈ ω \ Λ}) = f
({
σ.m | m ∈

⋃
n∈ω

Kn \ Λ
})

= {f(σ).n | n ∈ ω}.

This yields that f(U ∩ T ωω ) = ↑f(σ) ∩ T ωω . Thus, f is open.
(2) Let n ∈ ω. Since `(σ) = `(f(σ)) for each σ ∈ T ωω and f is onto, it follows that

f−1(T nω ) = T nω . Thus, the restriction of f to T nω = f−1(T nω ) is an interior mapping of Tnω onto
T nω by Lemma 4.11. �

5. Topological completeness via trees for S4, S4.1, Grz, and Grzn

In this section we give alternative proofs of some well-known topological completeness
results utilizing the mapping theorems of the previous section.

5.1. Completeness for S4. We first focus on the spaces Tω, Tωω, and T∞κ for 2 ≤ κ ≤ ω.
Since each of these spaces is crowded and metrizable, it follows from the McKinsey-Tarski
theorem that the logic of any of these spaces is S4. We give an alternate proof of these
results by utilizing mapping theorems of Section 4 in conjunction with the fact that S4 is
the logic of finite quasi-trees. As a result, we obtain new proofs that S4 is the logic of the
Cantor space, the space of rational numbers, the space of irrational numbers, and the Baire
space. We refer to [23, 2] for alternate proofs that S4 is the logic of the Cantor space, and
to [3] for an alternate proof that S4 is the logic of the space of rational numbers.

Theorem 5.1.
(1) For X ∈ {Tω,Tωω,T∞κ | 2 ≤ κ ≤ ω}, the logic of X is S4.
(2) S4 is the logic of the Cantor space.
(3) S4 is the logic of the space of rational numbers.
(4) S4 is the logic of the Baire space.
(5) S4 is the logic of the space of irrational numbers.

Proof. (1) Suppose that S4 6` ϕ. Then ϕ is refuted on some finite quasi-tree F. By Theo-
rems 4.4 and 4.7, F is an interior image of X. Since interior images reflect refutations, X
refutes ϕ. Therefore, ϕ is not a theorem of the logic of X, proving the result.

(2) This follows from (1) and Theorem 3.14(2a).
(3) This follows from (1) and Theorem 3.14(3b).
(4) This follows from (1) and Theorem 3.14(3c).
(5) This follows from (1) and Theorem 3.14(3d). �

5.2. Completeness for S4.1. We next give a new proof of [11, Cor. 3.19] that S4.1 is the
logic of the Pe lczyński compactification of the discrete space ω. Again we use a mapping
theorem of Section 4 and that S4.1 is the logic of finite top-thin-quasi-trees.

Theorem 5.2.
(1) S4.1 is the logic of the Pe lczyński compactification of ω.
(2) S4.1 is the logic of Tκ for finite κ ≥ 2.

Proof. (1) Let X be the Pe lczyński compactification of ω. Since X is densely discrete,
S4.1 ⊆ Log(X). Suppose S4.1 6` ϕ. Then there is a finite top-thin-quasi-tree F that refutes
ϕ. By Theorem 4.9, there is 2 ≤ κ < ω such that F is an interior image of Tκ. By
Theorem 3.14(2b), Tκ and X are homeomorphic. Therefore, F is an interior image of X. As
interior images reflect refutations, X 6� ϕ. Thus, S4.1 ⊇ Log(X), completing the proof.

(2) This follows from (1) and Theorem 3.14(2b). �
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5.3. Completeness for Grz and Grzn. Finally, we give new proofs of well-known topological
completeness results for Grz and Grzn+1 for n ∈ ω. For this we require several lemmas.

Lemma 5.3. For each n ∈ ω, the space Tnω is a Stone space.

Proof. Since Tω is a Stone space (see Theorem 3.14(3a)), it is sufficient to show that T nω is
closed in Tω. Let A = {σ ∈ Tω | `(σ) = n + 1}. Then Tω \ T nω =

⋃
σ∈A ↑σ is open in Tω.

Thus, T nω is closed in Tω. �

Lemma 5.4. Let n ∈ ω.

(1) Iso(Tnω) = {σ ∈ T nω | `(σ) = n}.
(2) d(T n+1

ω ) = T nω .

Proof. (1) Let σ ∈ T nω . If `(σ) = n, then {σ} = ↑σ∩T nω is open in Tnω since ↑σ is a basic open
neighborhood of σ in Tω. Therefore, σ is an isolated point of Tnω. Suppose that `(σ) < n
and U is an open neighborhood of σ in Tω. By Lemma 3.10, all but finitely many children
of σ are in U . Since the length of a child of σ is `(σ) + 1 ≤ n, U ∩ T nω is not a singleton.
Thus, σ is not an isolated point of Tnω.

(2) By (1), we have:

d(T n+1
ω ) = T n+1

ω \ Iso(T n+1
ω ) = T n+1

ω \ {σ ∈ T n+1
ω | `(σ) = n+ 1} = T nω .

�

Let X be a compact scattered space. Since X is scattered, there is a least ordinal β such
that dβ(X) = ∅. Because X is compact, we have β = α+ 1 and dα(X) is finite. Call (α,m)
the characteristic system of X where m is the cardinality of dα(X); see [27, Def. 8.6.8].

Theorem 5.5. For n ∈ ω, the space Tnω is homeomorphic to the ordinal space ωn + 1.

Proof. It follows by an inductive argument based on Lemma 5.4(2) that dn(T nω ) = {ε} and
dn+1(T nω ) = ∅. Therefore, Tnω is a compact Hausdorff scattered space whose characteris-
tic system is (n, 1). It follows from Lemma 3.10 that Tnω is second countable, and hence
first countable. Therefore, Tnω is homeomorphic to an ordinal space by the Mazurkiewicz-
Sierpiński theorem (see, e.g., [27, Thm. 8.6.10]). Thus, since the characteristic system of Tnω
is (n, 1), Tnω is homeomorphic to ωn + 1 by [27, Prop. 8.6.9]. �

Remark 5.6. An immediate consequence of Theorem 5.5 is that T1
ω is homeomorphic to

the one-point compactification of the discrete space ω. For n ∈ ω, the space ωn+1 + 1 can
obtained as an adjunction space from ωn + 1 and countably many copies of ω + 1 by gluing
each isolated point of ωn + 1 to the limit point of a copy of ω + 1. Analogously, Tn+1

ω can
be obtained as an adjunction space from Tnω and countably many copies of T1

ω by gluing
each isolated point (leaf) of Tnω to the limit point (root) of a copy of T1

ω. For n = 1, these
adjunctions are depicted in Figure 3.

