Introduction to Modal Logic. Exercise class 5

2 October 2017

Definition 1. Let S be a non-empty set. A filter over S is a set $F \subseteq \mathcal{P}(S)$ such that (1) $S \in F$, (2) if $X \in F$ and $X \subseteq Y \subseteq S$ then $Y \in F$, and (3) if $X, Y \in F$ then $X \cap Y \in F$.

A filter F is proper if $F \neq \mathcal{P}(S)$, or equivalently, $\varnothing \notin F$. An ultrafilter is a proper filter u such that for all $X \in \mathcal{P}(S): X \in u$ iff $S \backslash X \notin u$. The collection of ultrafilters over a set S is denoted as $\operatorname{Uf}(S)$.

Given an element $s \in S$, we define the principal ultrafilter $\pi_{s}:=\{X \in S \mid s \in X\}$.
Exercise 1. Let S be a non-empty set.
(a) Verify that $\mathcal{P}(S)$ and $\{S\}$ are filters.
(b) Given a subset $X \subseteq S$, verify that $\uparrow X:=\{Y \in \mathcal{P}(S) \mid X \subseteq Y\}$ is a filter.
(c) Verify that $\{X \in \mathcal{P}(S) \mid S \backslash X$ is finite $\}$ is a filter, if S is infinite.
(d) Given an element $s \in S$, verify that π_{s} is indeed an ultrafilter.

Exercise 2. Let S be some non-empty set, and let u be an ultrafilter over S.
(a) Show that for every pair $X, Y \in \mathcal{P}(S): X \cup Y \in u$ iff $X \in u$ or $Y \in u$.
(b) Show that u is principal if S is finite.

Definition 2. Let S be some non-empty set. A collection $E \subseteq \mathcal{P}(S)$ has the finite intersection property if the intersection $\bigcap E^{\prime}$ of any finite subcollection $E^{\prime} \subseteq E$ is nonempty.

Theorem 1 (Ultrafilter Theorem). Let S be some non-empty set. If the collection $E \subseteq \mathcal{P}(S)$ has the finite intersection property then there is an ultrafilter $u \in \operatorname{Uf}(S)$ such that $E \subseteq u$.

Exercise 3. Show that every infinite set has a non-principal ultrafilter.
Definition 3. Given a binary relation $R \subseteq S \times S$ we define the following operations ${ }^{1}\langle R\rangle,[R]$ on the power set of S :

$$
\begin{aligned}
& \langle R\rangle(X):=\{s \in S \mid R s x \text { for some } x \in X\}, \\
& {[R](X) \quad:=\{s \in S \mid R s x \text { implies } x \in X, \text { for all } x \in S\} .}
\end{aligned}
$$

Clearly the operations $\langle R\rangle$ and $[R]$ encode the semantics of the \diamond and \square modality (see for instance Exercise 5).
Definition 4. Given a Kripke model $\mathbb{M}=(S, R, V)$, we define its ultrafilter extension ${ }^{2}$ as the Kripke model $\mathbb{M}^{*}=\left(S^{*}, R^{*}, V^{*}\right)$, where

$$
\begin{array}{ll}
W^{*} & :=\operatorname{Uf}(S) \\
R^{*} & :=\{(u, v) \in \operatorname{Uf}(S) \times \operatorname{Uf}(S) \mid\langle R\rangle X \in u \text { for all } X \in v\} \\
V^{*}(p) & :=\{u \in \operatorname{Uf}(S) \mid V(p) \in u\}
\end{array}
$$

[^0]Exercise 4. Given a Kripke model $\mathbb{M}=(S, R, V)$, show that $R^{*} u v$ iff for all $X \in \mathcal{P}(S):[R] X \in u$ implies $X \in v$.

