MATHEMATICAL STRUCTURES IN LOGIC 2016 HOMEWORK 1

- Deadline: February 9 at the **beginning** of class.
- In exceptional cases homework can be submitted electronically (in a single pdf-file!) to Frederik Lauridsen (f.m.lauridsen@uva.nl)
- Grading is from 0 to 10 points.
- Success!
- (1) (2pt) Let (P, \leq) be a poset. Show that if $\sup(A)$ exists for each $A \subseteq P$, then $\inf(B)$ also exists for each $B \subseteq P$, and therefore (P, \leq) is a complete lattice.
- (2) (3pt) Give an example of a poset (P, \leq) in which there are three elements x, y, z such that
 - (a) $\{x, y, z\}$ is an antichain (a set $A \subseteq P$ is an antichain if $a \not\leq b$ for distinct $a, b \in A$),
 - (b) $x \vee y$, $y \vee z$ and $z \vee x$ fail to exist,
 - (c) $\bigvee \{x, y, z\}$ exists.

It is sufficient to just provide the Hasse diagram for this lattice. (Hint: P will have more than three elements.)

- (3) (3pt) Let L be a lattice. We say that a non-zero element $a \in L$ is join irreducible if $a = b \lor c$ implies a = b or a = c. Let (P, \leq) be a poset. $A \subseteq P$ is an up-set if $x \in A$ and $x \leq y$ imply $y \in A$. Let $\operatorname{Up}(P)$ be the set of all up-sets of P.
 - (a) Show that $(\operatorname{Up}(P), \subseteq)$ is a distributive lattice
 - (b) Characterize join irreducible elements of $(\operatorname{Up}(P),\subseteq)$ for a finite P.
- (4) (2pt) Let L be a lattice. We say that a non-zero element $a \in L$ is join prime if $a \leq b \vee c$ implies $a \leq b$ or $a \leq c$.
 - (a) Show that in a distributive lattice the join irreducible elements coincide with the join prime elements.
 - (b) Give an example of a lattice having a join irreducible element which is not a join prime element.