We are ready to give an alternate proof that Grzn+1 is the logic of the ordinal space ωn+ 1
[1] (see also [12]). For this we recall that Grzn+1 is the logic of finite trees of depth ≤ n+ 1
(see Table 3). Since each such tree is a p-morphic image of T nω , which is of depth n+ 1, we
have that Grzn+1 is the logic of T nω .

Theorem 5.7. Let n ∈ ω.

(1) The logic of Tnω is Grzn+1.
(2) The logic of the ordinal space ωn + 1 is Grzn+1.
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Figure 3. Realizing ω2 + 1 and T2
ω as adjunction spaces.

Proof. (1) Since Tnω is a scattered space such that r(Tnω) = n+1, it follows from [7, Lem. 3.6]
that Grzn+1 is contained in the logic of Tnω. Conversely, if Grzn+1 6` ϕ, then ϕ is refuted on T nω .
Since Theorem 4.12(2) gives that T nω is an interior image of Tnω and interior images reflect
refutations, Tnω refutes ϕ. Thus, the logic of Tnω is contained in Grzn+1, and the equality
follows.

(2) This follows from (1) and Theorem 5.5. �

Corollary 5.8. Grz is the logic of the topological sum
⊕

n∈ω T
n
ω.

Proof. It is well known that the logic of a topological sum is the intersection of the logics of the
summands. Thus, Theorem 5.7 yields that the logic of

⊕
n∈ω T

n
ω is

⋂
n∈ω Grzn+1 = Grz. �

We next give an alternate proof of the well-known completeness result for Grz.

Theorem 5.9. [1, 14] Grz is the logic of any ordinal space α that contains the ordinal space
ωω.

Proof. Let α ≥ ωω. Since α is scattered, Grz is contained in the logic of α. Suppose
that Grz 6` ϕ. Because Grz =

⋂
n∈ω Grzn+1, there is n ∈ ω such that Grzn+1 6` ϕ. By

Theorem 5.7(1), Tnω refutes ϕ. By Theorem 5.5, Tnω is homeomorphic to ωn + 1. Therefore,
Tnω is homeomorphic to an open subspace of α. Thus, α refutes ϕ. �

We conclude the section with Table 5 which summarizes our results thus far.

Logic is the logic of

Grzn+1 Tnω (n ∈ ω)
Grz

⊕
n∈ω T

n
ω

S4.1 Tκ (2 ≤ κ < ω)
S4 Tω, T

ω
ω, T

∞
ω , and T∞κ (2 ≤ κ < ω)

Table 5. Logics arising in the countable branching case.

6. Generalizing the patch topology for Tκ

In this section we generalize the patch topology of a spectral space to the σ-patch topology
in the setting of trees, specifically for the spectral spaces Tκ. Let B be the least Boolean
algebra containing S = {↑σ | σ ∈ T ωκ }. Then B is a basis for the patch topology π of Tκ.
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Definition 6.1. Let κ be nonzero, let S = {↑σ | σ ∈ T ωκ }, and let A be the least σ-algebra
containing S . Define the σ-patch topology as the topology Π on Tκ that has A as a basis.

(1) Let Tκ = (Tκ,Π).
(2) Let Tnκ be the subspace of Tκ whose underlying set is T nκ .
(3) Let Tωκ be the subspace of Tκ whose underlying set is T ωκ .
(4) Let T∞κ be the subspace of Tκ whose underlying set is T∞κ .

Since B ⊆ A , it is clear that the σ-patch topology is finer than the patch topology. The
next lemma is straightforward, and we skip its proof.

Lemma 6.2. If B is a basis for a space X that is closed under countable intersections, then
every Gδ-set of X is open.

Lemma 6.3. Tκ is a P-space.

Proof. It is clear that Tκ is a zero-dimensional Hausdorff space, hence a Tychonoff space.
Thus, it follows from Lemma 6.2 that Tκ is a P-space. �

Remark 6.4. If (0 6=)κ ≤ ω, then Tκ is discrete because σ ∈ T∞κ implies {σ} =
⋂
n∈ω ↑(σ|n) ∈

A ⊆ Π; and σ ∈ T ωκ implies {σ} = ↑σ \
⋃
λ∈κ ↑σ.λ ∈ A ⊆ Π. Therefore, every point is

isolated, and hence Tκ is discrete. Thus, we must consider uncountable κ.

Remark 6.5. An infinite sequence σ ∈ T∞κ has no children and hence σ.λ is undefined for
any λ ∈ κ. Despite this fact, it is convenient for introducing a useful basis of Tκ to define
↑σ.λ = ∅ for infinite σ. Then {σ} = ↑σ = ↑σ \

⋃
λ∈Λ ↑σ.λ for any subset Λ of κ.

The following is an analogue of Lemma 3.10.

Lemma 6.6. The family

G = {∅} ∪
{
↑σ \

⋃
λ∈Λ
↑σ.λ | σ ∈ Tκ and Λ ⊆ κ is countable

}
is closed under countable intersections and is a basis for Tκ.

Proof. First we show that G is closed under countable intersections. The empty intersection
is Tκ = ↑ε ∈ G , so we consider countable intersections of nonempty families. Let Un ∈ G for
n ∈ ω and U :=

⋂
n∈ω Un. Since ∅ ∈ G , we may assume that U 6= ∅. For each n ∈ ω, there

are σn ∈ Tκ and a countable Λn ⊆ κ such that Un = ↑σn \
⋃
λ∈Λn

↑σn.λ. We have

U =
⋂
n∈ω

(
↑σn \

⋃
λ∈Λn

↑σn.λ

)
=

(⋂
n∈ω

↑σn

)
\
⋃
n∈ω

⋃
λ∈Λn

↑σn.λ =

(⋂
n∈ω

↑σn

)
\
⋃
λ∈Λ

↑σn.λ

where Λ =
⋃
n∈ω Λn. Note that Λ is countable since it is a countable union of countable

sets. Because U is nonempty, there is σ ∈
⋂
n∈ω ↑σn. We have that σn ∈ ↓σ for all n ∈ ω.

