
Morphology & Transducers

 Intro to morphological analysis of languages

 Motivation for morphological analysis in NLP

 Morphological Recognition by FSAs

 Transducers

 Unsupervised Learning (2nd hour)

 Speech and Language Processing: An
introduction to natural language processing,
computational linguistics, and speech
recognition. Daniel Jurafsky & James H.
Martin.

 Available online:

http://www.cs.vassar.edu/~cs395/docs/
3.pdf

http://www.cs.vassar.edu/~cs395/docs/3.pdf
http://www.cs.vassar.edu/~cs395/docs/3.pdf
http://www.cs.vassar.edu/~cs395/docs/3.pdf
http://www.cs.vassar.edu/~cs395/docs/3.pdf
http://www.cs.vassar.edu/~cs395/docs/3.pdf

 Morphology is the study of the internal structure of
words.

 Words structure is analyzed by composition of
morphemes - the smallest units for grammatical
analysis:
◦ Boys: boy-s
◦ Friendlier: friend-ly-er
◦ Ungrammaticality: un-grammat-ic-al-ity

 Semitic languages, like Hebrew and Arabic, are
based on templates and roots.

 We will concentrate on affixation-based languages,
in which words are composed of stems and affixes.

 Two types of morphological processes:
◦ Inflectional (in-category; paradigmatic):

 Nouns: friend friends
 Adjs: friendly friendlier
 Verbs: do does, doing, did, done

 Stands for gender, number, tense, etc.

◦ Derivational: (between-categories; non-paradigmatic)

 Noun Adj: friend friendly
 Adj Adj: friendly unfriendly
 Verb Verb: do redo, undo

 Regular Inflection – Rule-governed
◦ The same morphemes are used to mark the same

functions

◦ The majority of verbs (although not the most
frequent) are regular, for example:

◦ Relevant also for nouns, e.g. –s for plural.

 Irregular Inflection – Idiosyncratic
◦ Inflection according to several subclasses

characterized morpho-phonologically
(e.g. think thought, bring brought, etc.)

◦ Relevant also for nouns, e.g. Analysis (sg)

Analyses (pl)

 Strong Lexicalism
◦ The lexicon contains

fully inflected/derived
words.

◦ Full separation between
morphology and syntax

 (two engines)

◦ Popular in NLP
(e.g. LFG, HPSG)

 Non-Lexicalism
◦ The lexicon contains

only morphemes

◦ The syntax creates both
words and sentences

 (single engine of composition)

◦ Popular in theoretical
linguistics (e.g. Distributed
Morphology)

 The problem of recognizing that a word (like
foxes) breaks down into component
morphemes (fox and -es) and building a
structured representation of this fact.

 So given the surface or input form foxes, we
want to produce the parsed form VERB-want
+ PLURAL-es.

 Analysis ambiguity: words with multiple analyses:
◦ [un-lock]-able – something that can be unlocked.

◦ un-[lock-able] – something that cannot be locked.

 Allomorphy: the same morpheme is spelled out as
different allomorphs:
◦ Ir-regular

◦ Im-possible

◦ In-sane

 Orthographic rules:
◦ saving save + ing, flies fly + s.

◦ Chomsky+an vs. Boston+i+an vs. disciplin+ari+an

 Search engines and information retrieval
tasks (stemming)

 Machine Translation (stemming, applying
morphological processes)

 Models for sentence analysis and
construction (stemming, morphological
processes, semantic features of morphemes)

 Speech recognition (the morpho-phonology
interface, to be addressed later in this course)

 Storing all possible breakdowns of all words
in the lexicon.

 Problems:
◦ Morphemes can be productive, e.g. -ing is a

productive suffix that attaches to almost every verb.

 It is inefficient to store all possible breakdowns while
there a principle can be defined.

 Productive suffixes even apply to new words; thus the
new word fax can automatically be used in the -ing form:
faxing.

 Problems:
◦ Morphologically complex languages, e.g. Finish:

we cannot list all the morphological variants of
every word in morphologically complex languages
like Finish, Turkish, etc. (agglutinative languages)

 Goal: to take input forms like those in the
first column and produce output forms
like those in the second.

 Computational lexicons are usually structured with
a list of each of the stems and affixes of the
language together with a representation of the
morphotactics that tells us how they can fit
together.

