Lecture 2: generated submodels, disjoint unions and bounded morphisms

September 14, 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A fact of life

Typically, the more expressive power a logical system has, the worse it behaves computationally.

- Second-order logic can describe the natural numbers up to isomorphism, is not recursively axiomatizable.
- First-order logic is recursively axiomatizable but admits non-standard models.

We are generally looking for *compromises* between good expressive power and good computational behavior (decidability, complete axiom systems etc.). So it is imperative to have a good understanding of the *expressive power of logical systems*! One side of the equation is easy: a proof that property can be expressed in system \mathfrak{L} just provides a formula that expresses it.

Proposition

FOL can express counting quantifiers, $\exists^{\geq n} x P x$.

Proof.

$$\exists x_1 ... \exists x_n (Px_1 \land ... \land Px_n \land \bigwedge_{1 \le i < j \le n} x_i \neq x_j)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

How do we prove that a property is *not* expressible in a logic? This is typically much more subtle!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition

FOL can not express the infinite counting quantifier, $\exists^{\infty} x P x$.

Proof.

Compactness, ultra-products, EF-games...

$\mathfrak{M}, w \Vdash \mathsf{E}\varphi \iff \exists w' \in W : \mathfrak{M}, w' \Vdash \varphi$

Shouldn't be definable in basic modal logic: not a "local" property!

But how to prove it?

Let $\{\mathfrak{M}_i\}_{i\in I}$ be a family of models of similarity type (O, τ) . The *disjoint union*

$$\sum_{i\in I}\mathfrak{M}_i=(W',R',V')$$

is given by:

•
$$W' = \bigcup_{i \in I} W_i \times \{i\}$$

- $R'_{\Delta} = \bigcup_{i \in I} \{ \langle (u, i), (v_1, i), ..., (v_n, i) \rangle \mid \langle u, v_1, ..., v_n \rangle \in R^i_{\Delta} \}$
- $V'(p) = \bigcup_{i \in I} V_i(p) \times \{i\}$

Notation

Disjoint union of $\mathfrak{M}_1, \mathfrak{M}_2$ written as $\mathfrak{M}_1 + \mathfrak{M}_2$.

The disjoint union of models $\{\mathfrak{M}_i\}_{i\in I}$ is obtained by placing one copy of each \mathfrak{M}_i side by side.

Proposition

For formula φ , each $i \in I$ and each $u \in W_i$:

$$\mathfrak{M}_i, w \Vdash \varphi \quad \Leftrightarrow \quad \sum_{i \in I} \mathfrak{M}_i, (w, i) \Vdash \varphi$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proof.

Induction on φ .

Notation

$$\mathfrak{M}_i, w \iff \sum_{i \in I} \mathfrak{M}_i, (w, i)$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Proposition

The global modality is not definable in the modal language of any similarity type.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Proof.

... is now a piece of cake!

Let $\mathfrak{M} = (W, R, V)$ be any model. Then $\mathfrak{M}' = (W', R', V')$ is a *submodel* of \mathfrak{M} if:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $W' \subseteq W$

•
$$R'_{\Delta} = R_{\Delta} \cap W'^{n+1} \ (\tau(\Delta) = n)$$

•
$$V'(p) = V(p) \cap W'$$

Submodels do not preserve satisfaction!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let \mathfrak{M}' be a submodel of \mathfrak{M} . Then \mathfrak{M}' is called a *generated* submodel of \mathfrak{M} if the following "backwards" condition holds:

$$u \in W'$$
 and $R_{\Delta}uv_1...v_n$ implies $v_1...v_n \in W'$

Notation

$$\mathfrak{M}'\rightarrowtail\mathfrak{M}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition

If $\mathfrak{M}' \rightarrowtail \mathfrak{M}$ and $w \in W'$ then:

$$\mathfrak{M}', w \iff \mathfrak{M}, w$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof.

Induction on formulas.

The smallest generated submodel of \mathfrak{M} containing w is called a *point-generated* submodel of \mathfrak{M} and is *generated* by w.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Sub-trees of a tree are generated by their roots.

A map $f: W \to W'$ is called a *homomorphism* from \mathfrak{M} to \mathfrak{M}' if:

- $R_{\Delta}wv_1...v_n \Rightarrow R'_{\Delta}f(w)f(v_1)...f(v_n)$
- $w \in V(p) \Rightarrow f(w) \in V'(p)$

Model homomorphisms do not preserve satisfaction!

...but they are appropriate for a certain fragment of modal logic, the *positive-existential formulas*. Cf. Lyndon's theorem in model theory.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Again, a certain "backwards" condition is missing. A first attempt at a fix:

Definition

The map f is said to be a strong homomorphism if:

•
$$R_{\Delta}wv_1...v_n \iff R'_{\Delta}f(w)f(v_1)...f(v_n)$$

•
$$w \in V(p) \quad \Leftrightarrow \quad f(w) \in V'(p)$$

Too strong!

Example

Compare a *reflexive point* with $(\mathbb{N}, \text{successor})$...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $f: \mathfrak{M} \to \mathfrak{M}'$ be a strong model homomorphism. Then f is said to be:

- an embedding if it is injective,
- an isomorphism if it is injective and surjective.

... a.k.a. *p-morphisms*, for "pseudo-epimorphism".

Definition

The map f is said to be a *bounded morphism* if:

•
$$R_{\Delta}wv_1...v_n \Rightarrow R'_{\Delta}f(w)f(v_1)...f(v_n)$$

(Back condition:) if R[']_∆f(w)v[']₁...v[']_n then there exist v₁,..., v_n such that:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$I R_{\Delta} w v_1 ... v_n and$$

$$I (v_i) = v'_i$$

•
$$w \in V(p) \quad \Leftrightarrow \quad f(w) \in V'(p)$$

For basic modal language:

The map f is a bounded morphism if, for all $u \in W$:

- $u \in V(p)$ iff $f(u) \in V(p)$ for all p, and
- R'[f(u)] = f[R[u]]

If there is a *surjective* bounded morphism $f : \mathfrak{M} \to \mathfrak{M}'$, we say that \mathfrak{M}' is a *bounded morphic image* of \mathfrak{M} and write $\mathfrak{M} \twoheadrightarrow \mathfrak{M}'$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition

Let $f : \mathfrak{M} \to \mathfrak{M}'$ be a bounded morphism and $w \in W$. Then:

 $\mathfrak{M}, w \iff \mathfrak{M}', f(w)$

An important corollary is that modal logic has the *tree-like model* property.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