EXERCISE CLASS 25-11-2016: GENERAL FRAMES, FMP AND DECIDABILITY

- (1) Show that if C is a class of general (temporal) frames then Log(C) is a normal modal (temporal) logic.
- (2) General frames and a consistent logic without Kripke frames
 - (a) Show that $(\mathbb{N}, <, A)$, where $A = \operatorname{FinCofin}(\mathbb{N})$ (the collection of finite and cofinite subsets of \mathbb{N}) is a general frame.
 - (b) Show that $GFp \to FGp$ is valid on this general frame.
 - (c) Prove that the logic:

$$K_t ThoM = K_t Tho + GFp \rightarrow FGp$$

is consistent.

- (3) Let φ be your favourite formula in the language of basic modal logic. Construct a general frame $\mathfrak{f} = (\mathfrak{F}, A)$ such that $\mathfrak{F} \not\models \varphi$ but $\mathfrak{f} \models \varphi$.
- (4) Let $\mathfrak{M} = (\mathfrak{F}, V)$ be model and let $A_{\mathfrak{M}} := \{V(\varphi) : \varphi \in Form(\tau, \Phi)\}$. Show that $\mathfrak{f}_{\mathfrak{M}} := (\mathfrak{F}, A_{\mathfrak{M}})$ is a general frame.
- (5) Recall that **Den** is the normal modal logic $\mathbf{K} + (\Box \Box p \rightarrow \Box p)$
 - (a) Prove that **Den** is sound and complete with respect to the class of dense frames.
 - (b) Show that **Den** has the finite model property and is decidable.

1. Additional exercises

(1) Use Exercise 4 to conclude that every normal modal logic is sound and complete with respect to some class of general frames. *Hint: Show that* $\mathfrak{f}_{\mathfrak{M}^L} \Vdash L$ for every consistent normal modal logic L