INTRODUCTION TO MODAL LOGIC 2016 HOMEWORK 6

- Deadline: December 13 at the **beginning** of Q & A session.
- Grading is from 0 to 100 points.
- Results from the exercise class may be used in the proofs
- Success!
- (1) (40pt) (From the 2014 Exam)
 - (a) Let Σ be a finite subformula closed set. Let $\mathfrak{M} = (W, R, V)$ be a model such that (W, R) is a rooted transitive reflexive frame with no branching to the right. Show that a transitive filtration of \mathfrak{M} through Σ is a rooted reflexive transitive frame with no branching to the right. See Homework 5 for the definition of no branching to the right. (Hint: start by showing that if r is a root of \mathfrak{M} , then [r] is a root of the filtrated model \mathfrak{M}_{Σ} .)

Recall that a reflexive and transitive frame (W, R) is rooted if there is $x \in W$ such that for each $y \in W$ we have Rxy.

- (b) Deduce that **S4.3** has the finite model property. See Homework 5 for the definition of **S4.3**.
- (c) Deduce that **S4.3** is decidable.
- (2) (20pt) Let Σ be a set of formulas and A any element of $At(\Sigma)$. Show that for all $\langle \pi^* \rangle \varphi \in \neg FL(\Sigma)$: $\langle \pi^* \rangle \varphi \in A$ iff $(\varphi \in A \text{ or } \langle \pi \rangle \langle \pi^* \rangle \varphi \in A)$.
- (3) (20pt) (From the 2015 Exam) Let $\mathcal{M} = (W, \{R_{\pi}\}_{\pi \in \Pi}, V)$ and $\mathcal{M}' = (W', \{R'_{\pi}\}_{\pi \in \Pi}, V')$ be two regular models of **PDL**. Let $Z \subseteq W \times W'$ be a bisimulation for each R_a and R'_a , where *a* is a basic program. Show by induction on the complexity of programs that then *Z* is a bisimulation for each R_{π} and R'_{π} , where $\pi \in \Pi$ is any program.
- (4) (20pt) Show that if $[\pi^*](p \to [\pi]p) \to (p \to [\pi^*]p)$ is valid on a frame (W, R_{π}, R_{π^*}) , then $R_{\pi^*} \subseteq (R_{\pi})^*$