
Morphology & Transducers

 Intro to morphological analysis of languages

 Motivation for morphological analysis in NLP

 Morphological Recognition by FSAs

 Transducers

 Unsupervised Learning (2nd hour)

 Speech and Language Processing: An
introduction to natural language processing,
computational linguistics, and speech
recognition. Daniel Jurafsky & James H.
Martin.

 Available online:

http://www.cs.vassar.edu/~cs395/docs/
3.pdf

http://www.cs.vassar.edu/~cs395/docs/3.pdf
http://www.cs.vassar.edu/~cs395/docs/3.pdf
http://www.cs.vassar.edu/~cs395/docs/3.pdf
http://www.cs.vassar.edu/~cs395/docs/3.pdf
http://www.cs.vassar.edu/~cs395/docs/3.pdf

 Morphology is the study of the internal structure of
words.

 Words structure is analyzed by composition of
morphemes - the smallest units for grammatical
analysis:
◦ Boys: boy-s
◦ Friendlier: friend-ly-er
◦ Ungrammaticality: un-grammat-ic-al-ity

 Semitic languages, like Hebrew and Arabic, are
based on templates and roots.

 We will concentrate on affixation-based languages,
in which words are composed of stems and affixes.

 Two types of morphological processes:
◦ Inflectional (in-category; paradigmatic):

 Nouns: friend  friends
 Adjs: friendly  friendlier
 Verbs: do  does, doing, did, done

 Stands for gender, number, tense, etc.

◦ Derivational: (between-categories; non-paradigmatic)

 Noun Adj: friend  friendly
 Adj  Adj: friendly  unfriendly
 Verb  Verb: do  redo, undo

 Regular Inflection – Rule-governed
◦ The same morphemes are used to mark the same

functions

◦ The majority of verbs (although not the most
frequent) are regular, for example:

◦ Relevant also for nouns, e.g. –s for plural.

 Irregular Inflection – Idiosyncratic
◦ Inflection according to several subclasses

characterized morpho-phonologically
(e.g. think  thought, bring  brought, etc.)

◦ Relevant also for nouns, e.g. Analysis (sg) 

Analyses (pl)

 Strong Lexicalism
◦ The lexicon contains

fully inflected/derived
words.

◦ Full separation between
morphology and syntax

 (two engines)

◦ Popular in NLP
(e.g. LFG, HPSG)

 Non-Lexicalism
◦ The lexicon contains

only morphemes

◦ The syntax creates both
words and sentences

 (single engine of composition)

◦ Popular in theoretical
linguistics (e.g. Distributed
Morphology)

 The problem of recognizing that a word (like
foxes) breaks down into component
morphemes (fox and -es) and building a
structured representation of this fact.

 So given the surface or input form foxes, we
want to produce the parsed form VERB-want
+ PLURAL-es.

 Analysis ambiguity: words with multiple analyses:
◦ [un-lock]-able – something that can be unlocked.

◦ un-[lock-able] – something that cannot be locked.

 Allomorphy: the same morpheme is spelled out as
different allomorphs:
◦ Ir-regular

◦ Im-possible

◦ In-sane

 Orthographic rules:
◦ saving  save + ing, flies  fly + s.

◦ Chomsky+an vs. Boston+i+an vs. disciplin+ari+an

 Search engines and information retrieval
tasks (stemming)

 Machine Translation (stemming, applying
morphological processes)

 Models for sentence analysis and
construction (stemming, morphological
processes, semantic features of morphemes)

 Speech recognition (the morpho-phonology
interface, to be addressed later in this course)

 Storing all possible breakdowns of all words
in the lexicon.

 Problems:
◦ Morphemes can be productive, e.g. -ing is a

productive suffix that attaches to almost every verb.

 It is inefficient to store all possible breakdowns while
there a principle can be defined.

 Productive suffixes even apply to new words; thus the
new word fax can automatically be used in the -ing form:
faxing.

 Problems:
◦ Morphologically complex languages, e.g. Finish:

we cannot list all the morphological variants of
every word in morphologically complex languages
like Finish, Turkish, etc. (agglutinative languages)

 Goal: to take input forms like those in the
first column and produce output forms
like those in the second.

 Computational lexicons are usually structured with
a list of each of the stems and affixes of the
language together with a representation of the
morphotactics that tells us how they can fit
together.

