Exercise class 4-11-2016: Soundness and Hilbert systems

(1) Let \mathcal{C} be a class of frames. Show that

$$\mathsf{Log}(\mathcal{C}):=\{\varphi\colon \forall\mathfrak{F}\in\mathcal{C}\ (\mathfrak{F}\Vdash\varphi)\}$$

is a normal modal logic. Conclude that ${\bf K}$ is sound w.r.t. the class of all frames.

Let \mathcal{C}_{mod} be a class of Kripke models. Is the set of formulas

 $\mathsf{Th}(\mathcal{C}_{mod}) := \{ \phi \colon \forall \mathfrak{M} \in \mathcal{C}_{mod} \ (\mathfrak{M} \Vdash \phi) \}$

a normal modal logic?

- (2) Let Σ be a set of formulas. Show that:
 - If $\varphi \to \psi$ is a propositional tautology, then $\vdash_{\Sigma} \varphi$ implies $\vdash_{\Sigma} \psi$.
 - If $\vdash_{\Sigma} \varphi$ and $\vdash_{\Sigma} \psi$ then $\vdash_{\Sigma} \varphi \land \psi$.
 - If $\vdash_{\Sigma} \varphi \to \psi$ and $\vdash_{\Sigma} \psi \to \chi$ then $\vdash_{\Sigma} \varphi \to \chi$.
 - If $\vdash_{\Sigma} \varphi \to \psi$ and $\vdash_{\Sigma} \varphi' \to \psi'$ then $\vdash_{\Sigma} (\varphi \land \varphi') \to (\psi \land \psi')$

(3) Let Σ be a set of formulas. Prove that

- $\vdash_{\Sigma} \varphi \to \psi$ implies $\vdash_{\Sigma} \Box \varphi \to \Box \psi$
- $\vdash_{\Sigma} \varphi \to \psi$ implies $\vdash_{\Sigma} \Diamond \varphi \to \Diamond \psi$
- $\vdash_{\Sigma} \Box(\varphi \land \psi) \leftrightarrow (\Box \varphi \land \Box \psi)$
- $\vdash_{\Sigma} \diamondsuit(\varphi \lor \psi) \leftrightarrow (\diamondsuit\varphi \lor \diamondsuit\psi)$
- (4) (Equivalent replacement). Let $\varphi[\psi]$ be a formula that contains ψ as a subformula. Let $\varphi[\chi]$ denote the formula where ψ in $\varphi[\psi]$ is replaced with the formula χ . Let Σ be a set of formulas. Show that

 $\vdash_{\Sigma} \psi \leftrightarrow \chi \quad \text{implies} \quad \vdash_{\Sigma} \varphi[\psi] \leftrightarrow \varphi[\chi].$

- (5) Show that $\not\vdash_{\mathbf{S4}} p \to \Box \Diamond p$ and that $\not\vdash_{\mathbf{K}} \Box p \lor \Box \neg p$.
- (6) A normal modal logic L is *Halldén complete* if for every pair of formulas ϕ and ψ with no common variables we have that

$$\vdash_L \phi \lor \psi$$
 implies $\vdash_L \phi$ or $\vdash_L \psi$.

Is the normal modal logic ${\bf K}$ Halldén complete? Give proof or counter-example.

 $\left(7\right)$ This exercise is for those of you who like syntactical manipulations.

$$\mathbf{GL} = \mathbf{K} + (\Box(\Box p \to p) \to \Box p).$$

Try to find a **GL**–proof of $\Box p \to \Box \Box p$, i.e., show that $\vdash_{\mathbf{GL}} \Box p \to \Box \Box p$ (As we will see later this can also be shown semantically.)

Hint: Don't try to hard.