Lecture 2: generated submodels, disjoint unions and bounded morphisms

September 14, 2016

Expressive power in logic

A fact of life

Typically, the more expressive power a logical system has, the worse it behaves computationally.

- Second-order logic can describe the natural numbers up to isomorphism, is not recursively axiomatizable.
- First-order logic is recursively axiomatizable but admits non-standard models.

We are generally looking for compromises between good expressive power and good computational behavior (decidability, complete axiom systems etc.). So it is imperative to have a good understanding of the expressive power of logical systems!

One side of the equation is easy: a proof that property can be expressed in system \mathfrak{L} just provides a formula that expresses it.

Proposition

FOL can express counting quantifiers, $\exists^{\geq n} x P x$.

Proof.

$$
\exists x_{1} \ldots \exists x_{n}\left(P x_{1} \wedge \ldots \wedge P x_{n} \wedge \bigwedge_{1 \leq i<j \leq n} x_{i} \neq x_{j}\right)
$$

Limits on expressive power

How do we prove that a property is not expressible in a logic? This is typically much more subtle!

Proposition
FOL can not express the infinite counting quantifier, $\exists^{\infty} x P_{x}$.

Proof.

Compactness, ultra-products, EF-games...

Example: the global modality

$$
\mathfrak{M}, w \Vdash \mathrm{E} \varphi \Leftrightarrow \exists w^{\prime} \in W: \mathfrak{M}, w^{\prime} \Vdash \varphi
$$

Shouldn't be definable in basic modal logic: not a "local" property!
But how to prove it?

Disjoint unions

Definition

Let $\left\{\mathfrak{M}_{i}\right\}_{i \in I}$ be a family of models of similarity type (O, τ). The disjoint union

$$
\sum_{i \in I} \mathfrak{M}_{i}=\left(W^{\prime}, R^{\prime}, V^{\prime}\right)
$$

is given by:

- $W^{\prime}=\bigcup_{i \in I} W_{i} \times\{i\}$
- $R_{\Delta}^{\prime}=\bigcup_{i \in I}\left\{\left\langle(u, i),\left(v_{1}, i\right), \ldots,\left(v_{n}, i\right)\right\rangle \mid\left\langle u, v_{1}, \ldots, v_{n}\right\rangle \in R_{\Delta}^{i}\right\}$
- $V^{\prime}(p)=\bigcup_{i \in I} V_{i}(p) \times\{i\}$

Notation

Disjoint union of $\mathfrak{M}_{1}, \mathfrak{M}_{2}$ written as $\mathfrak{M}_{1}+\mathfrak{M}_{2}$.

Or in plain words...

The disjoint union of models $\left\{\mathfrak{M}_{i}\right\}_{i \in I}$ is obtained by placing one copy of each \mathfrak{M}_{i} side by side.

A first preservation result

Proposition

For formula φ, each $i \in I$ and each $u \in W_{i}$:

$$
\mathfrak{M}_{i}, w \Vdash \varphi \Leftrightarrow \sum_{i \in l} \mathfrak{M}_{i},(w, i) \Vdash \varphi
$$

Proof.

Induction on φ.

Notation

$$
\mathfrak{M}_{i}, w \leadsto \sum_{i \in I} \mathfrak{M}_{i},(w, i)
$$

Proposition

The global modality is not definable in the modal language of any similarity type.

Proof.

...is now a piece of cake!

Submodels

Definition

Let $\mathfrak{M}=(W, R, V)$ be any model. Then $\mathfrak{M}^{\prime}=\left(W^{\prime}, R^{\prime}, V^{\prime}\right)$ is a submodel of \mathfrak{M} if:

- $W^{\prime} \subseteq W$
- $R_{\Delta}^{\prime}=R_{\Delta} \cap W^{\prime n+1}(\tau(\Delta)=n)$
- $V^{\prime}(p)=V(p) \cap W^{\prime}$

Submodels do not preserve satisfaction!

