INTRODUCTION TO MODAL LOGIC 2017

HOMEWORK 1

- Deadline: September 21 at the **beginning** of class.
- Grading is from 0 to 100 points.
- Success!

Exercise 1. (30 points) A flow of time is a relational structure $\mathbb{T} = (T, <)$ such that < is an unbounded strict linear order¹ on T. A flow of time is called discrete if it satisfies the formula $\forall x \exists y (x < y \land \neg \exists z (x < z \land z < y))$. In words, every point has an *immediate* successor. Now consider the temporal logic formula

$$\delta := (q \land \Box_P q) \to \Diamond_F \Box_P q.$$

Show that for any flow of time $\mathbb{T} = (T, <)$, seen as a bidirectional frame for the temporal language, it holds that \mathbb{T} is discrete iff $\mathbb{T} \Vdash \delta$.

Exercise 2. (30 points) Consider the modality $\langle 2 \rangle$ with the following semantics

 $\mathbb{M}, s \Vdash \langle 2 \rangle \phi$ iff there are $t_0, t_1 \in R[s]$ with $t_0 \neq t_1, \mathbb{M}, t_0 \Vdash \phi$ and $\mathbb{M}, t_1 \Vdash \phi$).

- (a) Is this modality expressible in the language of basic modal logic?
- (b) Is this modality expressible in the language of basic modal logic, if we restrict attention to the flows of time of Exercise 1?

Exercise 3. (40 points) Given a finite set Φ of basic modal logic formulas, we define the formula

$$\nabla \Phi := \bigwedge \Diamond \Phi \land \Box \bigvee \Phi,$$

where $\Diamond \Phi$ denotes the set { $\Diamond \phi \mid \phi \in \Phi$ }, and we understand that $\bigwedge \emptyset = \top$ and $\bigvee \emptyset = \bot$. Then we have, for any Kripke model \mathbb{M} and any state *s* in \mathbb{M} , that $\nabla \Phi$ holds at *s* iff every formula $\phi \in \Phi$ holds at some successor of *s*, and, conversely, every successor of *s* satisfies one of the formulas in Φ .

- (a) Show that, for any finite set Φ , we have that $\nabla \Phi$ is satisfiable iff every member of Φ is satisfiable.
- (b)* Give an example of two formulas ϕ_0 and ϕ_1 such that
 - (1) both ϕ_0 and ϕ_1 are satisfiable in some reflexive frame, while
 - (2) $\nabla{\{\phi_0, \phi_1\}}$ is not satisfiable in any reflexive frame.

¹That is, < is irreflexive $(\forall x \neg x < x)$, transitive $(\forall xyz (x < y < z \rightarrow x < z))$, total $(\forall xy (x < y \lor x = y \lor y < x))$, and unbounded $(\forall x \exists y x < y \text{ and } \forall x \exists y y < x)$.