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Tree-like models

Definition

Let M be of similarity type (O, τ). Set u ≺ v if there is some
∆ ∈ O and some tuple v1...vn such that R∆uv1...vn and
v ∈ {v1, ..., vn}.

Definition

A model M of similarity type (O, τ) is said to be tree-like if the
structure (W ,≺) is a tree. The root of this tree is then called the
root of the model.



Note

For the basic modal language, a tree-like model (W ,R,V ) is just a
tree with a valuation on it!



Tree unravelling

Intuition: encode all the information about possible transitions in a
model in a tree-like structure.

Definition

Let M be a model of similarity type (O, τ) and w ∈W . Then the
unravelling of M at w is defined to be (W ′,R ′,V ′) where:

W ′ consists of all non-empty words over W beginning with w

R ′
∆ = {〈~u, ~u · v1, ..., ~u · vn〉 | 〈last(~u), v1, ..., vn〉 ∈ R∆}
~u ∈ V ′(p) iff last(~u) ∈ V (p)

Note that the root of the unravelling is just w , viewed as a word of
a single letter!



Proposition

Let M be any model, w ∈W and let M′ be the unravelling of M
at w. Then:

M′,w ! M,w

Proof.

The map last : W ′ →W is a bounded morphism! �



Tree-like model property

Theorem

Let ϕ be any modal formula. If ϕ is satisfied in some model, it is
also satisfied in a tree-like model.



Modal logic and trees

Proposition

K is the modal logic of trees.

Proof.

If a formula ϕ belongs to K then it is valid on all frames, hence it
is certainly valid on all trees in particular.
Conversely, if ϕ is not valid on all frames, then ¬ϕ is satisfied on
some pointed model. Hence ¬ϕ is also true on the tree
unravelling, and thus ϕ is not valid on all trees. �



A category of Kripke models

Proposition

Let M1,M2,M3 be Kripke models. Then:

The identity map Id : Wi →Wi is a bounded morphism from
Mi to itself.

If f : M1 →M2 and g : M2 →M3 are bounded morphisms,
then the composition g ◦ f : M1 →M3 is also a bounded
morphism.

The mathematical term for this situation is that Kripke models
form a category, in which the arrows are bounded morphisms. This
categorical perspective on modal logic culminates in co-algebraic
logic - but that is a different course entirely!



Question:

Is there a single, general and natural concept that covers disjoint
unions, generated submodels and bounded morphisms?



Bisimulation: a unifying concept

Idea

Two pointed models M,w and M′,w ′ for the basic modal
language are bisimilar iff:

w and w ′ satisfy the same propositional variables,

every successor of w is bisimilar with a successor of w ′,

every successor of w ′ is bisimilar with a sucessor of w .

But this is circular...



Bisimulations for the basic modal language

Definition

Let M,M′ be models for the basic modal language, and let
Z ⊆W ×W ′. Then Z is said to be a bisimulation for M,M′ if,
whenever wZw ′:

(Atomic condition) w ∈ V (p) iff w ′ ∈ V ′(p), for all p,

(Forth condition) if wRv then there exists v ′ ∈W ′ such that
w ′R ′v ′ and vZv ′

(Back condition) if w ′R ′v ′ then there exists v ∈W such that
wRv and vZv ′.

The pointed models M,w and M′,w ′ are said to be bisimilar,
written M,w ←→M′,w ′, if there exists a bisimulation Z relating
w to w ′.



Example

• p • p

•

aa ==

•

OO

•

OO

• p

•

==

•

aa

•

aa ==

•

OO



Bisimulations (general case)

Definition

Let M,M′ be models for a given similarity type, and let
Z ⊆W ×W ′. Then Z is said to be a bisimulation for M,M′ if,
whenever wZw ′:

(Atomic condition) w ∈ V (p) iff w ′ ∈ V ′(p), for all p,

(Forth condition) if R∆wv1...vn then there exist
v ′1, ..., v

′
n ∈W ′ such that R ′

∆w ′v ′1...v
′
n and viZv

′
i

(Back condition) if R ′
∆w ′v ′1...v

′
n then there exist

v1, ..., vn ∈W such that R∆wv1...vn and viZv
′
i .



