#### Speech and Language Processing

#### Chapter 9 of SLP Automatic Speech Recognition

## **Outline for ASR**

- ASR Architecture
  - The Noisy Channel Model
- Five "easy" pieces of an ASR system
  - 1) Feature Extraction
  - 2) Acoustic Model
  - 3) Language Model
  - 4) Lexicon/Pronunciation Model (Introduction to HMMs again)
  - 5) Decoder
- Evaluation

#### **Speech Recognition**

- Applications of Speech Recognition (ASR)
  - Dictation
  - Telephone-based Information (directions, air travel, banking, etc)
  - Hands-free (in car)
  - Speaker Identification
  - Language Identification
  - Second language ('L2') (accent reduction)
  - Audio archive searching

#### LVCSR

- Large Vocabulary Continuous Speech Recognition
- ~20,000-64,000 words
- Speaker independent (vs. speakerdependent)
- Continuous speech (vs isolated-word)

#### **Current error rates**

Ballpark numbers; exact numbers depend very much on the specific corpus

| Task                     | Vocabulary | Error Rate% |
|--------------------------|------------|-------------|
| Digits                   | 11         | 0.5         |
| WSJ read speech          | 5K         | 3           |
| WSJ read speech          | 20K        | 3           |
| Broadcast news           | 64,000+    | 10          |
| Conversational Telephone | 64,000+    | 20          |

#### **HSR versus ASR**

| Task                     | Vocab | ASR | Hum SR |
|--------------------------|-------|-----|--------|
| <b>Continuous digits</b> | 11    | .5  | .009   |
| WSJ 1995 clean           | 5K    | 3   | 0.9    |
| WSJ 1995 w/noise         | 5K    | 9   | 1.1    |
| SWBD 2004                | 65K   | 20  | 4      |

#### Conclusions:

3/20/2009

- Machines about 5 times worse than humans
- Gap increases with noisy speech
- These numbers are rough, take with grain of salt

# Why is conversational speech harder?

- A piece of an utterance without context
- The same utterance with more context

## **LVCSR Design Intuition**

- Build a statistical model of the speech-towords process
- Collect lots and lots of speech, and transcribe all the words.
- Train the model on the labeled speech
- Paradigm: Supervised Machine Learning + Search

#### Speech Recognition Architecture



#### **The Noisy Channel Model**



- Search through space of all possible sentences.
- Pick the one that is most probable given 3/20/2009 the waveform.

# The Noisy Channel Model (II)

- What is the most likely sentence out of all sentences in the language L given some acoustic input O?
- Treat acoustic input O as sequence of individual observations

• 
$$O = O_1, O_2, O_3, ..., O_t$$

Define a sentence as a sequence of words:

• 
$$W = W_1, W_2, W_3, ..., W_n$$

# Noisy Channel Model (III)

- Probabilistic implication: Pick the highest prob S = W:  $\hat{W} = \underset{W \in L}{\operatorname{argmax}} P(W \mid O)$
- We can use Bayes rule to rewrite this:  $\hat{W} = \underset{W \in L}{\operatorname{argmax}} \frac{P(O | W)P(W)}{P(O)}$
- Since denominator is the same for each candidate sentence W, we can ignore it for the argmax:

$$\hat{W} = \operatorname*{argmax}_{W \in L} P(O | W) P(W)$$

#### **Noisy channel model**



#### The noisy channel model

 Ignoring the denominator leaves us with two factors:





#### Architecture

- HMMs, Lexicons, and Pronunciation
- Feature extraction
- Acoustic Modeling
- Decoding
- Language Modeling (seen this already)

#### Lexicon

- A list of words
- Each one with a pronunciation in terms of phones
- We get these from on-line pronunciation dictionary, such as CMU dictionary: 127K words
- We'll represent the lexicon as an HMM

#### **HMM Model**

#### Per woord (aantal afhankelijk van het lexicon)

- kan alleen voor zeer kleine lexica (cijfers bv)
- Per foneem
  - (zonder contekst: ca 40 modellen)
    - contekst heeft wel veel invloed op uitspraak

#### HMMs for speech: HMM for the word "six"



# Spectra in phones are not homogeneous!



#### Each phone has 3 subphones



#### HMM van een foneem, met drie states: begin + midden + eind

## **Resulting HMM word model** for "six" with their subphones



# HMM for the digit recognition task



3/20/2009

23

#### **Detecting Phones**

#### Two stages

- Feature extraction
  - Relevante eigenschappen uit het akoestisch spraaksignaal extraheren
  - Basically a slice of a spectrogram
- Building a phone classifier

