SOME PARTIAL SOLUTIONS TO SOME OF THE EXERCISE FROM THE TUTORIAL FRIDAY 4 NOVEMBER 2016

FREDERIK M. LAURIDSEN

This is small note providing some sketches of solutions to some of the exercises from last Fridays tutorial. The usual caveats apply. In particular there are quite a few lacunae which you should fill in yourselves. Consequently, this is by no means a model solution which can be used as a guide for your homework solutions¹.

In case there is something which is not clear—or maybe even wrong—then feel free to come by my office (F2.23) with your questions.

1. Exercise 1

To show that the set

$$\operatorname{Log}(\mathcal{C}) := \{ \varphi \colon \forall \mathfrak{F} \in \mathcal{C} \ (\mathfrak{F} \Vdash \varphi) \}$$

is a normal modal logic, for any class of Kripke frames \mathcal{C} , one has simply to verify that

- (i) Every propositional tautology belongs to $Log(\mathcal{C})$;
- (ii) The (K) axiom $\Box(p \to q) \to \Box p \to \Box q$ belongs to $\text{Log}(\mathcal{C})$;
- (iii) The (Dual) axiom $\Diamond p \leftrightarrow \neg \Box \neg p$ belongs to $\text{Log}(\mathcal{C})$;
- (iv) The set $Log(\mathcal{C})$ is closed under applications of the Modus Ponens rule;
- (v) The set $Log(\mathcal{C})$ is closed under applications of the Necessitation rule;
- (vi) The set $Log(\mathcal{C})$ is closed under uniform substitution.

Verifying items (i)–(v) is straightforward; you just check that the relevant formulas (rules) are valid (admissible) on all frames—and so in particular on any frame in C. For (i) note that the *colour* $c(w) := \{p \in \mathsf{Prop}: \mathfrak{M}, w \Vdash p\}$ is a model of classical propositional logic for any model \mathfrak{M} and any $w \in |\mathfrak{M}|$.

Finally, for item (vi) let $\varphi \in \text{Log}(\mathcal{C})$ be given and let σ be a substitution. We must show that $\varphi[\sigma] \in \text{Log}(\mathcal{C})$ as well. Therefore, let \mathfrak{F} be a Kripke frame from \mathcal{C} and let V be a valuation on \mathfrak{F} . To see that $\mathfrak{F}, V, w \Vdash \varphi[\sigma]$ for any world $w \in |\mathfrak{F}|$ define a valuation V^{σ} on \mathfrak{F} by

$$V^{\sigma}(p) = \{ w' \in |\mathfrak{F}| \colon \mathfrak{F}, V, w' \Vdash \sigma(p) \}_{\mathfrak{F}}$$

and prove by induction of the complexity of the formula φ that

$$\mathfrak{F}, V, w \Vdash \varphi[\sigma] \quad \text{iff} \quad \mathfrak{F}, V^{\sigma}, w \Vdash \varphi.$$

Since $\varphi \in \text{Log}(\mathcal{C})$ and $\mathfrak{F} \in \mathcal{C}$ the right-hand side obtains and so, as $\mathfrak{F} \in \mathcal{C}$, the valuation V on \mathfrak{F} and $w \in |\mathfrak{F}|$ were arbitrary, we may conclude that $\varphi[\sigma] \in \text{Log}(\mathcal{C})$.

To conclude that the normal modal logic \mathbf{K} is sound with respect to the class of all Kripke frames \mathcal{K} we simply have to argue that

$$\mathbf{K} \subseteq \mathrm{Log}(\mathcal{K}).$$

But since **K** is the least normal modal logic and we have just shown that for any class of Kripke frames C the set Log(C) is a normal modal logic, in particular $\text{Log}(\mathcal{K})$ is a normal modal logic, and so the above inclusion follows immediately from the minimality of **K**.

To see that $\operatorname{Th}(\mathcal{C}_{mod}) := \{\varphi \colon \forall \mathfrak{M} \in \mathcal{C}_{mod} \ (\mathfrak{M} \Vdash \varphi)\}$ is not necessarily a normal modal logic, simply convince yourself that this set will not necessarily be closed under uniform substitution. In fact you may take \mathcal{C}_{mod} to consist of a single model to obtain a counter example.

