Introduction to Modal Logic. Exercise class 1

4 September 2017

The language of basic modal logic is given as follows.
Definition 1. The formulas of the basic modal language are given by the following grammar:

$$
\phi::=p|\perp| \neg \phi|\phi \vee \phi| \diamond \phi
$$

where p ranges over a given set of propositional variables. Next to the standard Boolean abbreviations $\top, \wedge, \rightarrow$ we will also use the operator $\square:=\neg \diamond \neg$.

The Kripke semantics of modal logic is given by the following definition.
Definition 2. A (Kripke) frame is a pair $\mathbb{F}=(W, R)$ consisting of a set W and a binary accessibility relation $R \subseteq W \times W$. Elements of W will be called (possible) worlds, states or points.

A (Kripke) model is a triple $\mathbb{M}=(W, R, V)$ such that (W, R) is a Kripke frame and V is a valuation, i.e., V maps propositional variables to subsets of W.

Given a model \mathbb{M} we define the notion of a modal formula being true or satisfied in \mathbb{M} at a state s by the following induction:

$$
\begin{array}{lll}
\mathbb{M}, s \Vdash p & \text { iff } & s \in V(p) \\
\mathbb{M}, s \Vdash \perp & & \text { never } \\
\mathbb{M}, s \Vdash \neg \phi & \text { iff } & \text { not } \mathbb{M}, s \Vdash \phi \\
\mathbb{M}, s \Vdash \phi \vee \psi & \text { iff } & \mathbb{M}, s \Vdash \phi \text { or } \mathbb{M}, s \Vdash \psi \\
\mathbb{M}, s \Vdash \diamond \phi & \text { iff } & \mathbb{M}, t \Vdash \phi, \text { for some } t \in W \text { with } \text { Rst. }
\end{array}
$$

A formula is globally true in a model \mathbb{M} if it is true at every state in \mathbb{M}, notation: $\mathbb{M} \Vdash \phi$; a formula is satisfiable in \mathbb{M} if it is true in at least one state in \mathbb{M}.

Exercise 1. Consider the model $\mathbb{M}=(W, R, V)$ below, where $W=\{s, t, u, v, w\}$, R is as indicated by the arrows in the picture, and V is given by $V(p)=\{s, t, w\}$ and $V(q)=\{t\}$.

(1) Show that
(a) $\mathbb{M}, s \Vdash \diamond(q \wedge \diamond q)$
(b) $\mathbb{M}, w \Vdash \square \perp$
(c) $\mathbb{M}, s \Vdash \square \diamond \diamond p$
(d) $\mathbb{M}, s \nvdash \square \square \square p$
(2) Show that
(a) $\mathbb{M} \Vdash \diamond \diamond \square \perp$
(b) $\mathbb{M} \Vdash q \rightarrow \diamond q$
(c) $\mathbb{M} \Vdash \diamond \square p \rightarrow \square \diamond p$
(3) Can you find a valuation V^{\prime} such that, with \mathbb{M}^{\prime} being the resulting model:
(a) $\mathbb{M}^{\prime}, t \Vdash p \rightarrow \diamond p$
(b) $\mathbb{M}^{\prime}, s \nVdash \square \diamond \diamond p$
(c) $\mathbb{M}^{\prime} \Vdash \diamond \diamond \square \perp$

Definition 3. A formula ϕ is satisfiable if it is satisfiable in some model, and valid if it is globally true in every model.

Exercise 2. Which of the following formulas are satisfiable? Which ones are valid?
(1) $\square \top$
(2) $\diamond p \rightarrow \diamond \diamond p$
(3) $(\square p \wedge \diamond q) \rightarrow \diamond(p \wedge q)$
(4) $\square \diamond p \rightarrow \diamond \square p$
(5) $\diamond \square p \rightarrow \square \diamond p$
(6) $\diamond(p \vee q) \rightarrow(\diamond p \vee \diamond q)$

Definition 4. A formula ϕ is valid on a frame \mathbb{F} if ϕ is globally true in the model (\mathbb{F}, V), for every valuation V, and satisfiable in \mathbb{F} if it is satisfiable in the model (\mathbb{F}, V) for some valuation V.

