EXERCISE CLASS 1-11-2017: NORMAL MODAL LOGICS AND HILBERT STYLE DERIVIATIONS

(1) Let \mathcal{C} be a class of frames and let \mathcal{M} be a class of models.

(a) Show that

 $\mathsf{Log}(\mathcal{C}) := \{ \varphi \colon \forall \mathbb{F} \in \mathcal{C} \ (\mathbb{F} \Vdash \varphi) \}$

is a normal modal logic. Conclude that **K** is sound w.r.t. the class of all frames. (b) Is the set of formulas

$$\mathsf{Th}(\mathcal{M}) := \{ \varphi \colon \forall \mathbb{M} \in \mathcal{M} \ (\mathbb{M} \Vdash \varphi) \}$$

a normal modal logic?

- (2) Let Λ be a normal modal logic and let φ, φ', ψ and ψ' be formulas in the language of basic modal logic. Show that:
 - (a) If $\varphi \to \psi$ is (a substitution instance of) a propositional tautology, then $\vdash_{\Lambda} \varphi$ implies $\vdash_{\Lambda} \psi$.
 - (b) If $\vdash_{\Lambda} \varphi$ and $\vdash_{\Lambda} \psi$ then $\vdash_{\Sigma} \varphi \land \psi$.
 - (c) If $\vdash_{\Lambda} \varphi \to \psi$ and $\vdash_{\Lambda} \psi \to \chi$ then $\vdash_{\Lambda} \varphi \to \chi$.
 - (d) If $\vdash_{\Lambda} \varphi \to \psi$ and $\vdash_{\Lambda} \varphi' \to \psi'$ then $\vdash_{\Lambda} (\varphi \land \varphi') \to (\psi \land \psi')$
- (3) Let Λ be a normal modal logic and let φ and ψ be formulas in the language of basic modal logic. Prove that
 - (a) $\vdash_{\Lambda} \varphi \to \psi$ implies $\vdash_{\Lambda} \Box \varphi \to \Box \psi$
 - (b) $\vdash_{\Lambda} \varphi \to \psi$ implies $\vdash_{\Lambda} \Diamond \varphi \to \Diamond \psi$
 - (c) $\vdash_{\Lambda} \Box(\varphi \land \psi) \leftrightarrow (\Box \varphi \land \Box \psi)$
 - $(\mathbf{d}) \vdash_{\Lambda} \Diamond (\varphi \lor \psi) \leftrightarrow (\Diamond \varphi \lor \Diamond \psi)$
- (4) (Equivalent replacement). Let $\varphi[\psi]$ be a formula that contains ψ as a subformula. Let $\varphi[\chi]$ denote the formula where ψ in $\varphi[\psi]$ is replaced with the formula χ . Show that

 $\vdash_{\Lambda} \psi \leftrightarrow \chi \quad \text{implies} \quad \vdash_{\Lambda} \varphi[\psi] \leftrightarrow \varphi[\chi],$

for any normal modal logic Λ .

- (5) Show that $\not\vdash_{\mathbf{S4}} p \to \Box \Diamond p$ and that $\not\vdash_{\mathbf{K}} \Box p \lor \Box \neg p$. Recall that $\mathbf{S4} = \mathbf{K} + (\Box p \to p) + (\Box p \to \Box \Box p)$.
- (6) A normal modal logic Λ is *Halldén complete* if for every pair of formulas φ and ψ with no common variables we have that

 $\vdash_{\Lambda} \varphi \lor \psi \quad \text{implies} \quad \vdash_{\Lambda} \varphi \text{ or } \vdash_{\Lambda} \psi.$

Is the normal modal logic K Halldén complete? Give proof or counter-example.