 $^{^{1}}$ Unless, of course, the presentation of your homework solutions are usually more sloppy then the presentation at hand.

2. Exercise 2

We only provide a solution to item 2 as the the rest of the items are similar.

Let $\Sigma \cup \{\varphi, \psi\}$ be a set of formulas in the language of basic modal logic and suppose that we have $\vdash_{\Sigma} \varphi$ and $\vdash_{\Sigma} \psi$ then we must show that $\vdash_{\Sigma} \varphi \wedge \psi$.

 $\begin{array}{lll} 1. & \vdash_{\Sigma} p \to (q \to (p \land q)) & \text{Prop. tautology;} \\ 2. & \vdash_{\Sigma} \varphi \to (\psi \to (\varphi \land \psi)) & \text{Uniform substitution w. 1;} \\ 3. & \vdash_{\Sigma} \varphi & \text{Given by assumption;} \\ 4. & \vdash_{\Sigma} \psi \to (\varphi \land \psi) & (\text{MP}) \text{ w. 1 and 3;} \\ 5. & \vdash_{\Sigma} \psi & \text{Given by assumption;} \\ 4. & \vdash_{\Sigma} \varphi \land \psi & (\text{MP}) \text{ w. 5 and 4;} \\ \end{array}$

Thus the rule

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi}$$

is *admissible* for any normal modal logic.

3. Exercise 3

Again we provide a solution for item 2 only as the rest are similar. Given a set $\Sigma \cup \{\varphi, \psi\}$ of formulas in the language of basic modal logic such that $\vdash_{\Sigma} \varphi \to \psi$ we must show that also $\vdash_{\Sigma} \Diamond \varphi \to \Diamond \psi$.

1.	$\vdash_{\Sigma} \varphi \to \psi$	Given by assumption;
2.	$\vdash_{\Sigma} (p \to q) \to (\neg q \to \neg p))$	Prop. tautology;
3.	$\vdash_{\Sigma} (\varphi \to \psi) \to (\neg \psi \to \neg \varphi))$	Uni. subst. w. 3;
4.	$\vdash_{\Sigma} (\neg \psi \to \neg \varphi)$	(MP) w. 1 and 3;
5.	$\vdash_{\Sigma} \Box (\neg \psi \to \neg \varphi)$	(N) to 4;
6.	$\vdash_{\Sigma} \Box (\neg \psi \to \neg \varphi)) \to (\Box \neg \psi \to \Box \neg \varphi)$	Uni. subst. of the (K)-axiom;
7.	$\vdash_{\Sigma} \Box \neg \psi \rightarrow \Box \neg \varphi$	(MP) w. 6 and 5;
8.	$\vdash_{\Sigma} (\Box \neg \psi \to \Box \neg \varphi)) \to (\neg \Box \neg \varphi \to \neg \Box \neg \psi))$	Uni. subst. on 2;
9.	$\vdash_{\Sigma} (\neg \Box \neg \varphi \rightarrow \neg \Box \neg \psi)$	(MP) w. 8 and 7;
10.	$\vdash_{\Sigma} \Diamond \varphi \to \neg \Box \neg \varphi$	Uni. subst. of (Dual)-axiom and prop. reasoning;
11.	$\vdash_{\Sigma} (\Diamond \varphi \to \neg \Box \neg \varphi) \to ((\neg \Box \neg \varphi \to \neg \Box \neg \psi) \to (\Diamond \varphi \to \neg \Box \neg \psi))$	Uni. subst. instance of a propositional tautology;
12.	$\vdash_{\Sigma} \Diamond \varphi \to \neg \Box \neg \psi$	(MP) twice: w. 11 and 10 and then w. 7;
13.	$\vdash_{\Sigma} \neg \Box \neg \psi \rightarrow \Diamond \psi$	Uni. subst. on (Dual)-axiom and prop. reasoning;
14.	$\vdash_{\Sigma} (\Diamond \varphi \to \neg \Box \neg \psi) \to ((\neg \Box \neg \psi \to \Diamond \psi) \to (\Diamond \varphi \to \Diamond \psi)$	Uni. subst. instance of a prop. taut.;
15.	$\vdash_{\Sigma} \Diamond \varphi \to \Diamond \psi$	(MP) twice: w. 14 and 12 and then w. 13;

In the above we used—among other things—that $(p \to q) \to ((q \to r) \to (p \to r))$ is a propositional tautology.

