MATHEMATICAL STRUCTURES IN LOGIC 2016 HOMEWORK 1

- Deadline: February 9 - at the beginning of class.
- In exceptional cases homework can be submitted electronically (in a single pdf-file!) to Frederik Lauridsen (f.m.lauridsen@uva.nl)
- Grading is from 0 to 10 points.
- Success!
(1) (2pt) Let (P, \leq) be a poset. Show that if $\sup (A)$ exists for each $A \subseteq P$, then $\inf (B)$ also exists for each $B \subseteq P$, and therefore (P, \leq) is a complete lattice.
(2) (3pt) Give an example of a poset (P, \leq) in which there are three elements x, y, z such that
(a) $\{x, y, z\}$ is an antichain (a set $A \subseteq P$ is an antichain if $a \not \leq b$ for distinct $a, b \in A$),
(b) $x \vee y, y \vee z$ and $z \vee x$ fail to exist,
(c) $\bigvee\{x, y, z\}$ exists.

It is sufficient to just provide the Hasse diagram for this lattice. (Hint: P will have more than three elements.)
(3) (3pt) Let L be a lattice. We say that a non-zero element $a \in L$ is join irreducible if $a=b \vee c$ implies $a=b$ or $a=c$. Let (P, \leq) be a poset. $A \subseteq P$ is an up-set if $x \in A$ and $x \leq y$ imply $y \in A$. Let $\operatorname{Up}(P)$ be the set of all up-sets of P.
(a) Show that $(\operatorname{Up}(P), \subseteq)$ is a distributive lattice
(b) Characterize join irreducible elements of $(\operatorname{Up}(P), \subseteq)$ for a finite P.
(4) (2pt) Let L be a lattice. We say that a non-zero element $a \in L$ is join prime if $a \leq b \vee c$ implies $a \leq b$ or $a \leq c$.
(a) Show that in a distributive lattice the join irreducible elements coincide with the join prime elements.
(b) Give an example of a lattice having a join irreducible element which is not a join prime element.

