Speech and Language Processing

Chapter 8 of SLP Speech Synthesis / Waveform synthesis

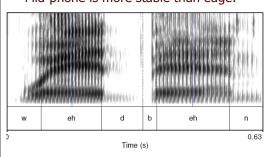
Waveform Synthesis

- Given:
 - String of phones
 - Prosody
 - Desired F0 for entire utterance
 - Duration for each phone
 - Stress value for each phone, possibly accent value
- Generate:
 - Waveforms

5/19/201

Speech and Language Processing Jurafsky and Martin

Diphone TTS architecture


- Training:
 - Choose units (kinds of diphones)
 - Record 1 speaker saying 1 example of each diphone
 - Mark the boundaries of each diphones,
 - cut each diphone out and create a diphone database
- Synthesizing an utterance,
 - grab relevant sequence of diphones from database
 - Concatenate the diphones, doing slight signal processing at boundaries
 - use signal processing to change the prosody (F0, energy, duration) of selected sequence of diphones

/19/2011

Speech and Language Processing Jurafsky and Martin

Diphones

• Mid-phone is more stable than edge:

Diphones

- mid-phone is more stable than edge
- Need O(phone²) number of units
 - Some combinations don't exist (hopefully)
 - ATT (Olive et al. 1998) system had 43 phones
 - 1849 possible diphones
 - Phonotactics ([h] only occurs before vowels), don't need to keep diphones across silence
 - Only 1172 actual diphones
 - May include stress, consonant clusters
 - So could have more
 - Lots of phonetic knowledge in design
- Database relatively small (by today's standards)
 - Around 8 megabytes for English (16 KHz 16 bit)

5/19/2011

Slide from Richard Sproat Speech and Language Processing Jurafsky and Martin

Voice

- Speaker
 - Called a voice talent
- Diphone database
 - Called a voice

5/19/2011

Speech and Language Processing Jurafsky and Martin

MBROLA

 Difoon synthese systeem (open source) (Thierry Dutoit, Mons, België)

Als ingrediënten opgeven, voor elke klank:

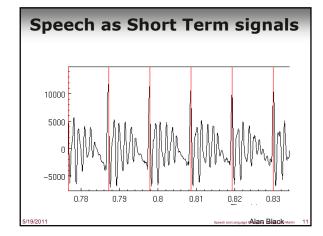
- Foneem
- Toonhoogte
- Duur

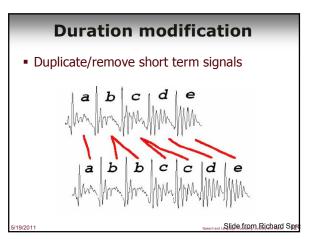
MBROLA procedure

Nodig:

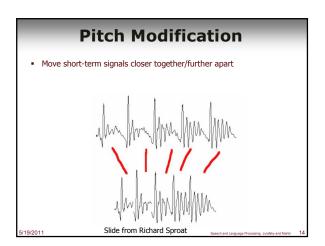
- MBROLA difoonset
- Stuurgegevens in .pho fill fonemen, toonhoogtes, duren

MBROLA maakt .wav file


\$mbrola mbrola/nl2/nl2 woord pho woord wav


```
MBROLA synthese
     duur (ms) - toonhoogte (Hz) - %
; Utterance: "Hallo!"
  100 100 120
   96
   48
   76
          5 100
                  75 120
o 224
         25
              85
  100
         40
              70
               percentages
```

Prosodic Modification


- Modifying pitch and duration independently
- Changing sample rate modifies both:
 - Chipmunk speech
- Duration: duplicate/remove parts of the signal
- Pitch: resample to change pitch

5/19/2011 Text from Alan Black

Duration modification Duplicate/remove short term signals

TD-PSOLA ™

- Time-Domain Pitch Synchronous Overlap and Add
- Patented by France Telecom (CNET)
- Very efficient
 - No FFT (or inverse FFT) required
- Can modify Hz up to two times or by half