Please note that the above is technically not a derivation in the Hilbert style derivation system \vdash_{Σ} . The above does, however, provided a scaffolding from which a correct derivation may be constructed.

4. Exercise 4

The trick is here to show that all the connectives of the language of basic modal logic are *congruent* in the sense that the rules

$$\frac{\varphi \leftrightarrow \psi \qquad \varphi' \leftrightarrow \psi'}{\varphi \ast \varphi' \leftrightarrow \psi \ast \psi'}$$

for $* \in \{\land, \lor, \rightarrow\}$ and

$$\frac{\varphi \leftrightarrow \psi}{\bullet \varphi \leftrightarrow \bullet \psi}$$

for $\bullet \in \{\neg, \Box\}$, are all admissible for every normal modal logic². Having established this, showing the Equivalent Replacement Lemma, i.e, that

$$\vdash_{\Sigma} \psi \leftrightarrow \chi \quad \text{implies} \quad \vdash_{\Sigma} \varphi[\psi] \leftrightarrow \varphi[\chi],$$

for any set $\Sigma \cup \{\varphi, \psi, \chi\}$ of formulas in the language of basic modal logic, is a straightforward induction on the complexity of φ .

5. Exercise 5

To show that $\not \vdash_{\mathbf{S4}} p \to \Box \Diamond p$ it suffices to show that the normal modal logic $\mathbf{S4}$ is sound with respect to some class of Kripke frames on which the formulas $p \to \Box \Diamond p$ is not valid. Recall that $\mathbf{S4}$ is $\mathbf{K} + (\Box p \to p) + (\Box p \to \Box \Box p)$. Now prove that these two axioms are valid on all frames where the relation is both transitive and reflexive, i.e., a *pre-order*. From this you may conclude that the normal modal logic $\mathbf{S4}$ is sound with respect to the class of all pre-ordered Kripke frames. Finally, find a pre-ordered Kripke frames which does not validate the formula $p \to \Box \Diamond p$ and conclude that $\not \vdash_{\mathbf{S4}} p \to \Box \Diamond p$.

To show that $\not\models_{\mathbf{K}} \Box p \lor \Box \neg p$ you may follow a similar strategy—only we already know a class of Kripke frames with respect to which the normal modal logic **K** is sound.

6. Exercise 6

The normal modal logic **K** is not Halldén complete. To see this note that since $\Box \perp \lor \neg \Box \perp$ is a substitution instance of the propositional tautology $p \lor \neg p$ we have that $\vdash_{\mathbf{K}} \Box \perp \lor \neg \Box \perp$. However, you can easily find Kripke frames \mathfrak{F}_1 and \mathfrak{F}_2 such that $\mathfrak{F}_1 \not\models \Box \perp$ and $\mathfrak{F}_2 \not\models \neg \Box \perp$, showing that $\not\models_{\mathbf{K}} \Box \perp$ and $\not\models_{\mathbf{K}} \neg \Box \perp$ since **K** is sound with respect to the class of all Kripke frames.

7. Exercise 7

This is rather tricky but also quite a bit of fun. One way to proceed is to observe that $p \to ((q \land r) \to (r \land p))$ is a propositional tautology. You then have to come up with a clever substitution instance of this propositional tautology in which—after a bit of manipulation—you can recognise a substitution instance of the Löb axiom $\Box(\Box p \to p) \to \Box p$. From there onwards it is all fairly straightforward.

 $^{^{2}}$ In fact, since some of the connectives are inter-definable in terms of each other you can be a bit clever about how you chose the basic connectives.