EXERCISE CLASS 29-11-2017: PDL EXTRAVAGANZA

- (1) Let $\mathfrak{F} = (W, \{R_{\pi}\}_{\pi \in \Pi})$ be a frame. Show that for each $\pi, \pi_1, \pi_2 \in \Pi$ we have
 - (a) $\mathfrak{F} \Vdash \langle \pi_1; \pi_2 \rangle p \leftrightarrow \langle \pi_1 \rangle \langle \pi_2 \rangle p$ iff $R_{\pi_1;\pi_2} = R_{\pi_1} \circ R_{\pi_2}$.¹
 - (b) $\mathfrak{F} \Vdash \langle \pi_1 \cup \pi_2 \rangle p \leftrightarrow \langle \pi_1 \rangle p \lor \langle \pi_2 \rangle p$ iff $R_{\pi_1 \cup \pi_2} = R_{\pi_1} \cup R_{\pi_2}$.

(c) If $(R_{\pi})^* = R_{\pi^*}$ then

$$\mathfrak{F} \Vdash \langle \pi^* \rangle p \leftrightarrow p \lor \langle \pi \rangle \langle \pi^* \rangle p \text{ and} \\ \mathfrak{F} \Vdash [\pi^*](p \to [\pi]p) \to (p \to [\pi^*]p)$$

- (d) If $\mathfrak{F} \Vdash p \lor \langle \pi \rangle \langle \pi^* \rangle p \to \langle \pi^* \rangle p$, then $(R_\pi)^* \subseteq R_{\pi^*}$.
- (2) Let \mathcal{M} be the set of all **PDL**-MCSs, and Σ a set of formulas in the language of **PDL**. Show that:
 - (a) $At(\Sigma) = \{\Gamma \cap \neg FL(\Sigma) \mid \Gamma \in \mathcal{M}\};$
 - (b) If $X \subseteq \neg FL(\Sigma)$ and X is **PDL**-consistent, then there exists $A \in At(\Sigma)$ such that $X \subseteq A$.
- (3) Show that the finite models from [Def. 4.84, BdRV] used in the **PDL** completeness proof can be obtain (up to isomorphism) via certain filtrations.
- (4) Consider a set of **PDL** formulas Σ and let $A \in At(\Sigma)$ be an atom over Σ . Show that:
 - (a) For every $\varphi \in \neg FL(\Sigma)$, exactly one of φ and $\sim \varphi$ is in A;
 - (b) For every $\varphi \lor \psi \in \neg FL(\Sigma)$, $\varphi \lor \psi \in A$ iff $\varphi \in A$ or $\psi \in A$;
 - (c) For every $\langle \pi_1; \pi_2 \rangle \varphi \in \neg FL(\Sigma), \ \langle \pi_1; \pi_2 \rangle \varphi \in A$ iff $\langle \pi_1 \rangle \langle \pi_2 \rangle \varphi \in A$;
 - (d) For every $\langle \pi_1 \cup \pi_2 \rangle \varphi \in \neg FL(\Sigma)$, $\langle \pi_1 \cup \pi_2 \rangle \varphi \in A$ iff $\langle \pi_1 \rangle \varphi$ or $\langle \pi_2 \rangle \varphi \in A$.
- (5) A logic L is compact for the class C of Kripke frames if the following condition is met: for every set of formulas Σ , if every finite subset of Σ is satisfiable in a model based on a frame in C, then Σ itself can be satisfied in a model based on a frame in C. Show that **PDL** is not compact for the class of regular frames. Conclude that **PDL** is not strongly complete with respect to the class of regular frames.
- (6) Explain why all the axioms of **PDL**, in the standard axiomatisation, with the exception of Segerberg's induction axiom

$$[\pi^*](p \to [\pi]p) \to (p \to [\pi^*]p)$$

are canonical.

1. Additional exercises

- (7) Is **PDL** a decidable logic?
- (8) (*) Let Σ be a non-empty finite set of **PDL**-formulas. Show that $\vdash_{\mathbf{PDL}} \bigvee_{A \in At(\Sigma)} A$.
- (9) (**) Let φ be a formula in the language of **PDL** and let $\Sigma = \{\varphi\}$. Show that $\neg FL(\Sigma)$ is finite. *Hint: This is not so easy.*

¹In BdRV $R_{\pi_1} \circ R_{\pi_2}$ is also denoted $R_{\pi_1}; R_{\pi_2}$.