EXERCISE CLASS 2-12-2016: EXERCISES ON PDL

- (1) Correspondence for **PDL**-formulas.
 - (a) $\langle \pi_1; \pi_2 \rangle p \leftrightarrow \langle \pi_1 \rangle \langle \pi_2 \rangle p$ is valid on a frame $(W, R_{\pi_1}, R_{\pi_2})$ iff $R_{\pi_1;\pi_2} = R_{\pi_1} \circ R_{\pi_2}$. (b) $\langle \pi_1 \cup \pi_2 \rangle p \leftrightarrow \langle \pi_1 \rangle p \lor \langle \pi_2 \rangle p$ is valid on a frame $(W, R_{\pi_1}, R_{\pi_2})$ iff $R_{\pi_1 \cup \pi_2} = R_{\pi_1} \cup R_{\pi_2}$.
 - (c) $p \vee \langle \pi \rangle \langle \pi^* \rangle p \to \langle \pi^* \rangle p$ is valid on a frame (W, R_{π}, R_{π^*}) iff $(R_{\pi})^* \subseteq R_{\pi^*}$.
- (2) A logic L is compact for the class C of Kripke frames if the following condition is met: for every set of formulas Σ, if every finite subset of Σ is satisfiable in a model based on a frame in C, then Σ itself can be satisfied in a model based on a frame in C. Show that **PDL** is not compact for the class of regular frames.
- (3) Show that the induction axiom $[\pi^*](p \to [\pi]p) \to (p \to [\pi^*]p)$ is not canonical.
- (4) Let Σ be a non-empty finite set of formulas in the language of **PDL**. Prove that $At(\Sigma) = \{\Gamma \cap \neg FL(\Sigma) \colon \Gamma \text{ a } \mathbf{PDL}\text{-MCS}\}.$
- (5) Prove the properties (i)–(iv) of atoms listed in Lemma 4.81.
- (6) Show that the finite models defined in the **PDL** completeness proof can be obtain (up to isomorphism) via certain filtrations.

1. Additional exercises

- (1) Explain why **PDL** is a decidable logic.
- (2) Let Σ be a non-empty finite set of **PDL**-formulas. Show that $\vdash_{\mathbf{PDL}} \bigvee_{A \in At(\Sigma)} \widehat{A}$.
- (3) Let $\Sigma = \{\varphi\}$ be a singleton set (of formulas in the language of **PDL**). Show that $\neg FL(\Sigma)$ is finite. *Hint: This is not so easy.*

¹In BdRV $R_{\pi_1} \circ R_{\pi_2}$ is also denoted $R_{\pi_1}; R_{\pi_2}$.