INTRODUCTION TO MODAL LOGIC FINAL EXAM

21 DECEMBER 2017 UNIVERSITY OF AMSTERDAM

Name:

UvA Student ID:

General comments.

- 1. The time for this exam is 3 hours (180 minutes).
- 2. There are 100 points in the exam.
- 3. Please use a blue-ink or black-ink pen only, no pencils.
- 4. Make sure that you have your name and student ID on each of the sheets you are handing in.
- 5. If you have any questions, please indicate this silently and someone will come to you. Answers to questions that are relevant for anyone will be announced publicly.
- 6. No talking during the exam.
- 7. Cell phones must be switched off and stowed.

	Maximal Points	Your points
Exercise 1	10	
Exercise 2	30	
Exercise 3	20	
Exercise 4	20	
Exercise 5	20	
Total	100	

(1) (10pt) Let $\mathfrak{F} = (W, R)$ be a Kripke frame. The frame $\mathfrak{F}^r = (W, \overline{R})$ is called the *reflexivization of* \mathfrak{F} if $\overline{R} = R \cup \{(x, x) \mid x \in W\}$. For a model $\mathfrak{M} = (W, R, V)$ let $\mathfrak{M}^r = (W, \overline{R}, V)$.

For each modal formula φ let φ^+ be the formula obtained from φ by replacing each subformula of the form $\Diamond \psi$ with $\Diamond \psi \lor \psi$ (we assume that \bot, \lor, \neg and \Diamond are the primitive symbols of the language).

Show that for each model $\mathfrak{M} = (W, R, V)$, each $w \in W$ and each modal formula φ :

$$\mathfrak{M}, w \Vdash \varphi^+ \text{ iff } \mathfrak{M}^r, w \Vdash \varphi.$$

- (2) (30pt)
 - (a) Show, using the Sahlqvist algorithm, that the first-order correspondent of the formula

$$\Diamond \Box p \to \Box p$$

is the formula

$$\forall x \forall y \forall z ((Rxy \land Rxz) \to Rzy)).$$

(b) Show that the modal logic

$$\mathbf{K5} = \mathbf{K} + (\Diamond \Box p \to \Box p)$$

is canonical and hence Kripke complete.

You are not allowed to use the Sahlqvist completeness theorem.

(c) Give an example of a model $\mathfrak{M} = (W, R, V)$ such that (W, R) is a **K5**-frame and of a filtration $\mathfrak{M}^f = (W^f, R^f, V^f)$ of \mathfrak{M} such that (W^f, R^f) is not a **K5**-frame. Justify your solution.

(3) (20pt) Let $\mathfrak{g} := (W, R, \mathcal{A})$, where

$$W = \mathbb{N} \cup \{\omega_1, \omega_2\},$$

$$R = \{(\omega_i, \omega_j), (\omega_i, n) \mid i, j \in \{1, 2\}, n \in \mathbb{N}\} \cup \{(n, m) \mid n \ge m\},$$

$$\mathcal{A} = \{U \subseteq \mathbb{N} \mid U \text{ is finite}\} \cup \{U' \cup \{\omega_1, \omega_2\} \mid U' \subseteq \mathbb{N} \text{ is cofinite}\}.$$

See Figure 1 below.

- (a) Show that \mathfrak{g} is a general frame.
- (b) Show that for every admissible valuation V (i.e., $V(p) \in \mathcal{A}$) we have

 $(\mathfrak{g}, V), \omega_1 \Vdash \Box (\Box (p \to \Box p) \to p) \to p.$

Figure 1: The frame \mathfrak{g}

(4) (20pt) For a program π and a natural number k we let

$$\langle \pi \rangle^0 p = p, \quad \langle \pi \rangle^1 p = \langle \pi \rangle p, \quad \langle \pi \rangle^{k+1} p = \langle \pi \rangle \langle \pi \rangle^k p$$

For each $n \ge 0$ we define a normal extension \mathbf{PDL}^n of \mathbf{PDL} as follows. \mathbf{PDL}^n is the least normal extension of \mathbf{PDL} that contains all the instances of the formula:

$$\langle \pi^* \rangle p \leftrightarrow \bigvee_{i=0}^{n} \langle \pi \rangle^i p.$$

n

(a) Show that the logic **PDL**ⁿ is sound with respect to regular frames $(W, \{R_{\pi}\}_{\pi \in \Pi})$ such that $R_{\pi^*} = \bigcup_{k=0}^{n} R_{\pi}^k$, where

$$R^0_{\pi} := \{ (w, w) \mid w \in W \}, \quad R^1_{\pi} := R_{\pi}, \text{ and } R^{k+1}_{\pi} := R_{\pi} \circ R^k_{\pi}.$$

(b) Show that $\mathbf{PDL} = \bigcap_{n>0} \mathbf{PDL}^n$.

(Hint: For the right to left inclusion use the fact that **PDL** has the finite model property.)

- (5) (20pt) Show that
 - (a) the formula $(\Box p \to \Diamond p) \to \Diamond \top$ is a theorem of the monotone modal logic **EM**;
 - (b) the formula $\Diamond \top \to (\Box p \to \Diamond p)$ is not a theorem of the monotone modal logic **EM**.

(Hint: use completeness of **EM** with respect to monotone neighborhood frames.)