 For nouns inflection:

(we assume that the bare
nouns are given in advance)

 For verbal inflection:

 The bigger picture:

 morphotactics: the model of morpheme ordering that
explains which classes of morphemes can follow other
classes of morphemes inside a word. For example, the
English plural morpheme follows the noun.

 Determining whether an input string of letters makes up
a legitimate English word or not.

 We do this by taking the FSAs and plugging in each “sub
lexicon” into the FSA.

 That is, we expand each arc (e.g., the reg-noun-stem
arc) with all the morphemes that make up the set of
reg-noun-stem.

 The resulting FSA is defined at the level of the individual
letter. (this diagram ignores
orthographic rules like the
addition of ‘e’ in ‘foxes’;
it only shows the distinction
between recognizing
regular and irregular forms)

 A finite-state transducer or FST is a type of
finite automaton which maps between two
sets of symbols.

 We can visualize an FST as a two-tape
automaton which recognizes or generates
pairs of strings.

 This can be done by labeling each arc in the
finite-state machine with two symbol strings,
one from each tape.

 The FST has a more general function than an
FSA; where an FSA defines a formal language
by defining a set of strings, an FST defines a
relation between sets of strings.

 Another way of looking at an FST is as a
machine that reads one string and generates
another.

 Example of FST as recognizer:

 Formally, an FST is defined as follows:
◦ Q - finite set of N states q0,q1, . . . ,qN−1

◦  - a finite set corresponding to the input alphabet

◦ - a finite set corresponding to the output alphabet

◦ q0 ∈ Q the start state

◦ F ⊆ Q the set of final states

◦ (q,w) - the transition function or transition matrix
between states; Given a state q ∈ Q and a string w
∈ S∗, d(q,w) returns a set of new states Q′ ∈ Q.

◦ (q,w) the output function giving the set of possible
output strings for each state and input.

 Inversion: The inversion of a transducer T
(T−1) switches the input and output labels.
Thus if T maps from the input alphabet I to
the output alphabet O, T−1 maps from O to I.

 Composition: If T1 is a transducer from I1 to
O1 and T2 a transducer from O1 to O2, then T1
◦ T2 maps from I1 to O2.

 The composition of [a:b] with [b:c] to produce
[a:c]

 Transducers can be non-deterministic: a given
input can be translated to many possible output
symbols.

 While every non-deterministic FSA is equivalent
to some deterministic FSA, not all finite-state
transducers can be determinized.

 Sequential transducers, by contrast, are a
subtype of transducers that are deterministic on
their input.

 At any state of a sequential transducer, each
given symbol of the input alphabet  can label at
most one transition out of that state.

 A non-deterministic transducer:

 A sequential transducer:

 Subsequential transducer - a generalization of sequential
transducers is the which generates an additional output
string at the final states, concatenating it onto the output
produced so far.

 Sequential and subsequential transducers are important
due to their efficiency; because they are deterministic on
input, they can be processed in time proportional to the
number of symbols in the input.

 Another advantage of subsequential transducers is that
there exist efficient algorithms for their determinization
(Mohri, 1997) and minimization (Mohri, 2000).

 However, While both sequential and subsequential
transducers are deterministic and efficient, neither of them
is able to handle ambiguity, since they transduce each
input string to exactly one possible output string.

 Solution: see in the book.

 We are interested in the transformation:

 The surface level represents the concatenation of letters which
make up the actual spelling of the word

 The lexical level represents a concatenation of morphemes
making up a word

 A transducer that maps plural nouns into the
stem plus the morphological marker +Pl, and
singular nouns into the stem plus the
morphological marker +Sg.

 Text below arrows: input; above: output.

 Extracting the reg-noun, irreg-pl/sg-noun:

 Taking into account orthographic rules (e.g.
how to account for foxes)

 Introducing an intermediate level of
representation and composing FSTs:

 Allowing bi-directional
transformation.

 The Porter stemmer (‘unfriendly’’friend’)

 Word and Sentence Tokenization (think of
“said, ‘what’re you? Crazy?’ ’’ said Sadowsky.
‘‘I can’t afford to do that.’’

 Detecting and correcting spelling errors

 Minimum Edit Distance between strings
(Dynamic Programming in brief)

 Some observations on human processing of
morphology

