Speech and Language Technology

Morphology & Transducers

Topics

- Intro to morphological analysis of languages
- Motivation for morphological analysis in NLP
- Morphological Recognition by FSAs
- Transducers
- Unsupervised Learning (2nd hour)

Source

- Speech and Language Processing: An introduction to natural language processing, computational linguistics, and speech recognition. Daniel Jurafsky & James H. Martin.
- Available online:

http://www.cs.vassar.edu/~cs395/docs/ 3.pdf

Intro to Morphological Analysis

- Morphology is the study of the internal structure of words.
- Words structure is analyzed by composition of morphemes – the smallest units for grammatical analysis:
 - Boys: boy-s
 - Friendlier. friend-ly-er
 - Ungrammaticality: un-grammat-ic-al-ity
- Semitic languages, like Hebrew and Arabic, are based on templates and roots.
- We will concentrate on affixation-based languages, in which words are composed of stems and affixes.

Intro - Morphological Processes

- Two types of morphological processes:
 - Inflectional (in-category; paradigmatic):
 - Nouns: *friend* → *friends*
 - Adjs: *friendly* → *friendlier*
 - Verbs: do → does, doing, did, done
 Stands for gender, number, tense, etc.

- Derivational: (between-categories; non-paradigmatic)
 - Noun \rightarrow Adj: *friend* \rightarrow *friendly*
 - Adj \rightarrow Adj: friendly \rightarrow unfriendly
 - Verb \rightarrow Verb: $do \rightarrow$ r*edo*, *undo*

Regular vs. Irregular Inflection

- Regular Inflection Rule–governed
 - The same morphemes are used to mark the same functions
 - The majority of verbs (although not the most frequent) are regular, for example:

Morphological Form Classes	Regularly Inflected Verbs			
stem	walk	merge	try	map
-s form	walks	merges	tries	maps
-ing participle	walking	merging	trying	mapping
Past form or -ed participle	walked	merged	tried	mapped

Relevant also for nouns, e.g. -s for plural.

Regular vs. Irregular Inflection

Irregular Inflection – Idiosyncratic

 Inflection according to several subclasses characterized morpho-phonologically (e.g. think → thought, bring → brought, etc.)

Morphological Form Classes	Irregularly Inflected Verbs		
stem	1	catch	cut
	1		cuts
-ing participle		catching	cutting
Past form	ate	caught	cut
-ed/-en participle	eaten	caught	cut

 Relevant also for nouns, e.g. Analysis (sg) → Analyses (pl)

Intro - The Morpho-Syntax Interface

- Strong Lexicalism
 - The lexicon contains fully inflected/derived words.
 - Full separation between morphology and syntax (two engines)
 - Popular in NLP (e.g. LFG, HPSG)

Intro - The Morpho-Syntax Interface

- Non-Lexicalism
 - The lexicon contains only morphemes
 - The syntax creates both words and sentences (single engine of composition)
 - Popular in theoretical linguistics (e.g. Distributed Morphology)

Morphological Parsing

- The problem of recognizing that a word (like foxes) breaks down into component morphemes (fox and -es) and building a structured representation of this fact.
- So given the surface or input form foxes, we want to produce the parsed form VERB-want + PLURAL-es.

Issues We Will Not Address

- Analysis ambiguity: words with multiple analyses:
 - [un-lock]-able something that can be unlocked.
 - un-[lock-able] something that cannot be locked.
- Allomorphy: the <u>same</u> morpheme is spelled out as different allomorphs:
 - Ir-regular
 - Im-possible
 - In-sane
- Orthographic rules:
 - saving \leftarrow save + ing, flies \leftarrow fly + s.
 - Chomsky+an vs. Boston+i+an vs. disciplin+ari+an

Motivation for Morphology in NLP

- Search engines and information retrieval tasks (stemming)
- Machine Translation (stemming, applying morphological processes)
- Models for sentence analysis and construction (stemming, morphological processes, semantic features of morphemes)
- Speech recognition (the morpho-phonology interface, to be addressed later in this course)

The Conservative Approach

- Storing all possible breakdowns of all words in the lexicon.
- Problems:
 - Morphemes can be productive, e.g. -ing is a productive suffix that attaches to almost every verb.
 - It is inefficient to store all possible breakdowns while there a principle can be defined.
 - Productive suffixes even apply to new words; thus the new word *fax* can automatically be used in the *-ing* form: *faxing*.

The Conservative Approach

Problems:

Morphologically complex languages, e.g. Finish:

arvo	n	lisä	vero	ttoma	sta
value	of	addition	tax	-less	from

Figure 1. Morpheme segmentation of the Finnish word 'arvonlisäverottomasta' ("from [something] exclusive of value added tax").

we cannot list all the morphological variants of every word in morphologically complex languages like Finish, Turkish, etc. (**agglutinative** languages)

FINITE-STATE MORPHOLOGICAL PARSING

 Goal: to take input forms like those in the first column and produce output forms like those in the second.

	English				
Input	Morphologically				
	Parsed Output				
cats	cat +N +PL				
cat	cat +N +SG				
cities	city +N +Pl				
geese	goose +N +Pl				
goose	goose +N +Sg				
goose	goose +V				
gooses	goose +V +1P +Sg				
merging	merge +V +PresPart				
caught	catch +V +PastPart				
caught	catch +V +Past				

A FINITE-STATE LEXICON

- Computational lexicons are usually structured with a list of each of the stems and affixes of the language together with a representation of the morphotactics that tells us how they can fit together.
- For nouns inflection: (we assume that the bare nouns are given in advance)

reg-noun	irreg-pl-noun	irreg-sg-noun	plural
fox	geese	goose	-s
cat	sheep	sheep	\rightarrow
aardvark	mice	mouse	

A FINITE-STATE LEXICON

For verbal inflection:

reg-verb- stem	irreg-verb- stem	irreg-past- verb	past	past-part	pres-part	3sg
walk	cut	caught	-ed	-ed	-ing	-S
fry	speak	ate				
talk	sing	eaten				
impeach	~	sang				

A FINITE-STATE LEXICON

The bigger picture:

 morphotactics: the model of morpheme ordering that explains which classes of morphemes can follow other classes of morphemes inside a word. For example, the English plural morpheme follows the noun.