## Feature extraction MFCC: Mel-Frequency Cepstral Coefficients



Geïnspireerd door menselijke geluidverwerking:

- ~logaritmische frequentie as: mel-schaal

#### **MFCC process: windowing**



3/20/2009

#### **MFCC process: windowing**



3/20/2009

#### Hamming window on the signal, and then computing the spectrum



Het cepstrum beschrijft het omhullende spectrum

#### Eigenschappen per frame

- 12 MFCC coefficienten (spectrum)
- 1 energie niveau
- Om variatie in tijd te "vangen" ook het verschil met het vorige frame opnemen: Delta-MFCC, Delta-energie
- En om variatie in de variatie mee te nemen, dat nogmaals doen: Delta-Delta-MFCC, Delta-Delta-energie

#### **Final Feature Vector**

- 39 Features per 10 ms frame:
  - 12 MFCC features
  - 12 Delta MFCC features
  - 12 Delta-Delta MFCC features
  - 1 (log) frame energy
  - 1 Delta (log) frame energy
  - 1 Delta-Delta (log frame energy)
- So each frame represented by a 39D vector

## Acoustic Modeling (= Phone detection)

- Given a 39-dimensional vector corresponding to the observation of one frame o<sub>i</sub>
- And given a phone q we want to detect
- Compute p(o<sub>i</sub>|q)
- Most popular method:
  - GMM (Gaussian mixture models)
- Other methods
  - Neural nets, CRFs, SVM, etc

#### **Gaussische verdeling**

- Ook wel Normale verdeling genoemd
- Kenmerken:
  - Gemiddelde
  - Spreiding
- Een variabele in de spraakvector heeft geen vaste waarde, maar spreidt rond een gemiddelde (in een HMM state)

## Gaussians for Acoustic Modeling

A Gaussian is parameterized by a mean and a variance:



#### **Complex!**

- Niet 1 maar 39 variabelen (en verdelingen)
- Per variabele is 1 normale verdeling vaak niet genoeg, maar moeten er meer zijn (mixture)

#### Where we are

- Given: A wave file
- Goal: output a string of words
- What we know: the acoustic model
  - How to turn the wavefile into a sequence of acoustic feature vectors, one every 10 ms
  - If we had a complete phonetic labeling of the training set, we know how to train a gaussian "phone detector" for each phone.
  - We also know how to represent each word as a sequence of phones
- What we knew from Chapter 4: the language model
- To do:
  - Seeing all this back in the context of HMMs
  - Search: how to combine the language model and the acoustic model to produce a sequence of words

#### Decoding

In principle:

$$\widehat{W} = \underset{W \in \mathscr{L}}{\operatorname{argmax}} \ \widetilde{P(O|W)} \ \widetilde{P(W)}$$

In practice:

 $\hat{W} = \underset{W \in \mathscr{L}}{\operatorname{argmax}} P(O|W)P(W)^{LMSF}$   $\underset{W \in \mathscr{L}}{\operatorname{scale factor}}$   $\underset{Onafhankelijk)}{\operatorname{scale factor}}$ 

 $\hat{W} = \operatorname*{argmax}_{W \in \mathscr{L}} P(O|W) P(W)^{LMSF} WIP^{N} \underset{\text{(lange zinnen worden anders)}}{\mathsf{word insertion}}$ 

 $\hat{W} = \operatorname*{argmax}_{W \in \mathscr{L}} \log P(O|W) + LMSF \times \log P(W) + N \times \log WIP$ 

#### Why is ASR decoding hard?

[ay d ih s hh er d s ah m th ih ng ax b aw m uh v ih ng r ih s en l ih]

#### **HMMs for speech**

| $Q = q_1 q_2 \dots q_N$                      | a set of states corresponding to subphones                                                                                                                                                                                                                                                                |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $A = a_{01}a_{02}\ldots a_{n1}\ldots a_{nn}$ | a transition probability matrix $A$ , each $a_{ij}$ representing the probability for each subphone of taking a self-loop or going to the next subphone.<br>Together, $Q$ and $A$ implement a pronunciation lexicon, an HMM state graph structure for each word that the system is capable of recognizing. |
| $B = b_i(o_t)$                               | A set of observation likelihoods:, also called<br>emission probabilities, each expressing the<br>probability of a cepstral feature vector (observa-<br>tion $o_t$ ) being generated from subphone state <i>i</i> .                                                                                        |
|                                              |                                                                                                                                                                                                                                                                                                           |

