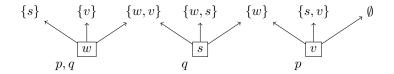
EXERCISE CLASS 6-12-2017: NEIGHBORHOOD SEMANTICS

- (1) $(\lozenge \square \text{ modality})$ Prove that
 - (a) $\vdash_{S4} \Diamond \Box (p \land q) \rightarrow (\Diamond \Box p \land \Diamond \Box q),$
 - (b) $\forall_{S4} (\Diamond \Box p \land \Diamond \Box q) \rightarrow \Diamond \Box (p \land q),$
 - (c) $\vdash_{S4.2} (\Diamond \Box p \land \Diamond \Box q) \rightarrow \Diamond \Box (p \land q),$
- (2) Consider the NBD-model¹ $\mathbb{M} = (W, N, V)$ here defined.

$$W = \{w, s, v\} \qquad V(p) = \{w, s\} \qquad V(q) = \{s, v\}$$

$$N(w) = \left\{\,\{s\}, \{v\}, \{w, v\}\,\right\} \qquad N(s) = \left\{\,\{w, v\}, \{w, s\}, \{w\}\,\right\} \qquad N(v) = \left\{\,\{w\}, \{s, v\}, \emptyset\,\right\}$$



Compute the set of states that satisfy:

- (a) $\Box \bot$,
- (b) $\Box p$,
- (c) $\Diamond p$,
- (d) $\Box \Diamond p$,
- (e) $\Box\Box p$.
- (3) (Logic of an NBD-frame) Given an NBD-frame \mathbb{F} , define $Log(\mathbb{F}) = \{\varphi | \mathbb{F} \models \varphi\}$. We say that a formula φ is valid on \mathbb{F} if $\varphi \in Log(\mathbb{F})$.
 - (a) Show that $Log(\mathbb{F})$ contains the **Dual** axiom and it is closed under MP, US and RE.

$$RE \frac{p \leftrightarrow q}{\Box p \leftrightarrow \Box q}$$

- (b) Show that the \mathbf{K} axiom is not valid on every NBD-frame.
- (c) Show that $Log(\mathbb{F})$ is not closed under generalization in general.
- (d) Show that if \mathbb{F} is monotone², then the axiom

$$(\mathbf{M}) \ \Box (p \land q) \to (\Box p \land \Box q)$$

is valid on \mathbb{F} . Is it true in general?

- (4) What class of NBD-frames do the following formulas define?
 - (a) $\Box \top$,
 - (b) $\Box p \land \Box q \rightarrow \Box (p \land q)$,
 - (c) $\Box(p \land q) \rightarrow \Box p \land \Box q$,
 - (d) $\Box(p \to q) \to (\Box p \to \Box q)$.

¹NBD-model and NBD-frame stand for neighborhood model and neighborhood frame respectively.

²An NBD-frame is called *monotone* if N(w) is closed under upsets for every $w \in W$.

- (5) Call an NBD-model $\mathbb{M} = (W, N, V)$ a filter NBD-model if the neighborhood of each point is a filter, i.e. N(w) is closed under upsets and intersections for every $w \in W$.
 - (a) Let $\mathcal{M} = (W, R, V)$ be a Kripke model. Define an NBD-model $\mathbb{M} = (W, N, V)$ such that for each $w \in W$ and each modal formula φ we have

$$\mathcal{M}, w \Vdash \varphi \iff \mathbb{M}, w \Vdash \varphi$$
 (*)

- (b) Let $\mathbb{M} = (W, N, V)$ be a filter NBD-model. Define a Kripke model $\mathbb{M} = (W, N, V)$ such that for each $w \in W$ and each modal formula φ , (*) holds.
- (c) Is it possible to find \mathcal{M} as in point 5b for a generic \mathbb{M} ?
- (6) Define $\mathbf{E} \oplus \gamma$ as the smallest logic containing \mathbf{E} , γ and closed under MP, US and RM. Prove that
 - (a) $\mathbf{EM} = \mathbf{E} \oplus (\Box(p \land q) \to \Box p \land \Box q)$ is the smallest logic containing E and closed under the rule RM.

$$RM \xrightarrow{p \to q} \Box p \to \Box q$$

- (b) $\mathbf{EN} = \mathbf{E} \oplus (\Box \top)$ is the smallest logic containing E and closed under Generalization.
- (7) Define the modality \langle] as follows.

$$\mathbb{M}, w \, \langle \, \,] \, \varphi \iff \exists X \in N(w), \, \, X \subseteq \llbracket \varphi \rrbracket_{\mathbb{M}}$$

Prove that $\langle \]$ and \square coincide on monotone NBD-frames.