# Introduction to Modal Logic Exercise class 4 

October 13, 2016
(1) Show that $\diamond p \rightarrow \diamond \diamond p$ characterizes dense frames. In other words, show that

$$
F \models \diamond p \rightarrow \diamond \diamond p \text { iff } F \text { has the density property. }
$$

Density: $\forall x, y(x R y \rightarrow \exists z(x R z \wedge z R y))$.
(2) Prove that the validity of formulas is preserved under taking bounded morphic images and disjoint unions.
(3) Show that the following properties of frames are not modally definable
(a) $|W|>23$,
(b) every state has at most one predecessor,
(4) Consider the language with three diamonds, $\diamond_{1}, \diamond_{2}$ and $\diamond_{3}$. For each of the frame conditions on the corresponding accessibility relations below, find out whether it is modally definable or not:
(a) $R_{1}$ is the union of $R_{2}$ and $R_{3}$,
(b) $R_{1}$ is the intersection of $R_{2}$ and $R_{3}$,
(c) $R_{1}$ is the complement of $R_{2}$.
(5) Let

$$
\varphi:=\square \diamond \square \diamond p \leftrightarrow \square \diamond p
$$

(a) Show that $\varphi$ is not valid on all frames.
(b) Show that $\varphi$ is valid on all transitive and reflexive frames.

