EXERCISE CLASS 15-12-2017: EVEN MORE NEIGHBORHOOD SEMANTICS

(1) Call an NBD-model $\mathbb{M}=(W, N, V)$ a filter $N B D$-model if the neighborhood of each point is a filter, i.e., for each $w \in W$ the collection $N(w)$ is non-empty, closed under supersets and binary intersections.
(a) Let $\mathcal{M}=(W, R, V)$ be a Kripke model. Define an NBD-model $\mathbb{M}=\left(W, N_{R}, V\right)$ by $N_{R}(w):=$ $\{X \in \wp(W): R[w] \subseteq X\}$. Show that for each $w \in W$ and each modal formula φ we have

$$
\begin{equation*}
\mathcal{M}, w \Vdash \varphi \Longleftrightarrow \mathbb{M}, w \Vdash \varphi \tag{*}
\end{equation*}
$$

(b) Let $\mathbb{M}=(W, N, V)$ be a filter NBD-model with the property that for each $w \in W$ the collection $N(w)$ is closed under arbitrary intersections ${ }^{1}$. Define a Kripke model $\mathcal{M}=\left(W, R_{N}, V\right)$ by $w R_{N} v$ iff $v \in \bigcap_{X \in N(w)} X$. Show that for each $w \in W$ and each modal formula $\varphi,\left(^{*}\right)$ holds.
(2) Define $\mathbf{E} \oplus \gamma$ as the smallest logic containing \mathbf{E}, γ and closed under MP, US and RE. Prove that
(a) $\mathbf{E M}=\mathbf{E} \oplus(\square(p \wedge q) \rightarrow \square p \wedge \square q)$ is the smallest logic containing \mathbf{E} which is closed under the rule RM .

$$
\frac{p \rightarrow q}{\square p \rightarrow \square q}(\mathrm{RM})
$$

(b) $\mathbf{E N}=\mathbf{E} \oplus(\square \top)$ is the smallest logic containing E which is closed under Generalization.
(c) $\mathbf{E M C N}=\mathbf{E} \oplus(\square(p \wedge q) \rightarrow \square p \wedge \square q) \oplus(\square p \wedge \square q \rightarrow \square(p \wedge q)) \oplus(\square \top)$ is the in fact the modal logic \mathbf{K}.
(3) Define a modality $]$ as follows.

$$
\mathbb{M}, w<] \varphi \Longleftrightarrow \exists X \in N(w), X \subseteq \llbracket \varphi \rrbracket_{\mathbb{M}}
$$

Prove that $]$ and \square coincide on monotone NBD-frames.
(4) Let \mathbf{L} be a modal logic. Given a formula in the language of basic modal logic φ define

$$
|\varphi|_{\mathbf{L}}:=\left\{\Gamma \in M_{\mathbf{L}}: \varphi \in \Gamma\right\}
$$

where $M_{\mathbf{L}}$ is the set of maximal \mathbf{L}-consistent sets. Show that for formulas φ and ψ,

$$
|\varphi|_{\mathbf{L}} \subseteq|\psi|_{\mathbf{L}} \Longleftrightarrow \vdash_{\mathbf{L}} \varphi \rightarrow \psi
$$

(5) Show that
(a) The logic EC is sound and complete with respect to the class of neighborhood frames that are closed under intersections;
(b) The logic $\mathbf{E N}$ is sound and complete with respect to the class of neighborhood frames that contains the unit;
(c) $(*)$ The logic EM is sound and complete with respect to the class of monotone neighborhood frames;
(d) The logic \mathbf{K} is sound and complete with respect to the class of (augmented) filter models.

[^0]Hint: For item (3) consider the minimal canonical model $\mathcal{M}_{\mathbf{E M}}^{\min }=\left(W_{\mathbf{E M}}, N_{\mathbf{E M}}^{\min }, V_{\mathbf{E M}}\right)$ for $\mathbf{E M}$ and consider the model $\mathcal{M}_{\mathbf{E M}}^{\mathrm{mm}}:=\left(W_{\mathbf{E M}}, N_{\mathbf{E M}}^{\mathrm{mm}}, V_{\mathbf{E M}}\right)$, where for each $w \in W$, we let

$$
N_{\mathbf{E M}}^{\operatorname{mm}}(w):=\left\{X \in \wp\left(W_{\mathbf{E M}}\right): \exists Y \in N_{\mathbf{E M}}^{\min }(w)(Y \subseteq X)\right\} .
$$

[^0]: The exercises here are all taken from (Pacuit 2017).
 ${ }^{1}$ Such models are called augmented in (Pacuit 2017).

