EXERCISE CLASS 15-11-2017: CANONICAL MODELS AND THE FINITE MODEL PROPERTY

- 1. More on completeness and the canonical model
- (1) Let Γ be a set of formulas (say, in the language of basic modal logic). Prove that if Γ is satisfiable then it is consistent. Can you generalise this to cover *L*-consistency for an arbitrary normal modal logic *L*?
- (2) Let L be a consistent normal modal logic. Given a world w in a model M based on an L-frame, show that the set of formulas $\{\varphi \colon \mathbb{M}, w \Vdash \varphi\}$ is an L-MCS.
- (3) Show that in the canonical model for **K** (or any other consistent normal modal logic L) there exist (L)MCSs Γ and Δ that are incomparable (i.e., we have neither $R^L(\Gamma, \Delta)$ nor $R^L(\Delta, \Gamma)$).
- (4) Show that if $L = \text{Log}(\mathcal{K})$, for some class of (finite) Kripke frames \mathcal{K} , then $L = \text{Log}(\mathcal{K}')$ for some class of (finite) rooted Kripke frames \mathcal{K}' .
- (5) (**) show that the set of formulas $\mathbf{KL} \cup \{\Box \varphi \to \varphi \colon \varphi \in Form\}$ is \mathbf{KL} -consistent. Conclude that \mathbf{KL} is not canonical¹.

2. FINITE MODEL PROPERTY

- (1) Show that the following normal modal logics have the finite model property
 - (a) The normal modal logic **K**;
 - (b) The normal modal logic $\mathbf{KD} \coloneqq \mathbf{K} + \Diamond \top$;
 - (c) The normal modal logic $\mathbf{KT} \coloneqq \mathbf{K} + p \rightarrow \Diamond p$;
 - (d) The normal modal logic $\mathbf{K4} := \mathbf{K} + \Diamond \Diamond p \rightarrow \Diamond p;$
 - (e) The normal modal logic $\mathbf{S4} \coloneqq \mathbf{KT} + \Diamond \Diamond p \rightarrow \Diamond p;$
 - (f) The normal modal logic $\mathbf{S5} \coloneqq \mathbf{S4} + p \rightarrow \Box \Diamond p$;
 - (g) The normal modal logic $\mathbf{S4.2} \coloneqq \mathbf{S4} + \Diamond \Box p \rightarrow \Box \Diamond p$.
- (2) Which of the normal modal logics above are decidable?
- (3) Let \mathcal{K} be the class of Kripke frames satisfying the first-order condition $\forall x \exists y (xRy \& yRy)$. Does the normal modal logic Log(\mathcal{K}) enjoy the finite model property?
- (4) Let \mathcal{R} be the class of frames regular frames, viz., frames $(W, R_{\diamond}, R_{\langle * \rangle})$ such that $R_{\diamond}^* = R_{\langle * \rangle}$. Show that the bimodal logic Log (\mathcal{R}) enjoys the finite model property.
- (5) (*) Let \mathcal{K} be the class of Kripke frames satisfying the first-order condition $\forall x \exists y (xRy \& yRy)$ and let **KMT** := Log(\mathcal{K}).
 - (a) Can you find a Kripke frame \mathbb{F} such that $\mathbb{F} \notin \mathcal{K}$ but $\mathbb{F} \Vdash \mathbf{KMT}$? (Hint: think about ultrafilter extensions).
 - (b) Can you find a finite Kripke frame \mathbb{F} such that $\mathbb{F} \notin \mathcal{K}$ but $\mathbb{F} \Vdash \mathbf{KMT}$? (Hint: Show that the formula $\diamond((\Box p_1 \to p_1) \land \ldots \land (\Box p_n \to p_n))$ belongs to **KMT** for all $n \in \omega$.)

¹Hint: Consider the general frame $(\mathbb{N} \cup \{\infty\}, R, \mathcal{A})$ where $R \coloneqq \{(\infty, n) \colon n \in \mathbb{N}\} \cup \{(n, m) \colon m < n\}$ and \mathcal{A} is the set of finite subsets of \mathbb{N} and the co-finite subsets of $\mathbb{N} \cup \{\infty\}$ which contains ∞ . Of course, you may also try a more syntactic approach.