Introduction to Modal Logic. Exercise class 1

$4 \ {\rm September} \ 2017$

The language of *basic modal logic* is given as follows.

Definition 1. The *formulas* of the basic modal language are given by the following grammar:

$$\phi ::= p \mid \bot \mid \neg \phi \mid \phi \lor \phi \mid \Diamond \phi$$

where p ranges over a given set of propositional variables. Next to the standard Boolean abbreviations \top , \land , \rightarrow we will also use the operator $\Box := \neg \Diamond \neg$.

The Kripke semantics of modal logic is given by the following definition.

Definition 2. A (Kripke) frame is a pair $\mathbb{F} = (W, R)$ consisting of a set W and a binary accessibility relation $R \subseteq W \times W$. Elements of W will be called (possible) worlds, states or points.

A (Kripke) model is a triple $\mathbb{M} = (W, R, V)$ such that (W, R) is a Kripke frame and V is a valuation, i.e., V maps propositional variables to subsets of W.

Given a model \mathbb{M} we define the notion of a modal formula being *true* or *satisfied* in \mathbb{M} at a state *s* by the following induction:

 $\begin{array}{lll} \mathbb{M}, s \Vdash p & \text{iff} \quad s \in V(p) \\ \mathbb{M}, s \Vdash \bot & \text{never} \\ \mathbb{M}, s \Vdash \neg \phi & \text{iff} \quad \text{not} \ \mathbb{M}, s \Vdash \phi \\ \mathbb{M}, s \Vdash \phi \lor \psi & \text{iff} \quad \mathbb{M}, s \Vdash \phi \text{ or } \mathbb{M}, s \Vdash \psi \\ \mathbb{M}, s \Vdash \Diamond \phi & \text{iff} \quad \mathbb{M}, t \Vdash \phi, \text{ for some } t \in W \text{ with } Rst. \end{array}$

A formula is *globally true* in a model \mathbb{M} if it is true at every state in \mathbb{M} , notation: $\mathbb{M} \Vdash \phi$; a formula is *satisfiable* in \mathbb{M} if it is true in at least one state in \mathbb{M} .

Exercise 1. Consider the model $\mathbb{M} = (W, R, V)$ below, where $W = \{s, t, u, v, w\}$, R is as indicated by the arrows in the picture, and V is given by $V(p) = \{s, t, w\}$ and $V(q) = \{t\}$.

- (1) Show that
 - (a) $\mathbb{M}, s \Vdash \Diamond (q \land \Diamond q)$
 - (b) $\mathbb{M}, w \Vdash \Box \bot$
 - (c) $\mathbb{M}, s \Vdash \Box \Diamond \Diamond p$
 - (d) $\mathbb{M}, s \not\models \Box \Box \Box p$
- (2) Show that
 - (a) $\mathbb{M} \Vdash \Diamond \Diamond \Box \bot$
 - (b) $\mathbb{M} \Vdash q \to \Diamond q$
 - (c) $\mathbb{M} \Vdash \Diamond \Box p \to \Box \Diamond p$
- (3) Can you find a valuation V' such that, with \mathbb{M}' being the resulting model:
 - (a) $\mathbb{M}', t \not\models p \to \Diamond p$
 - (b) $\mathbb{M}', s \not\Vdash \Box \Diamond \Diamond p$
 - (c) $\mathbb{M}' \not\Vdash \Diamond \Diamond \Box \bot$

Definition 3. A formula ϕ is *satisfiable* if it is satisfiable in some model, and *valid* if it is globally true in every model.

Exercise 2. Which of the following formulas are satisfiable? Which ones are valid?

