Lecture 4: finite models

September 20, 2016

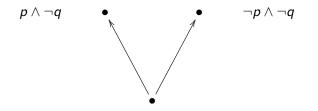
(ロ)、(型)、(E)、(E)、 E) の(の)

Question

Is the following formula valid on all frames?

$$\Diamond(p
ightarrow q)
ightarrow (\Diamond p
ightarrow \Diamond q)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → の Q @

A normal modal logic is a set $\mathfrak L$ of formulas closed under:

- Modus ponens: $\frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$
- Uniform substitution: $\frac{\varphi}{\varphi[\sigma]}$
- Necessitation: $\frac{\varphi}{\Box \varphi}$

and containing the following formulas:

- The K-axiom: $\Box(p
 ightarrow q)
 ightarrow (\Box p
 ightarrow \Box q)$
- Dual: $\Diamond p \leftrightarrow \neg \Box \neg p$

For every class F of frames, there is a normal modal logic Λ_F given by:

$$\varphi \in \Lambda_{\mathsf{F}} \quad \Leftrightarrow \quad \forall \mathfrak{F} \in \mathsf{F} : \mathfrak{F} \Vdash \varphi$$

Observe that:

$$\mathsf{K}_1 \subseteq \mathsf{K}_2 \quad \Rightarrow \quad \Lambda_{\mathsf{K}_2} \subseteq \Lambda_{\mathsf{K}_1}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Is the converse true?

$$\Lambda_{\mathsf{K}_2} \subseteq \Lambda_{\mathsf{K}_1} \quad \stackrel{?}{\Rightarrow} \quad \mathsf{K}_1 \subseteq \mathsf{K}_2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hint

Last lecture gave the answer...

The logic $\Lambda_{[All \; frames]}$ is the smallest normal modal logic, and denoted by K...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

... after Saul Kripke.

We want to understand the logic Λ_K of a class of frames. Two sides to the equation:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Which formulas are valid on K?
- Which formulas are not valid on K?

Find good, transparent systems of axioms and rules allowing us to *derive* valid formulas.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Formula φ is *not* valid \Leftrightarrow the formula $\neg \varphi$ is *satisfiable*.

- Which formulas are valid on K?
- Which formulas are *satisfiable* in K?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem

Let φ be any modal formula. Then φ is satisfiable if, and only if, it is satisfiable on a finite model.

Two methods for finite models:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Selection
- Filtration

An *n*-bisimulation between models $\mathfrak{M}, \mathfrak{M}'$ is a chain:

$$Z_0 \subseteq ... \subseteq Z_n$$

such that:

- (Atomic) wZ_iw' implies $w \in V(p)$ iff $w' \in V'(p)$
- (Forth) $wZ_{i+1}w'$ and wRv implies $\exists v'$ such that w'R'v' and vZ_iv'
- (Back) $wZ_{i+1}w'$ and w'R'v' implies $\exists v$ such that wRv and vZ_iv'

Notation

$\mathfrak{M}, w \underbrace{\longleftrightarrow}_n \mathfrak{N}, v$

(ロ)、(型)、(E)、(E)、 E) の(の)

(Optional)

Think of *n*-bisimulations in terms of *n*-round pebble games!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- $md(p) = md(\bot) = 0$
- $\operatorname{md}(\neg \varphi) = \operatorname{md}(\varphi)$
- $\operatorname{md}(\varphi \lor \psi) = \operatorname{max}(\operatorname{md}(\varphi), \operatorname{md}(\psi))$

•
$$\mathsf{md}(\Diamond \varphi) = \mathsf{md}(\varphi) + 1$$

There are, up to logical equivalence, only finitely many formulas of modal depth $\leq n$ built from finitely many variables P.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If $\mathfrak{M}, w \underset{k \to n}{\longleftrightarrow} \mathfrak{N}, v$ then \mathfrak{M}, w and \mathfrak{N}, v satisfy the same formulas of depth $\leq n$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Finite "fan" vs. "fan" with an added infinite branch.

Let \mathfrak{M} be a model and $w \in W$. Then $\mathfrak{M}{\upharpoonright}_w^k$ is the unique submodel of \mathfrak{M} consisting of w together with all elements v of W such that the longest path from w to v is of length at most k.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

If \mathfrak{M} is a tree rooted at w, then:

$$\mathfrak{M}, w \underbrace{\longleftrightarrow}_n \mathfrak{M} \upharpoonright^n_w$$

Every satisfiable formula of depth n is satisfiable on a tree of height $\leq n$.

Proof.

Unravel, restrict to height n and then find an n-bisimulation.

Let \mathfrak{M} , w be a rooted tree model of height $\leq n$. Then there is a finite tree model \mathfrak{M}' , w satisfying the same formulas of depth $\leq n$ as \mathfrak{M} , w

Proof.

By induction: select witnesses for all formulas $\Diamond \varphi$ of depth $\leq n$, replace them by finite trees and cut of all other successors.

- 日本 - 1 日本 - 1 日本 - 1 日本

Let Σ be a finite set of formulas closed under subformulas. The equivalence relation $\longleftrightarrow_{\Sigma}$ on \mathfrak{M} is defined by:

$$\forall \varphi \in \Sigma : \mathfrak{M}, u \Vdash \varphi \Leftrightarrow \mathfrak{M}, v \Vdash \varphi$$

The equivalence class of w is denoted by $[w]_{\Sigma}$.

Let \mathfrak{M} be any Kripke model and let \mathfrak{M}' be a model based on $\{[w]_{\Sigma} \mid w \in W\}$. Then \mathfrak{M}' is a *filtration* of \mathfrak{M} through Σ if:

- (Atomic) For $p \in \Sigma$, $w \in V(p)$ iff $[w]_{\Sigma} \in V'(p)$.
- (Forth) If uRv then $[u]_{\Sigma}R'[v]_{\Sigma}$.
- (Back) If $[u]_{\Sigma}R'[v]_{\Sigma}$ and $\Diamond \varphi \in \Sigma$ then $\mathfrak{M}, v \Vdash \varphi$ implies $\mathfrak{M}, u \Vdash \Diamond \varphi$.

Theorem

Let $\varphi \in \Sigma$ and let \mathfrak{M}' be a filtration of \mathfrak{M} through Σ . Then:

$\mathfrak{M}, u \Vdash \varphi \Leftrightarrow \mathfrak{M}', [u]_{\Sigma} \Vdash \varphi$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

...But we don't yet know that filtrations always exist!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$R^{s} = \{([u]_{\Sigma}, [v]_{\Sigma}) \mid uRv\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\mathsf{R}^{\prime} = \{ ([u]_{\Sigma}, [v]_{\Sigma}) \mid \forall \Diamond \varphi \in \Sigma : v \Vdash \varphi \ \Rightarrow \ u \Vdash \Diamond \varphi \}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Theorem

Let φ be any modal formula. Then φ is satisfiable if, and only if, φ is satisfiable on a model of size at most 2^k where k is the number of subformulas of φ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof.

Filtrate through Σ = the set of subformulas of φ .