EXERCISE CLASS 22-11-2017:

 GENERAL FRAMES AND PDL
1. General Frames

(1) Let $\mathbb{M}:=(\mathbb{F}, V)$ be a model with $\mathbb{F}:=(W, R)$ and let $\mathcal{A}_{V}:=\{V(\varphi): \varphi \in$ Form $\}$, where $V(\varphi)=\{w \in$ $W: \mathbb{M}, w \Vdash \varphi\}$. Show that $\mathfrak{f}_{\mathbb{M}}:=\left(\mathbb{F}, \mathcal{A}_{V}\right)$ is a general frame.
(2) Consider the Kripke frame (W, R) depicted in Figure. Let A be the collection of all finite and co-finite subsets of W. Show that
(a) (W, R, A) is a general frame,
(b) $(W, R), u \Vdash \diamond \square p \rightarrow \square \diamond p$,
(c) $(W, R, A), u \Vdash \diamond \square p \rightarrow \square \diamond p$.

(3) Let \mathcal{C} be a class of general frames. Show that $\log (\mathcal{C})$ is a normal modal logic. Are all normal modal logics of this form?

2. PDL

(4) Let $\mathfrak{F}=\left(W,\left\{R_{\pi}\right\}_{\pi \in \Pi}\right)$ be a frame. Show that for each $\pi, \pi_{1}, \pi_{2} \in \Pi$ we have
(a) $\mathfrak{F} \Vdash\left\langle\pi_{1} ; \pi_{2}\right\rangle p \leftrightarrow\left\langle\pi_{1}\right\rangle\left\langle\pi_{2}\right\rangle p \quad$ iff $\quad R_{\pi_{1} ; \pi_{2}}=R_{\pi_{1}} \circ R_{\pi_{2}} .{ }^{1}$
(b) $\mathfrak{F} \Vdash\left\langle\pi_{1} \cup \pi_{2}\right\rangle p \leftrightarrow\left\langle\pi_{1}\right\rangle p \vee\left\langle\pi_{2}\right\rangle p \quad$ iff $\quad R_{\pi_{1} \cup \pi_{2}}=R_{\pi_{1}} \cup R_{\pi_{2}}$.
(c) If $\left(R_{\pi}\right)^{*}=R_{\pi^{*}}$ then

$$
\begin{aligned}
& \mathfrak{F} \Vdash\left\langle\pi^{*}\right\rangle p \leftrightarrow p \vee\langle\pi\rangle\left\langle\pi^{*}\right\rangle p \\
& \mathfrak{F} \Vdash\left[\pi^{*}\right](p \rightarrow[\pi] p) \rightarrow\left(p \rightarrow\left[\pi^{*}\right] p\right)
\end{aligned}
$$

(d) If $\mathfrak{F} \Vdash p \vee\langle\pi\rangle\left\langle\pi^{*}\right\rangle p \rightarrow\left\langle\pi^{*}\right\rangle p$, then $\left(R_{\pi}\right)^{*} \subseteq R_{\pi^{*}}$.
(5) Let \mathcal{M} be the set of all PDL-MCSs, and Σ a set of formulas. Show that:
(a) $\operatorname{At}(\Sigma)=\{\Gamma \cap \neg \mathrm{FL}(\Sigma) \mid \Gamma \in \mathcal{M}\}$;
(b) If $X \subseteq \neg \mathrm{FL}(\Sigma)$ and X is $\mathbf{P D L}$-consistent, then there exists $A \in A t(\Sigma)$ such that $X \subseteq A$.
(6) Consider a set of PDL formulas Σ and let $A \in A t(\Sigma)$ be an atom over Σ. Show that:
(a) For every $\varphi \in \neg \mathrm{FL}(\Sigma)$, exactly one of φ and $\sim \varphi$ is in A;
(b) For every $\varphi \vee \psi \in \neg \mathrm{FL}(\Sigma), \varphi \vee \psi \in A$ iff $\varphi \in A$ or $\psi \in A$;

[^0](c) For every $\left\langle\pi_{1} ; \pi_{2}\right\rangle \varphi \in \neg \mathrm{FL}(\Sigma),\left\langle\pi_{1} ; \pi_{2}\right\rangle \varphi \in A$ iff $\left\langle\pi_{1}\right\rangle\left\langle\pi_{2}\right\rangle \varphi \in A$;
(d) For every $\left\langle\pi_{1} \cup \pi_{2}\right\rangle \varphi \in \neg \mathrm{FL}(\Sigma),\left\langle\pi_{1} \cup \pi_{2}\right\rangle \varphi \in A$ iff $\left\langle\pi_{1}\right\rangle \varphi$ or $\left\langle\pi_{2}\right\rangle \varphi \in A$.

3. Additional exercices

(7) (*) Let \mathcal{K} be the class of Kripke frames satisfying the first-order condition $\forall x \exists y(x R y \& y R y)$ and let KMT $:=\log (\mathcal{K})$.
(a) Can you find a Kripke frame \mathbb{F} such that $\mathbb{F} \notin \mathcal{K}$ but $\mathbb{F} \Vdash$ KMT? (Hint: think about ultrafilter extensions).
(b) Can you find a finite Kripke frame \mathbb{F} such that $\mathbb{F} \notin \mathcal{K}$ but $\mathbb{F} \Vdash$ KMT? (Hint: Show that the formula $\diamond\left(\left(\square p_{1} \rightarrow p_{1}\right) \wedge \ldots \wedge\left(\square p_{n} \rightarrow p_{n}\right)\right)$ belongs to KMT for all $n \in \omega$.)
(c) Show that $\mathbf{K M T}=\mathbf{K}+\left\{\diamond\left(\left(\square p_{1} \rightarrow p_{1}\right) \wedge \ldots \wedge\left(\square p_{n} \rightarrow p_{n}\right)\right)\right\}_{n \in \omega}$.
(d) Is KMT finitely axiomatisable?

[^0]: ${ }^{1}$ In $\operatorname{BdRV} R_{\pi_{1}} \circ R_{\pi_{2}}$ is also denoted $R_{\pi_{1}} ; R_{\pi_{2}}$.