Thus, C := {σn | n ∈ ω} is a chain and hence a directed set. Since (Tκ,≤) is a DCPO (see
Remark 3.6), it follows that supC ∈ Tκ and

⋂
n∈ω ↑σn = ↑ supC. Therefore,

U =

(⋂
n∈ω

↑σn

)
\
⋃
λ∈Λ

↑σn.λ = ↑ supC \
⋃
λ∈Λ

↑σn.λ ∈ G ,

showing that G is closed under countable intersections.
Let Ω be the topology generated by G . We next show that (Tκ,Ω) is a P-space. Since

G is closed under countable intersections, it is sufficient to show that (Tκ,Ω) is a Tychonoff
space, for which it is sufficient to see that (Tκ,Ω) is a zero-dimensional Hausdorff space.

To see that (Tκ,Ω) is Hausdorff, let σ, ς ∈ Tκ be distinct. Either σ and ς are related or not.
If not, then ↑σ ∈ G and ↑ς ∈ G are disjoint sets containing σ and ς, respectively. Therefore,
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without loss of generality we may assume that σ < ς. Let σ′ be the child of σ such that
σ′ ≤ ς. Then ↑σ \ ↑σ′ ∈ G and ↑ς ∈ G are disjoint sets containing σ and ς, respectively.
Thus, (Tκ,Ω) is Hausdorff.

To see that (Tκ,Ω) is zero-dimensional, we show that Tκ \ U ∈ Ω for each U ∈ G . Let
U ∈ G . Without loss of generality we may assume that Tκ \U 6= ∅. Let ς ∈ Tκ \U . We show
that ς is an interior point of Tκ \ U . We have that U = ↑σ \

⋃
λ∈Λ ↑σ.λ for some σ ∈ Tκ and

countable Λ ⊆ κ. Either ς 6∈ ↑σ or ς ∈
⋃
λ∈Λ ↑σ.λ. In the latter case, we have that ↑ς ∈ G

and

ς ∈ ↑ς ⊆
⋃

λ∈Λ
↑σ.λ ⊆ Tκ \ U.

In the former case, let ς ′ be the sequence of greatest length in ↓σ ∩ ↓ς. Then ς ′ is a finite
sequence distinct from σ, and so there is a unique child σ′ of ς ′ such that σ′ ≤ σ. We have
that ↑ς ′ \ ↑σ′ ∈ G and

ς ∈ ↑ς ′ \ ↑σ′ ⊆ ↑ς ′ \ ↑σ ⊆ Tκ \ ↑σ ⊆ Tκ \ U.
Therefore, each point in Tκ \ U is interior, yielding that Tκ \ U ∈ Ω. Thus, each U ∈ G is
clopen, and so (Tκ,Ω) is zero-dimensional. It follows that (Tκ,Ω) is Tychonoff, and hence a
P-space.

Finally, we show that the topologies Π and Ω are equal. For this we first show that G ⊆ A .
Let U ∈ G . We may assume that U 6= ∅, so there are σ ∈ Tκ and a countable Λ ⊆ κ such
that U = ↑σ\

⋃
λ∈Λ ↑σ.λ. If σ is infinite, then U = ↑σ\

⋃
λ∈Λ ↑σ.λ = {σ} =

⋂
n∈ω ↑(σ|n) ∈ A .

Suppose σ is finite. Because Λ is countable and each σ.λ is finite, we have that
⋃
λ∈Λ ↑σ.λ ∈

A , giving that U = ↑σ \
⋃
λ∈Λ ↑σ.λ ∈ A . Thus, G ⊆ A , and hence Ω ⊆ Π.

For the reverse inclusion, let C denote the set of clopen subsets of (Tκ,Ω). Then S ⊆
G ⊆ C . Because (Tκ,Ω) is a P-space, C is a σ-algebra. Therefore, A ⊆ C , and hence
Π ⊆ Ω. Thus, Π = Ω. Consequently, G is a basis for Tκ. �

Lemma 6.7. Let κ be uncountable. Then Iso(Tκ) = T∞κ and is dense in Tκ.

Proof. If σ ∈ T∞κ , then {σ} =
⋂
n∈ω ↑(σ|n), so T∞κ ⊆ Iso(Tκ). Let σ ∈ T ωκ and U be an open

neighborhood of σ in Tκ. By Lemma 6.6, there are ς ∈ T ωκ and a countable Λ ⊆ κ such that
σ ∈ ↑ς \

⋃
λ∈Λ ↑ς.λ ⊆ U . Since ↑ς \

⋃
λ∈Λ ↑ς.λ is infinite, σ is not an isolated point. Thus,

Iso(Tκ) = T∞κ . Moreover, because ↑ς \
⋃
λ∈Λ ↑ς.λ has a nonempty intersection with T∞κ , we

see that σ is in the closure of T∞κ . Since Tκ = T∞κ ∪ T ωκ , we conclude that T∞κ is dense in
Tκ. �

Using Lemma 6.6, the next lemma is straightforward, and we leave the proof out.

Lemma 6.8. Let κ be uncountable. Then each of the spaces Tκ,T∞κ ,Tωκ ,Tnκ, where n ∈ ω is
nonzero, has cardinality and weight κ.

Lemma 6.9. Let σ ∈ T ωκ and U ∈ Π. If σ ∈ U , then ↑σ′ ⊆ U for all but countably many
children σ′ of σ.

Proof. It follows from Lemma 6.6 that there are ς ∈ T ωκ and a countable Λ ⊆ κ such that
σ ∈ ↑ς \

⋃
λ∈Λ ↑ς.λ ⊆ U . If ς < σ, then there is λ0 ∈ κ\Λ such that ς.λ0 ≤ σ. Because Tκ is a

tree, it follows that ↑σ ⊆ ↑ς.λ0 ⊆ Tκ \
⋃
λ∈Λ ↑ς.λ. Therefore, ↑σ′ ⊆ ↑σ ⊆ ↑ς \

⋃
λ∈Λ ↑ς.λ ⊆ U

for all children σ′ of σ. If ς = σ, then since Λ is countable, all but countably many children
σ′ of σ are in ↑ς \

⋃
λ∈Λ ↑ς.λ. Let σ′ be a child of σ, and hence of ς, such that σ′ 6= ς.λ for

any λ ∈ Λ. Then ↑σ′ ⊆ Tκ \
⋃
λ∈Λ ↑ς.λ. Thus, ↑σ′ ⊆ ↑ς \

⋃
λ∈Λ ↑ς.λ ⊆ U for all but countable

many children σ′ of σ. �

Theorem 6.10. Let κ be uncountable.
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(1) The space Tκ is a densely discrete non-Lindelöf P-space of cardinality and weight κ.
(2) The space Tωκ is a crowded Lindelöf P-space of cardinality and weight κ.
(3) For nonzero n ∈ ω, the space Tnκ is a scattered Lindelöf P-space of cardinality and

weight κ such that the Cantor-Bendixson rank of Tnκ is n+ 1.
(4) The spaces Tκ, Tωκ , and Tnκ (0 6= n ∈ ω) are non-metrizable.