Proposition

Modal logic is bisimulation invariant:

M,w ←→M′,w ′ ⇒ M,w ! M′,w ′



Bisimulations in computer science

Behavioural equivalence

Two processes (computer programs, operating systems, elevators,
vending machines...) are said to be behaviourally equivalent if they
cannot be distinguished by an external observer/user.

Formally: “processes” are generally modelled as labelled transition
systems, and behavioural equivalence is bisimilarity!



Bisimulation invariance is the defining property of modal logic:

The van Benthem characterization theorem

“Modal logic is the bisimulation invariant fragment of FOL”



Disjoint unions, generated submodels and bounded morphisms are
instances of bisimulations. In particular:

Proposition

A map f : M→M′ is a bounded morphism iff its graph is a
bisimulation.



Note

It is not the case that all modally equivalent models are bisimilar!

Proof.

We can construct modally equivalent models, one with arbitrarily
long but only finite paths, and one with an infinite path... �



Pebble games

A neat explanation is given by “pebble games”, similar to
EF-games in model theory:

n-round pebble game

Two-player game, “Spoiler” vs. “Duplicator”. Start with one
“pebble” placed on each model. If the pebbles are place on worlds
satisfying different propositional variables then the game ends and
Spoiler wins. Otherwise Spoiler moves a pebble to a successor,
Duplicator responds by moving the other pebble to a successor.
This goes on for at most n rounds, and if either player gets stuck
then the other player wins.



Modal depth (basic modal language)

md(p) = md(⊥) = 0

md(¬ϕ) = md(ϕ)

md(ϕ ∨ ψ) = max(md(ϕ),md(ψ))

md(♦ϕ) = md(ϕ) + 1

Proposition

There are, up to logical equivalence, only finitely many formulas of
modal depth ≤ n.



Proposition

Let M,w and M′,w ′ be any two pointed models. The following
are equivalent:

Duplicator has a winning strategy against Spoiler in the
n-round pebble game,

M,w and M,w ′ satisfy the same formulas of modal depth
≤ n.



The infinite pebble game

Same as the n-round pebble game, but there are no bounds on the
length of matches, and Duplicator wins all infinite matches.

Proposition

Let M,w and M′,w ′ be any two pointed models. The following
are equivalent:

Duplicator has a winning strategy against Spoiler in the
infinite pebble game,

M,w ←→M,w ′.



Image-finite models

Recall the definition of the relation ≺ induced by a model.

Definition

Let M be a model of any given similarity type. Then M is said to
be image-finite if, for all u ∈W , the set

{v ∈W | u ≺ v}

is finite.

Note

Of course, every finite model is image-finite.



The Hennessy-Milner Theorem

Theorem

Let M,w and M′,w ′ be any two image-finite pointed models.
Then:

M,w ! M′,w ′ iff M,w ←→M′,w ′

Proof.

For image-finite models, modal equivalence is a bisimulation! �



PDL and safety for bisimulation

Definition

Let M,M′ be two models in the similarity type of regular PDL.
We say that a relation Z between M and M′ is an atomic
bisimulation if it is a bisimulation between the models
(W , {Ra}a∈A,V ) and (W ′, {R ′

a}a∈A,V ′).

Clearly, every bisimulation in this similarity type is an atomic
bisimulation, but the converse is not generally true. However:



Proposition (Safety for bisimulation)

Let Z be any relation between M and M′. If both M and M′ are
regular models, then Z is a bisimulation iff it is an atomic
bisimulation.

By contrast, “converse” is not safe for bisimulation!



The lattice of bisimulations

Proposition

The union of any family of bisimulations is a bisimulation, hence
the bisimulations between any two models form a complete lattice
under set inclusion.



Note

Meet is not intersection!

Example: consider the family of all bisimulations relating the root
of the following model to itself:

• •

•

__ ??



Finally:

Proposition

Let Z1 be a bisimulation between M1 and M2, and let Z2 be a
bisimulation between M2 and M3. Then the composition Z1;Z2 is
a bisimulation between M1 and M2.

Corollary

“Bisimilarity” is an equivalence relation.


