INTRODUCTION TO MODAL LOGIC 2016 HOMEWORK 5

- Deadline: November 29 at the **beginning** of class.
- Grading is from 0 to 100 points.
- Results from the exercise class may be used in the proofs
- Success!
- (1) (30pt)
 - (a) Prove that $S5 = K4 + (\Box p \to p, p \to \Box \Diamond p)$ is sound and complete with respect to the class of frames (W, R), where R is an equivalence relation (i.e., a reflexive, transitive and symmetric relation).
 - (b) Use (a) to show that **S5** is sound and complete with respect to the class of frames (W, R) where for each $w, v \in W$ we have Rwv. (Hint: use point-generated submodels, Prop 2.6 from the book.)
- (2) (30pt) (From the 2014 Exam) In the following exercise you can use that the canonical model for **S4.3** is reflexive and transitive.
 - (a) Show that the canonical model for the modal logic

 $\mathbf{S4.3} = \mathbf{S4} + \Box(\Box p \to q) \lor \Box(\Box q \to p)$

has no branching to the right. Recall that a reflexive Kripke frame has no branching to the right if

 $\forall x \forall y \forall z ((Rxy \land Rxz) \to (Ryz \lor Rzy)).$

You are not allowed to use Sahlqvist completeness theorem.

- (b) Deduce that **S4.3** is sound and complete with respect to reflexive transitive frames with no branching to the right.
- (3) (20pt) (Item (a) is from the 2014 Exam)
 - (a) Prove that for any modal formulas φ and ψ we have

 $\vdash_{\mathbf{K}} \Box \varphi \lor \Box \psi \text{ implies } \vdash_{\mathbf{K}} \varphi \text{ or } \vdash_{\mathbf{K}} \psi.$

(Hint: use completeness of \mathbf{K} with respect to Kripke frames.)

(b) Show that the above property does not hold for all normal modal logics. That is, give an example of a normal modal logic L which does not satisfy it.

- (4) (20pt) Given a frame class C, let $\Theta(C) = Log(C)$ and given normal modal logic L let Fr(L) be the class of frames where L is valid.
 - (a) What does it mean for a logic L if $L = \Theta(Fr(L))$? Give an example of a logic (modal or temporal) for which it does not hold.
 - (b) What does it mean for a frame class C if $C = Fr(\Theta(C))$? Give an example of a frame class C for which it does not hold.