Proof. (1) By Lemma 6.3, Tκ is a P-space; by Lemma 6.7, Tκ is densely discrete; and by
Lemma 6.8, Tκ has cardinality and weight κ. It is left to show that Tκ is not Lindelöf. Let
Z = {σ ∈ Tκ | σ(n) ∈ {0, 1} for all n < `(σ)}. For finite σ ∈ Z, put Uσ = ↑σ \ (↑σ.0∪ ↑σ.1).
For infinite σ ∈ Z, put Uσ = {σ}. Noting that there are uncountably many infinite sequences
in Z, it is clear that C := {Uσ | σ ∈ Z} is an uncountable collection of open subsets of Tκ.
We show that C is a pairwise disjoint cover of Tκ.

To see that C is pairwise disjoint, let σ, ς ∈ Z be distinct. If both σ and ς are infinite
sequences, then Uσ ∩ Uς = {σ} ∩ {ς} = ∅. Suppose one of the two is finite and the
other is infinite. Then without loss of generality we may assume that σ is finite and ς
is infinite. If ς 6∈ ↑σ, then clearly Uσ ∩ Uς ⊆ ↑σ ∩ {ς} = ∅. Suppose ς ∈ ↑σ. Since
ς ∈ Z, we have that ς(`(σ)) ∈ {0, 1}, which yields that ς ∈ ↑σ.0 ∪ ↑σ.1. Thus, Uσ ∩ Uς =
(↑σ \ (↑σ.0 ∪ ↑σ.1)) ∩ {ς} = ∅. Finally, suppose that both σ and ς are finite. If σ and ς are
unrelated, then Uσ ∩ Uς ⊆ ↑σ ∩ ↑ς = ∅. So, without loss of generality we may assume that
ς < σ. Since σ ∈ Z, we have that σ ∈ ↑ς.0 ∪ ↑ς.1. This yields that ↑σ ⊆ ↑ς.0 ∪ ↑ς.1, and
hence Uσ ⊆ ↑ς.0 ∪ ↑ς.1. Therefore, Uσ ∩ Uς ⊆ (↑ς.0 ∪ ↑ς.1) ∩ (↑ς \ (↑ς.0 ∪ ↑ς.1)) = ∅. Thus,
C is pairwise disjoint.

To see that C covers Tκ, let σ ∈ Tκ. If σ ∈ Z, then σ ∈ Uσ. Suppose that σ ∈ Tκ \ Z.
Let N be the least element of {n ∈ ω | σ(n) ∈ κ \ {0, 1}}. Then σ|N ∈ Z and σ(N) 6∈ {0, 1}.
Therefore, σ 6∈ ↑(σ|N).0 ∪ ↑(σ|N).1. Thus, σ ∈ ↑(σ|N) \ (↑(σ|N).0 ∪ ↑(σ|N).1) = Uσ|N ∈ C ,
yielding that C covers Tκ. Being pairwise disjoint, C has no proper subcover, and hence no
countable subcover. Consequently, Tκ is not Lindelöf.

(2) Noting that being a P-space is a hereditary property, by Lemmas 6.3 and 6.8, we
only need to verify that Tωκ is a crowded Lindelöf space. That Tωκ is crowded follows from
Lemma 6.9. We show that Tωκ is Lindelöf. Let C be an open cover of Tωκ . Then there is
Uε ∈ C such that ε ∈ Uε. Put C0 = {Uε} and

C0 =
{
σ ∈ T ωκ | `(σ) = 1 and ↑σ 6⊆

⋃
C0

}
.

It follows from Lemma 6.9 that C0 is countable. Clearly T 0
κ = {ε} ⊆ Uε =

⋃
C0. Let n ∈ ω.

Suppose a countable subset Cn of C is given such that T nκ ⊆
⋃

Cn and

Cn :=
{
σ ∈ T ωκ | `(σ) = n+ 1 and ↑σ 6⊆

⋃
Cn

}
is countable. Let σ ∈ Cn. Then there is Uσ ∈ C such that σ ∈ Uσ, and Cn+1 := Cn ∪
{Uσ | σ ∈ Cn} is countable. Clearly T nκ ⊆

⋃
Cn ⊆

⋃
Cn+1. Let σ ∈ T n+1

κ be of length
n + 1. If ↑σ ⊆

⋃
Cn, then ↑σ ⊆

⋃
Cn+1. So suppose that ↑σ 6⊆

⋃
Cn. Then σ ∈ Cn, hence

σ ∈ Uσ ⊆
⋃

Cn+1, and we have that T n+1
κ ⊆

⋃
Cn+1.

Consider C ′ :=
⋃
n∈ω Cn ⊆ C . Clearly C ′ is countable and C ′ covers T ωκ since

T ωκ =
⋃

n∈ω
T nκ ⊆

⋃
n∈ω

⋃
Cn ⊆

⋃
n∈ω

⋃
C ′ ⊆

⋃
C ′.

Thus, Tωκ is Lindelöf.
(3) Let n ∈ ω be nonzero. As in (2), in light of Lemmas 6.3 and 6.8, we only need to

verify that Tnκ is Lindelöf, scattered, and of Cantor-Bendixson rank n + 1. First note that
Tnκ is a closed subspace of Tωκ since T ωκ \ T nκ =

⋃
{↑σ ∩ T ωκ | σ ∈ T ωκ with `(σ) = n + 1} is

open in Tωκ . Therefore, Tnκ is Lindelöf by [18, Thm. 3.8.4]. Clearly each σ ∈ Tnκ of length n
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is isolated since {σ} = ↑σ ∩ T nκ . By Lemma 6.9, each σ ∈ Tnκ of length < n is not isolated.
Thus, Iso(Tnκ) = T nκ \ T n−1

κ . Consequently, d(T nκ ) = T n−1
κ , and it is easily checked that

dk(T nκ ) = T n−kκ for 0 ≤ k ≤ n and dn+1(T nκ ) = ∅. Therefore, Tnκ is scattered, and is of
Cantor-Bendixson rank n+ 1.

