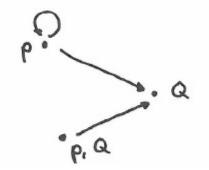
Introduction to Modal Logic Exercise class 2

September 22, 2016

- (1) Let $\Theta = \{p\}$ be the set of propositional variables and $\mathcal{M}_1 = (W_1, R_a, R_b, V)$ such that:
 - $W_1 = \{w_i : i \in \mathbb{N}\} \cup \{v_i : i \in \mathbb{N}\}$
 - $R_a = \{(w_i, v_i) : i \in \mathbb{N}\}$
 - $R_b = \{(v_i, w_{i+1}) : i \in \mathbb{N}\}$
 - $V(p) = W_1$

Construct a finite model \mathcal{M}_2 such that is point bisimilar to \mathcal{M}_1 .

(2) Look at the following model:



- Compute the smallest and largest filtration for (a) $\Sigma = \{p, q\}$, (b) $\Sigma = \{p, q, \diamondsuit p\}$, (c) $\Sigma = \{q\}$
- Can you find a set of formulas Σ so that the largest and smallest filtration on M through Σ coincide?
- (3) Show that if φ is satisfied on some reflexive model then φ is satisfied on a finite reflexive model.
- (4) Is every filtration of a symmetric model symmetric?