- (1) $\Box \top$
- $(2) \ \Diamond p \to \Diamond \Diamond p$
- (3) $(\Box p \land \Diamond q) \rightarrow \Diamond (p \land q)$
- $(4) \ \Box \Diamond p \to \Diamond \Box p$
- (5) $\Diamond \Box p \to \Box \Diamond p$
- (6) $\Diamond (p \lor q) \to (\Diamond p \lor \Diamond q)$

Definition 4. A formula ϕ is *valid* on a frame \mathbb{F} if ϕ is globally true in the model (\mathbb{F}, V) , for every valuation V, and *satisfiable* in \mathbb{F} if it is satisfiable in the model (\mathbb{F}, V) for some valuation V.

Poly-modal logic is the version of modal logic where, instead of just one modal diamond \diamond , there is a family $\{\diamond_I \mid i \in I\}$, indexed by some set I.

Definition 5. Given a set $\{\diamond_i \mid i \in I\}$ of modal diamonds, we define the associated set of modal formulas by the following grammar:

$$\phi ::= p \mid \bot \mid \neg \phi \mid \phi \lor \phi \mid \diamondsuit_i \phi$$

This language is interpreted in the obvoius way by poly-modal Kripke structures, which generalize the mono-modal structures in that they have an accessibility relation R_i for *each* diamond \diamond_i . In particular, the semantic clause for the modality \diamond_i is as follows:

$$\mathbb{M}, s \Vdash \Diamond_i \phi \text{ iff } \mathbb{M}, t \Vdash \phi, \text{ for some } t \in W \text{ with } R_i st.$$

Exercise 3. Let $\mathbb{B} = (B, R_1, R_2)$ the following *binary tree frame*. *B* is the set of strings of 0s and 1s, and the relations R_1 and R_2 are defined by

 $R_1 st$ iff t = s0 or t = s1 $R_2 st$ iff t if a proper initial segment of s.

Which of the following formulas are valid on \mathbb{B} :

- (1) $(\diamondsuit_1 p \land \diamondsuit_1 q) \to \diamondsuit_1 (p \land q)$
- (2) $(\diamond_1 p \land \diamond_1 q \land \diamond_1 r) \to (\diamond_1 (p \land q) \lor \diamond_1 (p \land r) \lor \diamond_1 (q \land r))$
- (3) $(\diamond_2 p \land \diamond_2 q \land \diamond_2 r) \to (\diamond_2 (p \land q) \lor \diamond_2 (p \land r) \lor \diamond_2 (q \land r))$
- (4) $\Box_2(p \to \Box_1 p) \to (\Box_1 p \to \Box_2 p).$

Exercise 4. Let $\mathbb{F} = (W, R)$ be a Kripke frame. Prove the following:

- (1) $\mathbb{F} \Vdash p \to \Diamond p$ iff R is reflexive;
- (2) $\mathbb{F} \Vdash \Diamond \Diamond p \to \Diamond p$ iff R is transitive.

A special case of a poly-modal logic is temporal logic.

Definition 6. The basic temporal language is built using two modal diamonds, \diamond_F and \diamond_P (often written as F and P, respectively).

The intended semantics of this language consists of so-called *bidirectional* structures, where the accessibility relation associated with the 'past' operator \diamond_P is the *converse* of the relation associated with the 'future' operator \diamond_F .

Exercise 5. Let $\mathbb{F} = (W, R_F, R_P)$ be a bidirectional temporal frame. Show that $\mathbb{F} \Vdash q \to \Box_F \diamond_P q$.

A bidirectional frame \mathbb{F} is usually simply denoted as $\mathbb{F} = (W, R)$, where we implicitly understand that $R_F = R$ and $R_P = R'$ (the converse of R).

Exercise 6. (*) Let $\mathbb{Q} = (Q, <)$ and $\mathbb{R} = (R, <)$ be the (bidirectional) frames given by the (strict) orderings of, respectively, the rational and the real numbers. Give a formula ϕ in the basic temporal language such that $\mathbb{R} \Vdash \phi$ but $\mathbb{Q} \not\models \phi$. (Hint: consider a valuation V on \mathbb{Q} with $V(p) = \{q \in Q \mid q < r\}$, where r is an arbitrary irrational number r.)