#### **HMM for digit recognition task**



## The Evaluation (forward) problem for speech

- The observation sequence O is a series of MFCC vectors
- The hidden states W are the phones and words
- For a given phone/word string W, our job is to evaluate P(O|W)
- Intuition: how likely is the input to have been generated by just that word string W

[dit is een pad maximalisatie probleem]

#### **Evaluation for speech: Summing** over all different paths!

- f ay ay ay ay v v v v
- ffay ay ay ay v v v
- fffay ay ay ay v
- ffay ay ay ay ay ay v
- ffay ay ay ay ay ay ay ay v
- ffayvvvvvv

#### The forward lattice for "five"



#### The forward trellis for "five"

#### Waarden voorwaardse variabele

| V    |    | 0   |    | 0   | 0. | 008 | 0.0 | 0093 | 0.  | .0114 | 0.  | 00703  | 0.  | .00345 | 0.  | 00306  | 0.  | 00206  | 0.  | 00117  |
|------|----|-----|----|-----|----|-----|-----|------|-----|-------|-----|--------|-----|--------|-----|--------|-----|--------|-----|--------|
| AY   |    | 0   | 0  | .04 | 0. | 054 | 0.0 | 0664 | 0.  | .0355 | (   | 0.016  | 0.  | .00676 | 0.  | 00208  | 0.0 | 000532 | 0.0 | 000109 |
| F    | (  | ).8 | 0  | .32 | 0. | 112 | 0.0 | 0224 | 0.0 | 00448 | 0.0 | 000896 | 0.0 | 000179 | 4.4 | 18e-05 | 1.  | 12e-05 | 2.  | .8e-06 |
| Time |    | 1   |    | 2   |    | 3   |     | 4    |     | 5     |     | 6      |     | 7      |     | 8      |     | 9      |     | 10     |
|      | f  | 0.8 | f  | 0.8 | f  | 0.7 | f   | 0.4  | f   | 0.4   | f   | 0.4    | f   | 0.4    | f   | 0.5    | f   | 0.5    | f   | 0.5    |
|      | ay | 0.1 | ay | 0.1 | ay | 0.3 | ay  | 0.8  | ay  | 0.8   | ay  | 0.8    | ay  | 0.8    | ay  | 0.6    | ay  | 0.5    | ay  | 0.4    |
| B    | v  | 0.6 | v  | 0.6 | v  | 0.4 | v   | 0.3  | v   | 0.3   | v   | 0.3    | v   | 0.3    | v   | 0.6    | v   | 0.8    | v   | 0.9    |
|      | р  | 0.4 | р  | 0.4 | р  | 0.2 | р   | 0.1  | р   | 0.1   | р   | 0.1    | р   | 0.1    | р   | 0.1    | р   | 0.3    | р   | 0.3    |
|      | iy | 0.1 | iy | 0.1 | iy | 0.3 | iy  | 0.6  | iy  | 0.6   | iy  | 0.6    | iy  | 0.6    | iy  | 0.5    | iy  | 0.5    | iy  | 0.4    |

Output waarschijnlijkheden

#### Viterbi trellis for "five"



#### Viterbi trellis for "five"

#### Waarden viterbi variabele

| V    |    | 0   |    | 0   | 0. | 008 | 0.0 | 0072   | 0.0 | 0672    | 0. | 00403    | 0. | 00188    | 0. | 00161    | 0.0 | 00667    | 0.0 | 00493    |  |
|------|----|-----|----|-----|----|-----|-----|--------|-----|---------|----|----------|----|----------|----|----------|-----|----------|-----|----------|--|
| AY   |    | 0   | 0  | .04 | 0. | 048 | 0.0 | 0.0448 |     | 0.0269  |    | 0.0125   |    | 0.00538  |    | 0.00167  |     | 0.000428 |     | 8.78e-05 |  |
| F    | (  | 0.8 | 0  | .32 | 0. | 112 | 0.0 | 0.0224 |     | 0.00448 |    | 0.000896 |    | 0.000179 |    | 4.48e-05 |     | 1.12e-05 |     | 2.8e-06  |  |
| Time |    | 1   |    | 2   |    | 3   |     | 4      |     | 5       |    | 6        |    | 7        |    | 8        |     | 9        |     | 10       |  |
|      | f  | 0.8 | f  | 0.8 | f  | 0.7 | f   | 0.4    | f   | 0.4     | f  | 0.4      | f  | 0.4      | f  | 0.5      | f   | 0.5      | f   | 0.5      |  |
|      | ay | 0.1 | ay | 0.1 | ay | 0.3 | ay  | 0.8    | ay  | 0.8     | ay | 0.8      | ay | 0.8      | ay | 0.6      | ay  | 0.5      | ay  | 0.4      |  |
| B    | v  | 0.6 | v  | 0.6 | v  | 0.4 | v   | 0.3    | v   | 0.3     | v  | 0.3      | v  | 0.3      | v  | 0.6      | v   | 0.8      | v   | 0.9      |  |
|      | p  | 0.4 | р  | 0.4 | р  | 0.2 | р   | 0.1    | р   | 0.1     | р  | 0.1      | р  | 0.1      | р  | 0.1      | р   | 0.3      | р   | 0.3      |  |
|      | iy | 0.1 | iy | 0.1 | iy | 0.3 | iy  | 0.6    | iy  | 0.6     | iy | 0.6      | iy | 0.6      | iy | 0.5      | iy  | 0.5      | iy  | 0.4      |  |

