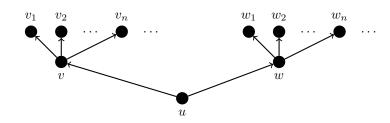
EXERCISE CLASS 22-11-2017: GENERAL FRAMES AND PDL

1. General Frames

- (1) Let $\mathbb{M} := (\mathbb{F}, V)$ be a model with $\mathbb{F} := (W, R)$ and let $\mathcal{A}_V := \{V(\varphi) : \varphi \in \text{Form}\}$, where $V(\varphi) = \{w \in W : \mathbb{M}, w \Vdash \varphi\}$. Show that $\mathfrak{f}_{\mathbb{M}} := (\mathbb{F}, \mathcal{A}_V)$ is a general frame.
- (2) Consider the Kripke frame (W, R) depicted in Figure. Let A be the collection of all finite and co-finite subsets of W. Show that
 - (a) (W, R, A) is a general frame,
 - (b) $(W, R), u \not\Vdash \Diamond \Box p \to \Box \Diamond p,$
 - (c) $(W, R, A), u \Vdash \Diamond \Box p \to \Box \Diamond p$.



(3) Let C be a class of general frames. Show that Log(C) is a normal modal logic. Are all normal modal logics of this form?

2. **PDL**

- (4) Let $\mathfrak{F} = (W, \{R_{\pi}\}_{\pi \in \Pi})$ be a frame. Show that for each $\pi, \pi_1, \pi_2 \in \Pi$ we have
 - (a) $\mathfrak{F} \Vdash \langle \pi_1; \pi_2 \rangle p \leftrightarrow \langle \pi_1 \rangle \langle \pi_2 \rangle p$ iff $R_{\pi_1;\pi_2} = R_{\pi_1} \circ R_{\pi_2}.^1$
 - (b) $\mathfrak{F} \Vdash \langle \pi_1 \cup \pi_2 \rangle p \leftrightarrow \langle \pi_1 \rangle p \lor \langle \pi_2 \rangle p$ iff $R_{\pi_1 \cup \pi_2} = R_{\pi_1} \cup R_{\pi_2}$.
 - (c) If $(R_{\pi})^* = R_{\pi^*}$ then

$$\begin{aligned} \mathfrak{F} \Vdash \langle \pi^* \rangle p \leftrightarrow p \lor \langle \pi \rangle \langle \pi^* \rangle p \\ \mathfrak{F} \Vdash [\pi^*](p \to [\pi]p) \to (p \to [\pi^*]p) \end{aligned}$$

(d) If $\mathfrak{F} \Vdash p \lor \langle \pi \rangle \langle \pi^* \rangle p \to \langle \pi^* \rangle p$, then $(R_\pi)^* \subseteq R_{\pi^*}$.

- (5) Let \mathcal{M} be the set of all **PDL**-MCSs, and Σ a set of formulas. Show that:
 - (a) $At(\Sigma) = \{\Gamma \cap \neg FL(\Sigma) \mid \Gamma \in \mathcal{M}\};$
 - (b) If $X \subseteq \neg FL(\Sigma)$ and X is **PDL**-consistent, then there exists $A \in At(\Sigma)$ such that $X \subseteq A$.
- (6) Consider a set of **PDL** formulas Σ and let $A \in At(\Sigma)$ be an atom over Σ . Show that:
 - (a) For every $\varphi \in \neg FL(\Sigma)$, exactly one of φ and $\sim \varphi$ is in A;
 - (b) For every $\varphi \lor \psi \in \neg FL(\Sigma)$, $\varphi \lor \psi \in A$ iff $\varphi \in A$ or $\psi \in A$;

¹In BdRV $R_{\pi_1} \circ R_{\pi_2}$ is also denoted $R_{\pi_1}; R_{\pi_2}$.

- (c) For every $\langle \pi_1; \pi_2 \rangle \varphi \in \neg FL(\Sigma), \ \langle \pi_1; \pi_2 \rangle \varphi \in A \text{ iff } \langle \pi_1 \rangle \langle \pi_2 \rangle \varphi \in A;$
- (d) For every $\langle \pi_1 \cup \pi_2 \rangle \varphi \in \neg \operatorname{FL}(\Sigma), \ \langle \pi_1 \cup \pi_2 \rangle \varphi \in A \text{ iff } \langle \pi_1 \rangle \varphi \text{ or } \langle \pi_2 \rangle \varphi \in A.$

3. Additional exercices

- (7) (*) Let \mathcal{K} be the class of Kripke frames satisfying the first-order condition $\forall x \exists y (xRy \& yRy)$ and let **KMT** := Log(\mathcal{K}).
 - (a) Can you find a Kripke frame \mathbb{F} such that $\mathbb{F} \notin \mathcal{K}$ but $\mathbb{F} \Vdash \mathbf{KMT}$? (Hint: think about ultrafilter extensions).
 - (b) Can you find a finite Kripke frame \mathbb{F} such that $\mathbb{F} \notin \mathcal{K}$ but $\mathbb{F} \Vdash \mathbf{KMT}$? (Hint: Show that the formula $\diamond((\Box p_1 \to p_1) \land \ldots \land (\Box p_n \to p_n))$ belongs to **KMT** for all $n \in \omega$.)
 - (c) Show that $\mathbf{KMT} = \mathbf{K} + \{ \diamondsuit((\Box p_1 \to p_1) \land \ldots \land (\Box p_n \to p_n)) \}_{n \in \omega}.$
 - (d) Is **KMT** finitely axiomatisable?