Morphological Recognition by FSAs

- Determining whether an input string of letters makes up a legitimate English word or not.
- We do this by taking the FSAs and plugging in each "sub lexicon" into the FSA.
- That is, we expand each arc (e.g., the reg-noun-stem arc) with all the morphemes that make up the set of reg-noun-stem.
- The resulting FSA is defined at the level of the individual letter. (this diagram ignores orthographic rules like the addition of 'e' in 'foxes'; it only shows the distinction between recognizing regular and irregular forms)

Finite-State Transducers

- A finite-state transducer or FST is a type of finite automaton which maps between two sets of symbols.
- We can visualize an FST as a two-tape automaton which recognizes or generates *pairs* of strings.
- This can be done by labeling each arc in the finite-state machine with two symbol strings, one from each tape.

Finite-State Transducers

- The FST has a more general function than an FSA; where an FSA defines a formal language by defining a set of strings, an FST defines a *relation* between sets of strings.
- Another way of looking at an FST is as a machine that reads one string and generates another.
- Example of FST as recognizer:

Finite-State Transducers

- Formally, an FST is defined as follows:
 - Q finite set of N states $q_0, q_1, \ldots, q_{N-1}$
 - $\circ \Sigma$ a finite set corresponding to the input alphabet
 - $\circ \Delta$ a finite set corresponding to the output alphabet
 - $\circ q_0 \in Q$ the start state
 - $F \subseteq Q$ the set of final states
 - $\delta(q,w)$ the transition function or transition matrix between states; Given a state $q \in Q$ and a string $w \in S$, d(q,w) returns a set of new states $Q \in Q$.
 - σ(q, w) the output function giving the set of possible output strings for each state and input.

Operations on FSTs

- Inversion: The inversion of a transducer T (T⁻¹) switches the input and output labels. Thus if T maps from the input alphabet / to the output alphabet O, T⁻¹ maps from O to I.
- **Composition**: If T_1 is a transducer from I_1 to O_1 and T_2 a transducer from O_1 to O_2 , then $T_1 \circ T_2$ maps from I_1 to O_2 .
- The composition of [a:b] with [b:c] to produce [a:c]

a:b

b:c

 q_0

a:c

Sequential Transducers and Determinism

- Transducers can be non-deterministic: a given input can be translated to many possible output symbols.
- While every non-deterministic FSA is equivalent to some deterministic FSA, not all finite-state transducers can be determinized.
- Sequential transducers, by contrast, are a subtype of transducers that are deterministic on their input.
- At any state of a sequential transducer, each given symbol of the input alphabet Σ can label at most one transition out of that state.

Sequential Transducers and Determinism

A non-deterministic transducer:

• A sequential transducer:

Sequential Transducers and Determinism

- Subsequential transducer a generalization of sequential transducers is the which generates an additional output string at the final states, concatenating it onto the output produced so far.
- Sequential and subsequential transducers are important due to their efficiency; because they are deterministic on input, they can be processed in time proportional to the number of symbols in the input.
- Another advantage of subsequential transducers is that there exist efficient algorithms for their determinization (Mohri, 1997) and minimization (Mohri, 2000).
- However, While both sequential and subsequential transducers are deterministic and efficient, neither of them is able to handle ambiguity, since they transduce each input string to exactly one possible output string.
- Solution: see in the book.

Back to FINITE-STATE MORPHOLOGICAL PARSING

• We are interested in the transformation:

- The surface level represents the concatenation of letters which make up the actual spelling of the word
- The lexical level represents a concatenation of morphemes making up a word

Back to FINITE-STATE MORPHOLOGICAL PARSING

- A transducer that maps plural nouns into the stem plus the morphological marker +Pl, and singular nouns into the stem plus the morphological marker +Sg.
- Text below arrows: input; above: output.

Back to FINITE-STATE MORPHOLOGICAL PARSING

Extracting the reg-noun, irreg-pl/sg-noun:

reg-noun	irreg-pl-noun	irreg-sg-noun
fox	g o:e o:e s e	goose
cat	sheep	sheep
aardvark	m o:i u: ϵ s:c e	mouse
	f = f + 1 = 0	$+2 \frac{x}{x} + PI$ $+3 \frac{t}{t} + 5 \frac{+N}{\epsilon} 6 \frac{+Sg}{\#}$
		$\bullet \underbrace{s}_{s} \underbrace{e}_{e} \underbrace{+N}_{\epsilon} \underbrace{+Sg}_{\#} \underbrace$
		$e \rightarrow e \rightarrow$

More topics covered in the book

- Taking into account orthographic rules (e.g. how to account for *fox<u>e</u>s*)
- Introducing an intermediate level of representation and composing FSTs:
- Allowing bi-directional transformation.

More topics covered in the book

- The Porter stemmer ('unfriendly'→'friend')
- Word and Sentence Tokenization (think of "said, 'what're you? Crazy?' '' said Sadowsky.
 ''I can't afford to do that.''
- Detecting and correcting spelling errors
- Minimum Edit Distance between strings (Dynamic Programming in brief)
- Some observations on human processing of morphology