Poly-modal logic is the version of modal logic where, instead of just one modal diamond \diamond, there is a family $\left\{\diamond_{I} \mid i \in I\right\}$, indexed by some set I.

Definition 5. Given a set $\left\{\diamond_{i} \mid i \in I\right\}$ of modal diamonds, we define the associated set of modal formulas by the following grammar:

$$
\phi::=p|\perp| \neg \phi|\phi \vee \phi| \diamond_{i} \phi
$$

This language is interpreted in the obvoius way by poly-modal Kripke structures, which generalize the mono-modal structures in that they have an accessibility relation R_{i} for each diamond \diamond_{i}. In particular, the semantic clause for the modality \diamond_{i} is as follows:

$$
\mathbb{M}, s \Vdash \diamond_{i} \phi \text { iff } \mathbb{M}, t \Vdash \phi, \text { for some } t \in W \text { with } R_{i} s t .
$$

Exercise 3. Let $\mathbb{B}=\left(B, R_{1}, R_{2}\right)$ the following binary tree frame. B is the set of strings of 0 s and 1 s , and the relations R_{1} and R_{2} are defined by

$$
\begin{array}{lll}
R_{1} s t & \text { iff } & t=s 0 \text { or } t=s 1 \\
R_{2} s t & \text { iff } \quad t \text { if a proper initial segment of } s .
\end{array}
$$

Which of the following formulas are valid on \mathbb{B} :
(1) $\left(\diamond_{1} p \wedge \diamond_{1} q\right) \rightarrow \diamond_{1}(p \wedge q)$
$(2)\left(\diamond_{1} p \wedge \diamond_{1} q \wedge \diamond_{1} r\right) \rightarrow\left(\diamond_{1}(p \wedge q) \vee \diamond_{1}(p \wedge r) \vee \diamond_{1}(q \wedge r)\right)$
(3) $\left(\diamond_{2} p \wedge \diamond_{2} q \wedge \diamond_{2} r\right) \rightarrow\left(\diamond_{2}(p \wedge q) \vee \diamond_{2}(p \wedge r) \vee \diamond_{2}(q \wedge r)\right)$
(4) $\square_{2}\left(p \rightarrow \square_{1} p\right) \rightarrow\left(\square_{1} p \rightarrow \square_{2} p\right)$.

Exercise 4. Let $\mathbb{F}=(W, R)$ be a Kripke frame. Prove the following:
(1) $\mathbb{F} \Vdash p \rightarrow \diamond p$ iff R is reflexive;
(2) $\mathbb{F} \Vdash \diamond \diamond p \rightarrow \diamond p$ iff R is transitive.

A special case of a poly-modal logic is temporal logic.
Definition 6. The basic temporal language is built using two modal diamonds, \diamond_{F} and \diamond_{P} (often written as F and P, respectively).

The intended semantics of this language consists of so-called bidirectional structures, where the accessibility relation associated with the 'past' operator \diamond_{P} is the converse of the relation associated with the 'future' operator \diamond_{F}.

Exercise 5. Let $\mathbb{F}=\left(W, R_{F}, R_{P}\right)$ be a bidirectional temporal frame. Show that $\mathbb{F} \Vdash q \rightarrow \square_{F} \diamond_{P} q$.

A bidirectional frame \mathbb{F} is usually simply denoted as $\mathbb{F}=(W, R)$, where we implicitly understand that $R_{F}=R$ and $R_{P}=R^{\curvearrowleft}$ (the converse of R).

Exercise 6. ${ }^{(*)}$ Let $\mathbb{Q}=(Q,<)$ and $\mathbb{R}=(R,<)$ be the (bidirectional) frames given by the (strict) orderings of, respectively, the rational and the real numbers. Give a formula ϕ in the basic temporal language such that $\mathbb{R} \Vdash \phi$ but $\mathbb{Q} \Vdash \phi$. (Hint: consider a valuation V on \mathbb{Q} with $V(p)=\{q \in Q \mid q<r\}$, where r is an arbitrary irrational number r.)