 For nouns inflection:

(we assume that the bare
nouns are given in advance)

 For verbal inflection:

 The bigger picture:

 morphotactics: the model of morpheme ordering that
explains which classes of morphemes can follow other
classes of morphemes inside a word. For example, the
English plural morpheme follows the noun.

 Determining whether an input string of letters makes up
a legitimate English word or not.

 We do this by taking the FSAs and plugging in each “sub
lexicon” into the FSA.

 That is, we expand each arc (e.g., the reg-noun-stem
arc) with all the morphemes that make up the set of
reg-noun-stem.

 The resulting FSA is defined at the level of the individual
letter. (this diagram ignores
orthographic rules like the
addition of ‘e’ in ‘foxes’;
it only shows the distinction
between recognizing
regular and irregular forms)

 A finite-state transducer or FST is a type of
finite automaton which maps between two
sets of symbols.

 We can visualize an FST as a two-tape
automaton which recognizes or generates
pairs of strings.

 This can be done by labeling each arc in the
finite-state machine with two symbol strings,
one from each tape.

 The FST has a more general function than an
FSA; where an FSA defines a formal language
by defining a set of strings, an FST defines a
relation between sets of strings.

 Another way of looking at an FST is as a
machine that reads one string and generates
another.

 Example of FST as recognizer:

 Formally, an FST is defined as follows:
◦ Q - finite set of N states q0,q1, . . . ,qN−1

◦ - a finite set corresponding to the input alphabet

◦ - a finite set corresponding to the output alphabet

◦ q0 ∈ Q the start state

◦ F ⊆ Q the set of final states

◦ (q,w) - the transition function or transition matrix
between states; Given a state q ∈ Q and a string w
∈ S∗, d(q,w) returns a set of new states Q′ ∈ Q.

◦ (q,w) the output function giving the set of possible
output strings for each state and input.

 Inversion: The inversion of a transducer T
(T−1) switches the input and output labels.
Thus if T maps from the input alphabet I to
the output alphabet O, T−1 maps from O to I.

 Composition: If T1 is a transducer from I1 to
O1 and T2 a transducer from O1 to O2, then T1
◦ T2 maps from I1 to O2.

 The composition of [a:b] with [b:c] to produce
[a:c]

 Transducers can be non-deterministic: a given
input can be translated to many possible output
symbols.

 While every non-deterministic FSA is equivalent
to some deterministic FSA, not all finite-state
transducers can be determinized.

 Sequential transducers, by contrast, are a
subtype of transducers that are deterministic on
their input.

 At any state of a sequential transducer, each
given symbol of the input alphabet can label at
most one transition out of that state.

 A non-deterministic transducer:

 A sequential transducer:

 Subsequential transducer - a generalization of sequential
transducers is the which generates an additional output
string at the final states, concatenating it onto the output
produced so far.

 Sequential and subsequential transducers are important
due to their efficiency; because they are deterministic on
input, they can be processed in time proportional to the
number of symbols in the input.

 Another advantage of subsequential transducers is that
there exist efficient algorithms for their determinization
(Mohri, 1997) and minimization (Mohri, 2000).

 However, While both sequential and subsequential
transducers are deterministic and efficient, neither of them
is able to handle ambiguity, since they transduce each
input string to exactly one possible output string.

 Solution: see in the book.

 We are interested in the transformation:

 The surface level represents the concatenation of letters which
make up the actual spelling of the word

 The lexical level represents a concatenation of morphemes
making up a word

 A transducer that maps plural nouns into the
stem plus the morphological marker +Pl, and
singular nouns into the stem plus the
morphological marker +Sg.

 Text below arrows: input; above: output.

 Extracting the reg-noun, irreg-pl/sg-noun:

 Taking into account orthographic rules (e.g.
how to account for foxes)

 Introducing an intermediate level of
representation and composing FSTs:

 Allowing bi-directional
transformation.

 The Porter stemmer (‘unfriendly’’friend’)

 Word and Sentence Tokenization (think of
“said, ‘what’re you? Crazy?’ ’’ said Sadowsky.
‘‘I can’t afford to do that.’’

 Detecting and correcting spelling errors

 Minimum Edit Distance between strings
(Dynamic Programming in brief)

 Some observations on human processing of
morphology

