INTRODUCTION TO MODAL LOGIC 2016 HOMEWORK 4

- Deadline: November 15 at the **beginning** of class.
- Grading is from 0 to 100 points.
- Success!
- (1) (20pt) Compute, via the Sahlqvist algorithm, the global first-order correspondents of the following modal formulas:
 - (a) $\Diamond p \to \Box p$, (b) $p \land \Box p \land \Box \Box p \to \Diamond p$, (c) $\Diamond \Diamond \Box p \to \Box \Box \Diamond p$, (d) $\Diamond_1 \Diamond_2 p \to \Diamond_2 \Diamond_1 p$.

Simplify the first-order correspondents as much as you can.

(2) (20pt) Let M denote the *McKinsey formula* $\Box \diamond p \to \diamond \Box p$. Show that for a transitive frame $\mathfrak{F} = (W, R)$ we have that

$$\mathfrak{F}\models \forall x\exists y(Rxy\wedge\forall z(Ryz\rightarrow z=y)) \text{ implies } \mathfrak{F}\models M.$$

You don't have to show it, but in fact, the converse is also true (see p. 168 of the book). So there exist formulas that are **not** Sahlqvist (e.g., $M \land \Diamond \Diamond p \to \Diamond p$), but still have global first-order correspondents.

- (3) (20pt) Let φ and ψ be formulas in the language of basic modal logic. Prove
 - (a) $\vdash_{\mathbf{K}} \Box \varphi \to \Box(\psi \to \varphi)$
 - (b) $\vdash_{\mathbf{K}} (\Diamond \varphi \land \Box(\varphi \to \psi)) \to \Diamond \psi$

You may find it helpful to note that the following are propositional tautologies:

- $p \to (q \to p)$
- $p \to (p \lor q)$
- $(p \to q) \to (\neg q \to \neg p)$
- $(p \to (q \to r)) \leftrightarrow ((p \land q) \to r)$
- $\bullet \ p \to (q \to (p \land q))$
- (4) (20pt) Recall that $\mathbf{S5} = \mathbf{K} + (\Box p \to p) + (\Box p \to \Box \Box p) + (p \to \Box \diamondsuit p)$. Show:
 - (a) $\vdash_{\mathbf{S5}} \Diamond p \to \Box \Diamond p$
 - (b) $\nvDash_{\mathbf{S5}} \diamond p \to \Box p$ (You may use that S5 is sound with respect to the class of frames (W, R), where R is an equivalence relation)

(5) (20pt)

(a) Show that if a frame \mathfrak{F} is a bounded morphic image of a frame \mathfrak{G} , then

 $Log(\mathfrak{G}) \subseteq Log(\mathfrak{F}).$

(b) Let C be a non-empty class of frames. Prove that Log(C) is contained in the logic of a single reflexive point or Log(C) is contained in the logic of a single irreflexive point.