(4) Note that every metrizable P-space is discrete (because each singleton is a Gδ-set).
Since the spaces Tκ, Tωκ , and Tnκ (0 6= n ∈ ω) are non-discrete P-spaces, it follows that each
is non-metrizable. �

Recall that the one-point Lindelöfication of an uncountable discrete space D is obtained
by adding a point to D whose neighborhoods have countable complement in D. Formally
we topologize D ∪ {p} for some p 6∈ D by defining U to be open if either U ⊆ D or D \ U
is countable. The one-point Lindelöfication of an uncountable discrete space is analogous
to the one-point compactification of an infinite discrete space, and is realized by replacing
the ‘finite complement’ clause in the definition of the latter with the ‘countable complement’
clause of the former.

Remark 6.11. In comparison to Remark 5.6, we point out the following:

(1) The space T1
κ is the one-point Lindelöfication of the discrete space κ, whereas T1

ω is
the one-point compactification of the discrete space ω.

(2) Analogously to Tn+1
ω , the space Tn+1

κ is obtained as an adjunction space from Tnκ and
κ many copies of T1

κ by gluing the limit points (roots) of the copies of T1
κ to the

isolated points (leafs) of Tnκ.

Remark 6.12. Comparing Tω and Tκ, both are zero-dimensional Hausdorff spaces. On
the other hand, Tω is crowded, compact, and (completely) metrizable, while Tκ is densely
discrete and is neither Lindelöf nor metrizable. The infinite sequences in both spaces form
a dense subset, whereas the finite sequences are dense in Tω while the finite sequences are
closed in Tκ.

7. Some logics arising from the σ-patch topology on trees

This section parallels the results of Sections 4 and 5, but the topological completeness
results we will obtain are with respect to non-metrizable spaces, by considering the σ-patch
topology on trees arising from uncountable κ.

The next theorem is a modification of Theorem 4.12, so we only sketch the proof.

Theorem 7.1. Suppose that κ is uncountable.

(1) The Alexandroff space T ωω is an interior image of Tωκ .
(2) For n ∈ ω, the Alexandroff space T nω is an interior image of Tnκ.

Proof. Let {Kn | n ∈ ω} be a partition of κ such that each Kn is uncountable. Recursively
define f : T ωκ → T ωω by f(ε) = ε and f(σ.α) = f(σ).n whenever f(σ) is defined and α ∈ Kn.
Then f is a well-defined onto mapping that is continuous because the Alexandroff topology
on T ωκ is coarser than the σ-patch topology on T ωκ . That f is open follows from Lemma 6.6
and the equality f

(
(↑σ \

⋃
λ∈Λ ↑σ.λ) ∩ T ωκ

)
= ↑f(σ) ∩ T ωω for any σ ∈ T ωκ and countable

Λ ⊆ κ, which in turn depends on each Kn being uncountable and Λ being countable. Now
(2) follows from Lemma 4.11 since f−1(T nω ) = T nκ . �

Remark 7.2. On the other hand, the space Tωω is not an interior image of Tωκ via the map
f defined in the proof of Theorem 7.1. Indeed, f−1(↑ε \ ↑ε.0) = ↑ε \

⋃
α∈K0

↑ε.α is not open
in Tωκ since K0 is uncountable (see Lemma 6.9).

Theorem 7.3. Let κ be uncountable.
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(1) For n ∈ ω, the logic of Tnκ is Grzn+1.
(2) The logic of

⊕
n∈ω Tnκ is Grz.

Proof. (1) By Theorem 6.10(3), Tnκ is a scattered space such that r(Tnκ) = n + 1. Thus, by
[7, Lem. 3.6], Grzn+1 ⊆ Log(Tnκ). For the reverse inclusion, suppose that Grzn+1 6` ϕ. Then
T nω refutes ϕ. As T nω is an interior image of Tnκ (see Theorem 7.1(2)), Tnκ refutes ϕ. Thus,
Log(Tnκ) = Grzn+1.

(2) By (1), we have Log
(⊕

n∈ω Tnκ
)

=
⋂
n∈ω Log(Tnκ) =

⋂
n∈ω Grzn+1 = Grz. �

The next theorem is a modification of Theorem 4.9. But since the isolated points of Tκ
are the infinite sequences, whereas the isolated points of Tλ are the finite sequences when λ
is finite, the construction is simpler because there is no need to adjust the images of finite
sequences.

Theorem 7.4. Let κ be uncountable and F = (W,R) a finite top-thin-quasi-tree obtained
from G = (V,Q). Then F is an interior image of Tκ.

Proof. Let {Kn | n ∈ ω} be a partition of κ such that each Kn is uncountable. For each
w ∈ V , choose and fix an enumeration {wn | n < nw} of Q(w). For each cluster C in G,
choose and fix mC ∈ max(F) such that wRmC for all w ∈ C. Since F is top-thin, for each
maximal cluster C in G there is a unique such mC . Let r be a root of G, and hence a root
of F.

Recursively define f : Tκ → W as follows. Set f(ε) = r. Assume σ ∈ T ωκ and f(σ) =
w ∈ V . Set f(σ.α) = wn mod nw whenever α ∈ Kn. Clearly f(σ.α) ∈ V . Let σ ∈ T∞κ . Then
{f(σ|n) | n ∈ ω} is a Q-increasing sequence in G. Since G is finite, there are N ∈ ω and a
cluster C in G such that f(σ|n) ∈ C for all n ≥ N . Set f(σ) = mC . It follows by transfinite
induction on the length of σ ∈ Tκ that f is well defined.

Claim 7.5. If σ ≤ ς, then f(σ)Rf(ς).

Proof. Suppose σ ∈ T∞κ . Then σ = ς, and so f(σ) = f(ς), which yields f(σ)Rf(ς) since R
is reflexive. So assume σ ∈ T ωκ and f(σ) = w ∈ V . Then by the definition of f , for each
child σ.α of σ where α ∈ Kn, we have that f(σ.α) = wn mod nw ∈ Q(w) ⊆ R(w) = R(f(σ)).
Thus, for ς ∈ T ωκ , it follows by induction that f(σ)Rf(ς) since both ≤ and R are transitive.
Suppose ς ∈ T∞κ . There are N ∈ ω and a cluster C in G such that f(ς|n) ∈ C for all n ≥ N
and f(ς) = mC . Since σ ≤ ς, we have that f(σ) ∈ {f(ς|n) | n ∈ ω}. Because ↓ς is a chain,
σ ≤ ς|N or ς|N ≤ σ. If σ ≤ ς|N , then f(σ)Rf(ς|N)RmC = f(ς). If ς|N ≤ σ, then f(σ) ∈ C,
and so f(σ)RmC = f(ς). In either case, f(σ)Rf(ς). �

It follows from Claim 7.5 that f viewed as a mapping from the Alexandroff space Tκ to F
is continuous. Since the σ-patch topology of Tκ is finer than the Alexandroff topology of Tκ,
we have that f : Tκ → F is continuous.

