EXERCISE CLASS 15-11-2017: CANONICAL MODELS AND THE FINITE MODEL PROPERTY

1. More on completeness and the canonical model

(1) Let Γ be a set of formulas (say, in the language of basic modal logic). Prove that if Γ is satisfiable then it is consistent. Can you generalise this to cover L-consistency for an arbitrary normal modal logic L ?
(2) Let L be a consistent normal modal logic. Given a world w in a model \mathbb{M} based on an L-frame, show that the set of formulas $\{\varphi: \mathbb{M}, w \Vdash \varphi\}$ is an L-MCS.
(3) Show that in the canonical model for \mathbf{K} (or any other consistent normal modal logic L) there exist $(L-) M C S s \Gamma$ and Δ that are incomparable (i.e., we have neither $R^{L}(\Gamma, \Delta)$ nor $R^{L}(\Delta, \Gamma)$).
(4) Show that if $L=\log (\mathcal{K})$, for some class of (finite) Kripke frames \mathcal{K}, then $L=\log \left(\mathcal{K}^{\prime}\right)$ for some class of (finite) rooted Kripke frames \mathcal{K}^{\prime}.
(5) ($* *$) show that the set of formulas $\mathbf{K L} \cup\{\square \varphi \rightarrow \varphi: \varphi \in \operatorname{Form}\}$ is KL-consistent. Conclude that KL is not canonical ${ }^{1}$.

2. Finite model property

(1) Show that the following normal modal logics have the finite model property
(a) The normal modal logic \mathbf{K};
(b) The normal modal logic KD $:=\mathbf{K}+\diamond \top$;
(c) The normal modal logic KT $:=\mathbf{K}+p \rightarrow \diamond p$;
(d) The normal modal logic $\mathbf{K} 4:=\mathbf{K}+\diamond \diamond p \rightarrow \diamond p$;
(e) The normal modal logic $\mathbf{S} 4:=\mathbf{K T}+\diamond \diamond p \rightarrow \diamond p$;
(f) The normal modal logic $\mathbf{S 5}:=\mathbf{S} 4+p \rightarrow \square \diamond p$;
(g) The normal modal logic $\mathbf{S} 4.2:=\mathbf{S} 4+\diamond \square p \rightarrow \square \diamond p$.
(2) Which of the normal modal logics above are decidable?
(3) Let \mathcal{K} be the class of Kripke frames satisfying the first-order condition $\forall x \exists y(x R y \& y R y)$. Does the normal modal logic $\log (\mathcal{K})$ enjoy the finite model property?
(4) Let \mathcal{R} be the class of frames regular frames, viz., frames $\left(W, R_{\diamond}, R_{\langle *\rangle}\right)$ such that $R_{\diamond}^{*}=R_{\langle *\rangle}$. Show that the bimodal $\operatorname{logic} \log (\mathcal{R})$ enjoys the finite model property.
(5) (*) Let \mathcal{K} be the class of Kripke frames satisfying the first-order condition $\forall x \exists y(x R y \& y R y)$ and let KMT $:=\log (\mathcal{K})$.
(a) Can you find a Kripke frame \mathbb{F} such that $\mathbb{F} \notin \mathcal{K}$ but $\mathbb{F} \Vdash$ KMT? (Hint: think about ultrafilter extensions).
(b) Can you find a finite Kripke frame \mathbb{F} such that $\mathbb{F} \notin \mathcal{K}$ but $\mathbb{F} \Vdash$ KMT? (Hint: Show that the formula $\diamond\left(\left(\square p_{1} \rightarrow p_{1}\right) \wedge \ldots \wedge\left(\square p_{n} \rightarrow p_{n}\right)\right)$ belongs to KMT for all $n \in \omega$.)

[^0]
[^0]: ${ }^{1}$ Hint: Consider the general frame $(\mathbb{N} \cup\{\infty\}, R, \mathcal{A})$ where $R:=\{(\infty, n): n \in \mathbb{N}\} \cup\{(n, m): m<n\}$ and \mathcal{A} is the set of finite subsets of \mathbb{N} and the co-finite subsets of $\mathbb{N} \cup\{\infty\}$ which contains ∞. Of course, you may also try a more syntactic approach.

