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(1) (10pt) Let F = (W,R) be a Kripke frame. The frame Fr = (W,R) is called the
reflexivization of F if R = R ∪ {(x, x) | x ∈ W}. For a model M = (W,R, V ) let
Mr = (W,R, V ).

For each modal formula ϕ let ϕ+ be the formula obtained from ϕ by replacing
each subformula of the form ♦ψ with ♦ψ ∨ ψ (we assume that ⊥,∨,¬ and ♦ are the
primitive symbols of the language).

Show that for each model M = (W,R, V ), each w ∈ W and each modal formula ϕ:

M, w 
 ϕ+ iff Mr, w 
 ϕ.

(2) (30pt)
(a) Show, using the Sahlqvist algorithm, that the first-order correspondent of the

formula

♦�p→ �p

is the formula

∀x∀y∀z((Rxy ∧Rxz)→ Rzy)).

(b) Show that the modal logic

K5 = K + (♦�p→ �p)

is canonical and hence Kripke complete.

You are not allowed to use the Sahlqvist completeness theorem.

(c) Give an example of a model M = (W,R, V ) such that (W,R) is a K5-frame and
of a filtration Mf = (W f , Rf , V f ) of M such that (W f , Rf ) is not a K5-frame.
Justify your solution.

(3) (20pt) Let g := (W,R,A), where

W = N ∪ {ω1, ω2},
R = {(ωi, ωj), (ωi, n) | i, j ∈ {1, 2}, n ∈ N} ∪ {(n,m) | n ≥ m},
A = {U ⊆ N | U is finite} ∪ {U ′ ∪ {ω1, ω2} | U ′ ⊆ N is cofinite}.

See Figure 1 below.

(a) Show that g is a general frame.

(b) Show that for every admissible valuation V (i.e., V (p) ∈ A) we have

(g, V ), ω1 
 �(�(p→ �p)→ p)→ p.
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Figure 1: The frame g

(4) (20pt) For a program π and a natural number k we let

〈π〉0p = p, 〈π〉1p = 〈π〉p, 〈π〉k+1p = 〈π〉〈π〉kp.

For each n ≥ 0 we define a normal extension PDLn of PDL as follows. PDLn is
the least normal extension of PDL that contains all the instances of the formula:

〈π∗〉p↔
n∨
i=0

〈π〉ip.

(a) Show that the logic PDLn is sound with respect to regular frames (W, {Rπ}π∈Π)
such that Rπ∗ =

⋃n
k=0R

k
π, where

R0
π := {(w,w) | w ∈ W}, R1

π := Rπ, and Rk+1
π := Rπ ◦Rk

π.

(b) Show that PDL =
⋂
n≥0 PDLn.

(Hint: For the right to left inclusion use the fact that PDL has the finite model
property.)

(5) (20pt) Show that

(a) the formula (�p→ ♦p)→ ♦> is a theorem of the monotone modal logic EM;

(b) the formula ♦> → (�p → ♦p) is not a theorem of the monotone modal logic
EM.

(Hint: use completeness of EM with respect to monotone neighborhood frames.)