Generated submodels

Definition

Let \mathfrak{M}^{\prime} be a submodel of \mathfrak{M}. Then \mathfrak{M}^{\prime} is called a generated submodel of \mathfrak{M} if the following "backwards" condition holds:

$$
u \in W^{\prime} \text { and } R_{\Delta} u v_{1} \ldots v_{n} \text { implies } v_{1} \ldots v_{n} \in W^{\prime}
$$

Notation

$$
\mathfrak{M}^{\prime} \mapsto \mathfrak{M}
$$

Proposition

If $\mathfrak{M}^{\prime} \mapsto \mathfrak{M}$ and $w \in W^{\prime}$ then:

$$
\mathfrak{M}^{\prime}, w \leftrightarrow \mathfrak{M}, w
$$

Proof.

Induction on formulas.

Point-generated submodels

Definition

The smallest generated submodel of \mathfrak{M} containing w is called a point-generated submodel of \mathfrak{M} and is generated by w.

Example

Sub-trees of a tree are generated by their roots.

Homomorphisms of models

Definition

A map $f: W \rightarrow W^{\prime}$ is called a homomorphism from \mathfrak{M} to \mathfrak{M}^{\prime} if:

- $R_{\Delta} w v_{1} \ldots v_{n} \Rightarrow R_{\Delta}^{\prime} f(w) f\left(v_{1}\right) \ldots f\left(v_{n}\right)$
- $w \in V(p) \quad \Rightarrow f(w) \in V^{\prime}(p)$

Model homomorphisms do not preserve satisfaction!
...but they are appropriate for a certain fragment of modal logic, the positive-existential formulas. Cf. Lyndon's theorem in model theory.

Strong homomorphisms

Again, a certain "backwards" condition is missing. A first attempt at a fix:

Definition

The map f is said to be a strong homomorphism if:

- $R_{\Delta} w v_{1} \ldots v_{n} \Leftrightarrow R_{\Delta}^{\prime} f(w) f\left(v_{1}\right) \ldots f\left(v_{n}\right)$
- $w \in V(p) \Leftrightarrow f(w) \in V^{\prime}(p)$

Too strong!
Example
Compare a reflexive point with (\mathbb{N}, successor)...

Isomorphism and embedding

Definition

Let $f: \mathfrak{M} \rightarrow \mathfrak{M}^{\prime}$ be a strong model homomorphism. Then f is said to be:

- an embedding if it is injective,
- an isomorphism if it is injective and surjective.

Bounded morphisms

... a.k.a. p-morphisms, for "pseudo-epimorphism".

Definition

The map f is said to be a bounded morphism if:

- $R_{\Delta} w v_{1} \ldots v_{n} \Rightarrow R_{\Delta}^{\prime} f(w) f\left(v_{1}\right) \ldots f\left(v_{n}\right)$
- (Back condition:) if $R_{\Delta}^{\prime} f(w) v_{1}^{\prime} \ldots v_{n}^{\prime}$ then there exist v_{1}, \ldots, v_{n} such that:
(1) $R_{\Delta} w v_{1} \ldots v_{n}$ and
(2) $f\left(v_{i}\right)=v_{i}^{\prime}$
- $w \in V(p) \Leftrightarrow f(w) \in V^{\prime}(p)$

For basic modal language:

The map f is a bounded morphism if, for all $u \in W$:

- $u \in V(p)$ iff $f(u) \in V(p)$ for all p, and
- $R^{\prime}[f(u)]=f[R[u]]$

$$
\begin{aligned}
& \mathcal{P}(W) \xrightarrow{f[-]} \mathcal{P}\left(W^{\prime}\right) \\
& R[-] \uparrow{ }^{\prime} \uparrow[-] \\
& W \longrightarrow W^{\prime}
\end{aligned}
$$

Definition

If there is a surjective bounded morphism $f: \mathfrak{M} \rightarrow \mathfrak{M}^{\prime}$, we say that \mathfrak{M}^{\prime} is a bounded morphic image of \mathfrak{M} and write $\mathfrak{M} \rightarrow \mathfrak{M}^{\prime}$.

Proposition

Let $f: \mathfrak{M} \rightarrow \mathfrak{M}^{\prime}$ be a bounded morphism and $w \in W$. Then:

$$
\mathfrak{M}, w \quad \leftrightarrow \quad \mathfrak{M}^{\prime}, f(w)
$$

An important corollary is that modal logic has the tree-like model property.