Claim 7.6. Let σ ∈ Tκ, w ∈ W , and Λ ⊆ κ be countable. If f(σ)Rw, then there is
ς ∈ ↑σ \

⋃
λ∈Λ ↑σ.λ such that f(ς) = w.

Proof. Suppose f(σ) ∈ max(F). Then f(σ) = w and we can take ς = σ. Assume f(σ) 6∈
max(F). Then f(σ) ∈ V , say f(σ) = v. Either w ∈ V or w ∈ W \ V . First suppose w ∈ V .
Then w ∈ Q(f(σ)) = Q(v) and there is n < nv such that w = vn in the enumeration of Q(v).
Because Kn is uncountable and Λ is countable, we may consider α ∈ Kn \ Λ and ς := σ.α.
Then ς ∈ ↑σ \

⋃
λ∈Λ ↑σ.λ and f(ς) = f(σ.α) = vn mod nv = vn = w as desired.

Next suppose w ∈ W \ V = max(F). Since F is a finite top-thin-quasi-tree, there is a
maximal cluster C in G such that R(C) = C ∪ {w}, and hence mC = w. Let w′ ∈ C.
Because C is a maximal cluster in G, we have that w′ is quasi-maximal in G. Note that
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v = f(σ) and w′ are in the quasi-chain R−1(w). Therefore, either vRw′ or w′Rv, giving that
vQw′ or w′Qv since v, w′ ∈ V . In the latter case, since w′ is quasi-maximal in G, we get
that vQw′. Thus, in either case we have w′ ∈ Q(v). Since w′ ∈ V , as shown in the preceding
paragraph, there is a child ς ′ of σ contained in ↑σ \

⋃
λ∈Λ ↑σ.λ such that f(ς ′) = w′. We have

↑ς ′ ⊆ ↑σ \
⋃
λ∈Λ ↑σ.λ since Tκ is a tree. Let ς ∈ ↑ς ′ be infinite. Then ς ∈ ↑σ \

⋃
λ∈Λ ↑σ.λ.

It follows from Claim 7.5 that for n ≥ `(ς ′) we have w′ = f(ς ′)Rf(ς|n). By definition of f ,
f(ς|n) ∈ V for any n ∈ ω. Therefore, f(ς|n) ∈ C whenever n ≥ `(ς ′). Because ς is infinite,
the definition of f yields that f(ς) = mC = w. �

To see that f : Tκ → F is open, we consider basic open sets delivered by Lemma 6.6. Let
U = ↑σ \

⋃
λ∈Λ ↑σ.λ for some σ ∈ Tκ and countable Λ ⊆ κ. By Claim 7.5, f(U) ⊆ R(f(σ));

and by Claim 7.6, R(f(σ)) ⊆ f(U). Therefore, f(U) = R(f(σ)), giving that f is open. It
now follows easily that f is onto since f(Tκ) = f(↑ε) = R(f(ε)) = R(r) = W . Thus, F is an
interior image of Tκ. �

Corollary 7.7. Each finite quasi-tree G is an interior image of Tωκ .

Proof. Form a top-thin-quasi-tree F from G = (V,Q) (see Figure 2). By Theorem 7.4, there
is an onto interior map f : Tκ → F. The proof of Theorem 7.4 implies that f−1(V ) = T ωκ .
Thus, by Lemma 4.11, the restriction of f to T ωκ is an interior mapping of Tωκ onto G. �

Theorem 7.8. If κ is uncountable, then the logic of Tκ is S4.1.

Proof. By Theorem 6.10(1), Tκ is a densely discrete space, so S4.1 ⊆ Log(Tκ). For the
reverse inclusion, suppose that S4.1 6` ϕ. Then ϕ is refuted on a finite top-thin-quasi-tree F.
By Theorem 7.4, F is an interior image of Tκ. Thus, Tκ 6� ϕ, and hence Log(Tκ) = S4.1. �

Theorem 7.9. If κ is uncountable, then the logic of Tωκ is S4.

Proof. Clearly, S4 ⊆ Log(Tωκ). Suppose S4 6` ϕ. Then ϕ is refuted on a finite quasi-tree F.
By Corollary 7.7, F is an interior image of Tωκ . Thus, Tωκ 6� ϕ, giving that Log(Tωκ) = S4. �

Table 6 summarizes the results of this section for uncountable κ.

Logic is the logic of

Grzn+1 Tnκ (n ∈ ω)
Grz

⊕
n∈ω Tnκ

S4.1 Tκ
S4 Tωκ

Table 6. Logics arising in the uncountable branching case.

Remark 7.10. All logics in Table 6 are realized via a single uncountable κ. On the other
hand, when κ is countable, it is necessary to vary κ to realize all these logics; see Table 5.

8. Embeddings of trees into ED-spaces and corresponding logics

In this section, we construct Tychonoff ED-spaces that give rise to the following logics:

S4.2 ⊂ S4.1.2 ⊂ Grz.2 ⊂ · · · ⊂ Grz.23 ⊂ Grz.22.

It is shown in [10] that S4.1.2 is the logic of the Čech-Stone compactification of the discrete
space ω, and this result is utilized in [11] to prove that S4.2 is the logic of the Gleason cover
of [0, 1]. However, the proofs require a set-theoretic assumption beyond ZFC. In contrast, all
our proofs are within ZFC. Our basic construction is to embed, for any uncountable cardinal
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κ, the space Tωκ into the Čech-Stone compactification β(2κ) of the discrete space 2κ. This
will yield the desired topological completeness for all the logics in the list except S4.2. For
S4.2 we replace β(2κ) by the Gleason cover of a large enough power of [0, 1].

Let κ be an uncountable cardinal. We identify 2κ with its image in β(2κ) and note that
Iso(β(2κ)) = 2κ, which is dense in β(2κ). It is an unpublished theorem of van Douwen that
every P-space of weight κ can be embedded into β(2κ). For a proof and a generalization of
van Douwen’s theorem see [17]. Recall from Theorem 6.10(2) that Tωκ is a P-space of weight
κ. Therefore, by van Douwen’s theorem, there is an embedding ι : Tωκ → β(2κ). Since Tωκ is
crowded, ι(Tωκ) ⊆ β(2κ) \ 2κ. Figure 4 depicts the embedding ι.

