EXERCISE CLASS 15-12-2017: EVEN MORE NEIGHBORHOOD SEMANTICS

- (1) Call an NBD-model $\mathbb{M} = (W, N, V)$ a *filter NBD-model* if the neighborhood of each point is a filter, i.e., for each $w \in W$ the collection N(w) is non-empty, closed under supersets and binary intersections.
 - (a) Let $\mathcal{M} = (W, R, V)$ be a Kripke model. Define an NBD-model $\mathbb{M} = (W, N_R, V)$ by $N_R(w) \coloneqq \{X \in \wp(W) \colon R[w] \subseteq X\}$. Show that for each $w \in W$ and each modal formula φ we have

$$\mathcal{M}, w \Vdash \varphi \iff \mathbb{M}, w \Vdash \varphi \qquad (*)$$

- (b) Let $\mathbb{M} = (W, N, V)$ be a filter NBD-model with the property that for each $w \in W$ the collection N(w) is closed under arbitrary intersections¹. Define a Kripke model $\mathcal{M} = (W, R_N, V)$ by $wR_N v$ iff $v \in \bigcap_{X \in N(w)} X$. Show that for each $w \in W$ and each modal formula φ , (*) holds.
- (2) Define $\mathbf{E} \oplus \gamma$ as the smallest logic containing \mathbf{E} , γ and closed under MP, US and RE. Prove that
 - (a) $\mathbf{EM} = \mathbf{E} \oplus (\Box(p \land q) \to \Box p \land \Box q)$ is the smallest logic containing \mathbf{E} which is closed under the rule RM.

$$\frac{p \to q}{\Box p \to \Box q} \,(\mathrm{RM})$$

- (b) $\mathbf{EN} = \mathbf{E} \oplus (\Box \top)$ is the smallest logic containing E which is closed under Generalization.
- (c) **EMCN** = **E** \oplus ($\Box(p \land q) \rightarrow \Box p \land \Box q$) \oplus ($\Box p \land \Box q \rightarrow \Box(p \land q)$) \oplus ($\Box \top$) is the in fact the modal logic **K**.
- (3) Define a modality $\langle]$ as follows.

$$\mathbb{M}, w \left< \right] \varphi \iff \exists X \in N(w), \ X \subseteq \llbracket \varphi \rrbracket_{\mathbb{M}}$$

Prove that $\langle \]$ and \Box coincide on monotone NBD-frames.

(4) Let **L** be a modal logic. Given a formula in the language of basic modal logic φ define

$$|\varphi|_{\mathbf{L}} \coloneqq \{\Gamma \in M_{\mathbf{L}} \colon \varphi \in \Gamma\},\$$

where $M_{\mathbf{L}}$ is the set of maximal **L**-consistent sets. Show that for formulas φ and ψ ,

$$|\varphi|_{\mathbf{L}} \subseteq |\psi|_{\mathbf{L}} \iff \vdash_{\mathbf{L}} \varphi \to \psi.$$

- (5) Show that
 - (a) The logic **EC** is sound and complete with respect to the class of neighborhood frames that are closed under intersections;
 - (b) The logic **EN** is sound and complete with respect to the class of neighborhood frames that contains the unit;
 - (c) (*) The logic **EM** is sound and complete with respect to the class of monotone neighborhood frames;
 - (d) The logic \mathbf{K} is sound and complete with respect to the class of (augmented) filter models.

The exercises here are all taken from (Pacuit 2017).

¹Such models are called *augmented* in (Pacuit 2017).

Hint: For item (3) consider the minimal canonical model $\mathcal{M}_{\mathbf{EM}}^{\min} = (W_{\mathbf{EM}}, N_{\mathbf{EM}}^{\min}, V_{\mathbf{EM}})$ for **EM** and consider the model $\mathcal{M}_{\mathbf{EM}}^{\min} \coloneqq (W_{\mathbf{EM}}, N_{\mathbf{EM}}^{\min}, V_{\mathbf{EM}})$, where for each $w \in W$, we let

$$N_{\mathbf{EM}}^{\min}(w) := \{ X \in \wp(W_{\mathbf{EM}}) \colon \exists Y \in N_{\mathbf{EM}}^{\min}(w) \ (Y \subseteq X) \}.$$