Slide from Richard Sproat

TD-PSOLA ™ Time-Domain Pitch Synchronous Overlap and Add Patented by France Telecom (CNET) Windowed Pitch-synchronous Overlap-and-add Very efficient Can modify Hz up to two times or by half

Unit Selection Synthesis

- Generalization of the diphone intuition
 - Larger units
 - From diphones to sentences
 - Many many copies of each unit
 - 10 hours of speech instead of 1500 diphones (a few minutes of speech)

Unit Selection Intuition

- Given a big database
- Find the unit in the database that is the *best* to synthesize some target segment
- What does "best" mean?
 - "Target cost": Closest match to the target description, in terms of
 - Phonetic context
 - F0, stress, phrase position
 - "Join cost": Best join with neighboring units
 - Matching formants + other spectral characteristics
 - Matching energyMatching F0

Targets and Target Costs

- $\label{eq:total} \begin{tabular}{ll} \blacksquare & Target cost $T(u_{tr}s_t)$: How well the target specification s_t matches the potential unit in the database u_t \\ \end{tabular}$
- Features, costs, and weights
- Examples:
 - /ih-t/ +stress, phrase internal, high F0, content word
 - /n-t/ -stress, phrase final, high F0, function word
 - /dh-ax/ -stress, phrase initial, low F0, word "the"

/19/2011

Speech and Language Processing Jurafsky and Martin

Target Costs

- Comprised of k subcosts
 - Stress
 - Phrase position
 - F0
 - Phone duration
 - Lexical identity
- Target cost for a unit:

$$C'(t_i, u_i) = \sum_{k=1}^{p} w_k^t C_k^t(t_i, u_i)$$

5/19/201

Slide from Paul Taylor Speech and Language

difoonaansluiting(skosten)

pa

- ap
- ka
- ak
- ta
- ak • at

Dit zijn meestal zes verschillende opnamen, maar dat geeft spectrale verschillen bij de aansluiting:

$$ta - ap$$
, $ta - ak$, $ta - at$

Join (Concatenation) Cost

- Measure of smoothness of join
- Measured between two database units (target is irrelevant)
- Features, costs, and weights
- Comprised of k subcosts:
 - Spectral features
 - F0
 - Energy
- Join cost:

$$C^{j}(u_{i-1},u_{i}) = \sum_{k=1}^{p} w_{k}^{j} C_{k}^{j}(u_{i-1},u_{i})$$

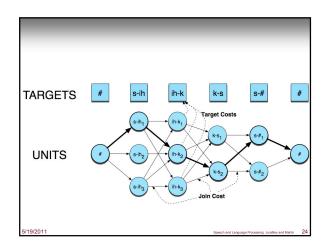
5/19/20

Slide from Paul Taylor

Total Costs

- Hunt and Black 1996
- We now have weights (per phone type) for features set between target and database units
- Find best path of units through database that minimize:

$$C(t_1^n, u_1^n) = \sum_{i=1}^n C^{target}(t_i, u_i) + \sum_{i=2}^n C^{join}(u_{i-1}, u_i)$$


$$\hat{u}_1^n = \operatorname*{argmin}_{u_1, \dots, u_n} C(t_1^n, u_1^n)$$

Standard problem solvable with Viterbi search with beam width constraint for pruning

5/19/201

Slide from Paul Taylor

Speech and Language Processing Jurafsky and Martin

Unit Selection Summary

- Advantages
 Quality is far superior to diphones
 Natural prosody selection sounds better
- Disadvantages:

 - Quality can be very bad in places
 HCI problem: mix of very good and very bad is quite annoying
 - Synthesis is computationally expensive
 - Can't synthesize everything you want:

 - Diphone technique can move emphasis
 Unit selection gives good (but possibly incorrect) result

5/19/2011

Slide from Richard Sproat