@
@
@

@

@
@

@
@

�
�
�
�

�
�
�
�Tωκ ι(Tωκ)

β(2κ) \ 2κ

-
ι

............................................................. 2κ

Figure 4. The embedding ι : Tωκ → β(2κ).

Definition 8.1. Identify Tωκ with its image ι(Tωκ). Define the following subspaces of β(2κ):

(1) Xω
κ = Tωκ ∪ 2κ;

(2) Xn
κ = Tnκ ∪ 2κ (n ∈ ω).

Lemma 8.2.
(1) Xω

κ is a non-scattered densely discrete ED-space.
(2) For n ∈ ω, Xn

κ is a scattered ED-space of Cantor-Bendixson rank n+ 2.

Proof. We first show that each of the spaces Xn
κ and Xω

κ is ED and densely discrete. Let
α ≤ ω. Since 2κ is dense in β(2κ) and 2κ ⊆ Xα

κ , we have that Xα
κ is dense in β(2κ). Being

a dense subspace of an ED-space, Xα
κ is ED. Because Tnκ ⊆ Tωκ ⊆ β(2κ) \ 2κ, we have that

Iso(Xα
κ ) = 2κ. Thus, Iso(Xα

κ ) is dense in Xα
κ , yielding that Xα

κ is densely discrete.
To complete the proof of (1), we need only observe that Xω

κ is not scattered. Indeed,

d(Xω
κ ) = Xω

κ \ Iso(Xω
κ ) = Xω

κ \ 2κ = Tωκ
is crowded, so Xω

κ is not scattered.
Turning to (2), since d(Xn

κ ) = Tnκ, dn(Tnκ) = {ε}, and dn+1(Tnκ) = ∅, we conclude that
dn+1(Xn

κ ) = {ε} and dn+2(Xn
κ ) = ∅. Thus, r(Xn

κ ) = n+ 2. �

Lemma 8.3. Let F = (W,R) be an S4-frame with a unique maximal cluster C consisting
of n ∈ ω \ {0} points such that W 6= C, and G the subframe of F whose underlying set is
W \ C. Let X be a space and Y a closed nowhere dense subspace of X such that X \ Y is
n-resolvable. If G is an interior image of Y , then F is an interior image of X.

Proof. Suppose G is an interior image of Y , say via g : Y → W \ C. Since X \ Y is n-
resolvable, by [4, Lem. 5.9], there is an onto interior mapping h : X \ Y → C. We extend g
to f : X → W by setting f(x) = h(x) for x ∈ X \ Y . Then f is a well-defined onto map.

To see that f is continuous, let F ⊆ W be closed in F, so F = R−1(F ). If F ∩ C = ∅,
then f−1(F ) = g−1(F ) is closed in Y since g is continuous. Thus, f−1(F ) is closed in X as
Y is closed in X. If F ∩ C 6= ∅, then F = W because F = R−1(F ) and C is the unique
maximal cluster of F. Therefore, f−1(F ) = X is closed in X. Consequently, f is continuous.
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To see that f is open, let U be a nonempty open subset of X. Because Y is nowhere
dense, X \Y is dense in X. Thus, U \Y = U ∩ (X \Y ) is a nonempty open subset of X \Y .
Since U ∩ Y is open in Y , the image g(U ∩ Y ) is open in G. Therefore,

f(U) = f ((U ∩ Y ) ∪ (U \ Y )) = f(U ∩ Y ) ∪ f(U \ Y )

= g(U ∩ Y ) ∪ h(U \ Y ) = g(U ∩ Y ) ∪ C
is open in F. Thus, f is open, and hence interior. �

Theorem 8.4. Let F = (W,R) be a finite rooted S4-frame with a unique maximal cluster
consisting of a single point, say m. Then F is an interior image of Xω

κ .

Proof. If W = {m}, then the result is clear. Suppose that W 6= {m}. Let G be the subframe
of F whose underlying set is W \ {m}. By Lemma 8.2(1), Xω

κ is densely discrete. Therefore,
Tωκ = d(Xω

κ ) is a closed nowhere dense subspace of Xω
κ . Now, G is an interior image of

some finite quasi-tree (see, e.g., [9, Lem. 5]), which by Corollary 7.7, is an interior image
of Tωκ . Thus, there is an onto interior mapping g : Tωκ → G. Since Xω

κ \ Tωκ 6= ∅ (and
any nonempty space is 1-resolvable), we may apply Lemma 8.3 to yield that F is an interior
image of Xω

κ . �

Theorem 8.5. The logic of Xω
κ is S4.1.2.

Proof. By Lemma 8.2(1), Xω
κ is a densely discrete ED-space. Therefore, S4.1.2 ⊆ Log(Xω

κ ).
Suppose that S4.1.2 6` ϕ. Then ϕ is refuted on a finite rooted S4-frame F with a unique
maximal point. By Theorem 8.4, F is an interior image of Xω

κ . Thus, Xω
κ refutes ϕ, and

hence Log(Xω
κ ) = S4.1.2. �

Remark 8.6.
(1) If κ is the least uncountable ordinal ω1, then there is an embedding of Tωω1

into the
remainder of β(ω). Let X be the subspace of β(ω) obtained as the union of the image
of Tωω1

under the aforementioned embedding and ω. Analogous to the above proofs,
the logic of X is S4.1.2.

(2) Using set-theoretic assumptions beyond ZFC, it was shown in [10] that S4.1.2 is the
logic of β(ω). As follows from (1), we can obtain completeness of S4.1.2 within ZFC
for a subspace of β(ω). It remains an open problem whether it can be proved within
ZFC that S4.1.2 = Log(β(ω)).

For an S4-frame F, let F̂ be the frame obtained from F by adding a new unique maximal
point as in Figure 5.
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Figure 5. Obtaining F̂ from F.

As we pointed out before Theorem 5.7, each finite tree F of depth ≤ n+ 1 is a p-morphic

image of T nω . This p-morphism clearly extends to a p-morphism from T̂ nω onto F̂. Since

Grz.2n+2 is the logic of the class of frames F̂ where F is a finite tree of depth ≤ n + 1, we

conclude that Grz.2n+2 is the logic of T̂ nω .

Theorem 8.7. For each n ∈ ω, the poset T̂ nω is an interior image of Xn
κ .
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Proof. We have that Tnκ = d(Xn
κ ) is nowhere dense sinceXn

κ is scattered by Lemma 8.2(2). By
Theorem 7.1(2), there is an onto interior mapping g : Tnκ → T nω . Now apply Lemma 8.3. �

Theorem 8.8. For each n ∈ ω, the logic of Xn
κ is Grz.2n+2.