Definition 5. Given a Kripke model $\mathbb{M}=(S, R, V)$, we define the extension ${ }^{3}$ of a formula ϕ as the set

$$
\llbracket \phi \rrbracket^{\mathbb{M}}:=\{s \in S \mid \mathbb{M}, s \Vdash \phi\} .
$$

We may write $\llbracket \phi \rrbracket$ instead of $\llbracket \phi \rrbracket^{\mathbb{M}}$ if \mathbb{M} is clear from context.
Lemma 1 (Key Lemma). Let $\mathbb{M}=(S, R, V)$ be a Kripke model. Then for every modal formula ϕ, and for every ultrafilter $u \in \operatorname{Uf}(S)$ we have

$$
\begin{equation*}
\mathbb{M}^{*}, u \Vdash \phi \text { iff } \llbracket \phi \rrbracket^{\mathbb{M}} \in u \tag{1}
\end{equation*}
$$

Exercise 5. The key lemma is proved by induction on ϕ. In this exercise we focus on the hard part of the inductive case for the formula $\diamond \phi$. That is, assume as inductive hypothesis that (1) holds for the formula ϕ.
(a) Show that $\llbracket \diamond \phi \rrbracket^{\mathbb{M}}=\langle R\rangle \llbracket \phi \rrbracket^{\mathbb{M}}$.
(b) Suppose that $\langle R\rangle X \in u$, for some set $X \in \mathcal{P}(S)$. Consider the set

$$
E:=\{X\} \cup\{Y \in \mathcal{P}(S) \mid[R] Y \in u\}
$$

(b1) Show that E has the finite intersection property.
(b2) Let $v \in \operatorname{Uf}(S)$ be such that $E \subseteq v$. Show that $R^{*} u v$ and $X \in v$.
(c) Suppose that $\llbracket \diamond \phi \rrbracket^{\mathbb{M}} \in u$, and prove that $\mathbb{M}^{*}, u \Vdash \diamond \phi$.

Exercise 6. Prove the key lemma.
Exercise 7. Let $\mathbb{M}=(S, R, V)$ be a Kripke model, let $u \in \operatorname{Uf}(S)$ be an ultrafilter and let Σ be a set of modal formulas. Assume that Σ is finitely satisfiable in the set $R^{*}(u)$ of successors of u, in the model \mathbb{M}^{*}. Define

$$
H:=\left\{\llbracket \phi \rrbracket^{\mathbb{M}} \mid \phi \in \Sigma\right\} \cup\{Y \in \mathcal{P}(S) \mid[R] Y \in u\}
$$

(a) Show that H has the finite intersection property.
(b) Let $v \in \operatorname{Uf}(S)$ be such that $H \subseteq v$. Show that $R^{*} u v$ and that $\mathbb{M}^{*}, v \Vdash \phi$, for all $\phi \in \Sigma$.
(c) Show that \mathbb{M}^{*} is m-saturated.

Exercise 8. The ultrafilter extension of a Kripke frame $\mathbb{F}=(S, R)$ is defined as the structure $\mathbb{F}^{*}:=$ $\left(\mathrm{Uf}(S), R^{*}\right)$.
(a) Show that if $\mathbb{F}^{*} \Vdash \phi$ then $\mathbb{F} \Vdash \phi$.
(b) Show that the frame property $\forall x \exists y(x R y \& y R y)$ is preserved under taking disjoint unions, generated subframes and p-morphic images ${ }^{4}$, but is nevertheless not modally definable.
(c)* Give a counterexample showing that the converse implication of (a) does not hold. (Hint: you need to find a formula which expresses a property which is not first-order definable.)

[^1]
[^0]: ${ }^{1}$ In [BdRV] these operations are denoted as m_{R} and l_{R}, respectively.
 ${ }^{2}$ In [BdRV] the ultrafilter extension of a model \mathfrak{M} is denoted as $\mathfrak{u e M}$.

[^1]: ${ }^{3}$ In [BdRV] the extension of ϕ is denoted as $V(\phi)$.
 ${ }^{4}$ That is images under p-morphisms also known as bounded morphisms.

