Introduction to Modal Logic. Exercise class 1

September 15, 2016

- (1) Let $W_1 = \{1, 2, 3, 4\}, W_2 = \{1, 2, 3, 4\}, R_1 = \{(1, 2), (2, 4), (3, 1), (3, 4)\}, R_2 = \{(1, 2), (1, 3), (2, 4), (3, 4)\}.$
 - (a) Draw the frames $F_1 = (W_1, R_1)$ and $F_2 = (W_2, R_2)$ and extend R_2 with (1, 1), (2, 2), (3, 3), (4, 4). Do frame F_1 and the extended version of F_2 validate the same formulas? Explain your answer.
 - (b) Consider a valuation V_1 for F_1 and a valuation V_2 for F_2 such that $V_1(p) = V_2(p) = \{2, 3, 4\}, V_2(q) = \{3\}$ and $V_1(t) = V_2(t) = \emptyset$ for all the other propositional variables $t \neq p, q$.
 - i. Does the world 3 in M_1 satisfies the same formulas as the world 2 in M_2 ?
 - ii. How can you modify the frames (the minimum amount of modifications) so that the world $3 \in M_1$ satisfy the same formulas as the world $2 \in M_2$? Hint: Think of modifying one of the relations R_i .
 - iii. With the valuation V_2 , the world 1 in M_2 and the world 4 in M_2 satisfy $\Box p$ simultaneously?
 - iv. What changes you would need to do in the model M_2 so that the worlds 1 and 4 in M_2 satisfy the same propositional variables, $\Diamond p$, $\Box p$ and $\Diamond q$? Evaluate if with your changes they satisfy the same formulas.

Explain your answers and, if necessary, make drawings.

(2) In the model below determine where the formula $\varphi := \Diamond \Box \Diamond p$ is true. Compute $\neg \varphi$ and do the same analysis.

(3) Consider the following formulas:

- (a) $\Diamond p \to \Diamond \Diamond p$
- (b) $(\Box p \land \Diamond q) \rightarrow \Diamond (p \land q)$
- (c) $\Diamond (p \lor q) \to (\Diamond p \lor \Diamond q)$
- (d) $\Box \Diamond p \rightarrow \Diamond \Box p$
 - i. Which of these formulas are valid/not valid in all frames? Provide a formal proof or a counterexample.
 - ii. Find a class of frames for which the formula $\Diamond p \to \Diamond \Diamond p$ is valid.
- (4) Is it possible to express the following operator in the basic modal language? $\mathfrak{M}, w \models D\varphi$ iff there is some $x \neq w : \mathfrak{M}, x \models \varphi$
- (5) Consider the model $\mathfrak{M} = (W, R, V)$ such that $W = \{a, b, c, d\}, R = \{(a, b), (a, c), (b, d), (c, d), (d, d)\}$ and $V(p) = \{b, c, d\}$ and $V(q) = \emptyset$ for all the other propositional variables $q \in \Theta$.

Use this model to show that bounded morphisms and generated submodels (may) yield different models.

- (6) Solve Exercise 2.2.1 (page 71) of Blackburn et al and answer in detail the following questions:
 - (a) Is the model in the left a generated submodel of the model in the right?
 - (b) Can you find a generated submodel for each of these models?
- (7) Consider the model (\mathbb{N}, R, V) such that nRm iff n = m+1, V(p) = ODD, V(q) = EVEN (ODD is the set of all odd numbers and EVEN is the set of all even numbers) and the valuation is empty for all the other propositional variables. Find a bounded morphism for (\mathbb{N}, R, V) .