Proof. By Lemma 8.2(2), Xn
κ is a scattered ED-space of Cantor-Bendixson rank n+2. There-

fore, Grz.2n+2 ⊆ Log(Xn
κ ). Suppose that Grz.2n+2 6` ϕ. Then ϕ is refuted on T̂ nω . By

Theorem 8.7, T̂ nω is an interior image of Xn
κ . Thus, Xn

κ refutes ϕ, and hence Log(Xn
κ ) =

Grz.2n+2. �

Corollary 8.9. The logic of
⊕

n∈ωX
n
κ is Grz.2.

Proof. By Theorem 8.8, we have

Log

(⊕
n∈ω

Xn
κ

)
=
⋂
n∈ω

Log(Xn
κ ) =

⋂
n∈ω

Grz.2n+2 = Grz.2.

�

For each uncountable cardinal κ, we now construct, within ZFC, a space Xκ whose logic

is S4.2. For this, let X = [0, 1]2
2κ

, let E be the Gleason cover of X, and let π : E → X be
the associated irreducible map (see, e.g., [20, Ch. III.3]).

Lemma 8.10. β(2κ) is homeomorphic to a closed nowhere dense subspace of E.

Proof. By [18, Thm. 3.6.11], β(2κ) has weight 22κ . Therefore, by [18, Thm. 3.2.5], β(2κ) is
homeomorphic to a closed subspace of X. Let D be the discrete subset of X corresponding
to 2κ. Then β(2κ) is homeomorphic to cX(D), the closure of D in X. Let F ⊆ E be such that
F ∩π−1(x) is a singleton for each x ∈ D. Clearly π(F ) = D; and since π is continuous and D
is discrete in X, F is discrete in E. Because π is a closed map, π(cEF ) = cXπ(E) = cX(D).
Therefore, the following diagram commutes:

F //

��

cEF

��
D // cXD

Since the discrete spaces F and D are homeomorphic and cX(D) is homeomorphic to β(2κ),
we conclude that cE(F ) is homeomorphic to β(2κ). Clearly cE(F ) is a closed subspace of E.
Because X is crowded, E is crowded. Thus, cE(F ) is nowhere dense in E. �

For convenience, we identify β(2κ) with cE(F ). Hence, up to homeomorphism, Tωκ is a
nowhere dense subspace of E; see Figure 6.
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Tωκ
β(2κ) \ 2κ

.............................................................2κ

Figure 6. Realizing Tωκ as a nowhere dense subspace of E.
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Definition 8.11. Let Xκ denote the subspace Tωκ ∪ (E \ β(2κ)) of E.

Lemma 8.12.
(1) The subset E \ β(2κ) is open and dense in Xκ.
(2) The subspace Tωκ is closed and nowhere dense in Xκ.
(3) The space Xκ is a crowded ED-space.
(4) For each n ∈ ω with n ≥ 1, the subspace E \ β(2κ) is n-resolvable.

Proof. (1) Since β(2κ) is closed and nowhere dense in E, it follows that E \ β(2κ) is open
and dense in Xκ.

(2) This is immediate from (1).
(3) It follows from (1) that Xκ is a dense subspace of E. This, together with E being an

ED-space, yields that Xκ is an ED-space. Since E is crowded and E \ β(2κ) is open in E, no
point in E \ β(2κ) is isolated (relative to Xκ). Also, no point in Tωκ is isolated (relative to
Xκ). Thus, Xκ is crowded.

(4) Let n ∈ ω be such that n ≥ 1. Being an open subspace of a compact Hausdorff
space, E \ β(2κ) is locally compact. Thus, it follows from [15, Thm. 7] that E \ β(2κ) is
n-resolvable. �

Theorem 8.13. Each finite rooted S4.2-frame is an interior image of Xκ.

Proof. Let F = (W,R) be a finite rooted S4.2-frame. Let C ⊆ W be the unique maximal
cluster of F and C be the subframe of F whose underlying set is C. Suppose C has n ≥ 1
elements. Either W = C or not. Assume W = C. It follows from Lemma 8.12(4) and [4,
Lem. 5.9] that C is an interior image of the subspace E \ β(2κ), say via g : E \ β(2κ) → C.
Then any f : Xκ → W that extends g is an interior mapping onto F.

Assume W 6= C and let G be the subframe of F whose underlying set is W \C. Then G is a
finite rooted S4-frame. As demonstrated in the proof of Theorem 8.4, G is an interior image
of Tωκ . Because Tωκ is a closed nowhere dense subspace of Xκ such that Xκ \ Tωκ = E \ β(2κ)
is n-resolvable, we may apply Lemma 8.3 to obtain that F is an interior image of Xκ. �

Theorem 8.14. The logic of Xκ is S4.2.

Proof. By Lemma 8.12(3), Xκ is ED. Thus, S4.2 ⊆ Log(Xκ). For the converse, suppose
S4.2 6` ϕ. Then there is a finite rooted S4.2-frame F refuting ϕ. Theorem 8.13 yields that F
is an interior image of Xκ. Thus, Xκ also refutes ϕ, giving that S4.2 = Log(Xκ). �

Remark 8.15. We conclude by summarizing the logics obtained through the preceding tree
based constructions; see Figure 1. In the setting of trees with countable branching, some
well-known spaces and results are realized by utilizing the patch topology. In particular, the
logics S4, S4.1, Grz, and Grzn for n ≥ 1 are realized via trees with countable branching, see
Table 5.

Generalizing the patch topology to the σ-patch topology introduces interesting spaces
in the setting of trees with uncountable branching. We again realize the same logics in
this setting, but for non-metrizable zero-dimensional Hausdorff spaces, see Table 6. To
obtain new topological completeness results for the logics S4.2, S4.1.2, Grz.2, and Grz.2n
with respect to Tychonoff ED-spaces, we embed trees with uncountable branching equipped
with the σ-patch topology into appropriately chosen ED-spaces, see Table 7. All our proofs
are performed within ZFC.
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Logic is the logic of

Grz.2n+2 Xn
κ = Tnκ ∪ 2κ (n ∈ ω)

Grz.2
⊕

n∈ωX
n
κ

S4.1.2 Xω
κ = Tωκ ∪ 2κ

S4.2 Xκ = Tκ ∪ (E \ β(2κ))

Table 7. Logics arising from embeddings in the uncountable branching case.
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