#### Search space with bigrams [verbindingen tussen woorden]



#### Viterbi trellis

#### [bij meerdere verbonden woorden]



netwerk per woord

#### Viterbi backtrace



# Training

#### Gelabelde spraak

- tijdrovend en duur
- zeker voor subphones niet mogelijk
- maar `tellen' zou dan wel voldoende zijn
- Embedded training
  - Op basis van
    - Tekst
    - Spraaksignaal
    - +uitspraaklexicon
    - +model

#### **Embedded training**

 Forward-backward algoritme vindt optimale segmentatie zelf



#### **Evaluation**

How to evaluate the word string output by a speech recognizer?

#### **Word Error Rate**

Word Error Rate =

<u>100 \* (Insertions+Substitutions + Deletions)</u> Total Word in Correct Transcript

Aligment example:REF:portable\*\*\*\* PHONE UPSTAIRS last night soHYP:portable FORM OFSTORESlast night soEvalISS

WER = 100 (1+2+0)/6 = 50%

## **NIST sctk-1.3 scoring softare:** Computing WER with sclite

- http://www.nist.gov/speech/tools/
- Sclite aligns a hypothesized text (HYP) (from the recognizer) with a correct or reference text (REF) (human transcribed)

```
id: (2347-b-013)
Scores: (#C #S #D #I) 9 3 1 2
REF: was an engineer SO I i was always with **** **** MEN UM and they
HYP: was an engineer ** AND i was always with THEM THEY ALL THAT and they
Eval: D S I I S S
```

Oplijnen zelf is weer een dynamic programming taak!

#### Sclite output for error analysis

CONFUSION PAIRS

Total (972) With >= 1 occurances (972)

| 6 | ->                                                                                | (%hesitation) ==> on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 | ->                                                                                | the ==> that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5 | ->                                                                                | but ==> that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4 | ->                                                                                | a ==> the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4 | ->                                                                                | four ==> for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4 | ->                                                                                | in ==> and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4 | ->                                                                                | there ==> that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3 | ->                                                                                | (%hesitation) ==> and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3 | ->                                                                                | (%hesitation) ==> the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3 | ->                                                                                | (a-) ==> i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3 | ->                                                                                | and ==> i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3 | ->                                                                                | and ==> in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3 | ->                                                                                | are ==> there                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 | ->                                                                                | as ==> is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3 | ->                                                                                | have ==> that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 6<br>5<br>4<br>4<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | $\begin{array}{ccccc} 6 & -> \\ 6 & -> \\ 5 & -> \\ 4 & -> \\ 4 & -> \\ 4 & -> \\ 4 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3 & -> \\ 3$ |

16: 3 -> is ==> this

#### **Better metrics than WER?**

- WER has been useful
- But should we be more concerned with meaning ("semantic error rate")?
  - Good idea, but hard to agree on
  - Has been applied in dialogue systems, where desired semantic output is more clear

#### **Summary: ASR Architecture**

- Five "easy" pieces: ASR Noisy Channel architecture
  - 1) Feature Extraction: 39 "MFCC" features
  - 2) Acoustic Model:Gaussians for computing p(o|q)
  - 3) Lexicon/Pronunciation Model
    - HMM: what phones can follow each other
  - 4) Language Model
    - N-grams for computing  $p(w_i|w_{i-1})$
  - 5) Decoder
    - Viterbi algorithm: dynamic programming for combining all these to get word sequence from speech!