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 A formal language L over an alphabet Σ is a 
set of words (strings) over that alphabet.  
◦ L = {w1, w2, w3, ….} 

◦ Σ = {s1, s2, s3, …} 
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 A formal language L over an alphabet Σ is a 
set of words (strings) over that alphabet.  
◦ L = {w1, w2, w3, ….} 

◦ Σ = {s1, s2, s3, …} 

 For example, consider sheep-talk: 
◦ L = {“baa!”, “baaa!”, “baaaa!”, “baaaaa!”…} 

◦ Σ = {‘b’,’a’,’!’} 

 L and Σ can be infinite. 

 

 



 First developed by Kleene (1956) 

 A regexp is a formula in a special language 
that is used for specifying classes of strings.  
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 First developed by Kleene (1956) 

 A regexp is a formula in a special language 
that is used for specifying classes of strings.  

 By definition, any regexp characterizes a 
language. 

 Simple examples: 
◦ /ab/  - {“ab”} 

◦ /a[bc]/  - {“ab”,“ac”} 

◦ /ab./ - {“aba”,“abb”,“abc”,“abd”,…} 

 

 



 Regular Expressions are widely used for 
pattern recognition in search applications. 

 General idea: the user specifies a regxp – a 
pattern that stands for a set of strings - and 
the application finds all matches in a given 
corpus. 

 In a typical search application, each line that 
contains a match of the regexp is returned 
entirely. 

 Implementation in unix-based systems: grep 
 Examples will follow. 



 A regexp is sequence of characters: 
◦ /ab/ 

◦ /a[bc]/ 

 Slashes are not part of a regexp definition; 
they are used to clarify what the boundaries 
of the expression are. 

 A regexp can consist of a single character 
(e.g. /!/) or a sequence of characters (/urgl/) 

 Regular expressions are case sensitive. 
 



 Examples (only the first match is marked): 

 

 

 

 

 

 

 Note that a blank space (character 0x20) can 
be used as is in a regexp (example 3). 

 

Regexp Example Patterns Matched 

/woodchucks/ “interesting links to woodchucks and lemurs” 

/a/ “Mary Ann stopped by Mona’s” 

/Claire says,/ ““Dagmar, my gift please,” Claire says,” 

/song/ “all our pretty songs” 

/!/ ““You’ve left the burglar behind again!” said Nori” 



 Disjunction of characters: 
◦ A string of characters inside the braces specify a 

disjunction of characters to match. 

◦ Examples: 

 Regexp Match 

/[wW]oodchuck/ Woodchuck or woodchuck 

/[abc]/ ‘a’, ‘b’, or ‘c’ 

/[1234567890]/ Any digit 



 Ranges are useful to simplify a cumbersome 
notation.  

 They are defined using the dash (‘-’) 
character: 

 

 

Regexp Match Example Patterns Matched 

/[A-Z]/ An uppercase letter “we should call it ‘Drenched 
Blossoms’” 

/[a-z]/ A lowercase letter “my beans were impatient 
to be hoed!” 

/[0-9]/ A digit “Chapter 1: Down the Rabbit 
Hole” 



 Square brackets opened by the caret 
character - ‘^’ –can be used to specify 
characters that cannot be matched by a 
regexp: 

 Regexp Match (single characters) Example Patterns Matched 

/[ˆA-Z]/ not an uppercase letter “Oyfn pripetchik” 

/[ˆSs]/ neither ‘S’ nor ‘s’ “I have no exquisite reason” 

/[eˆ]/ either ‘e’ or ‘ˆ’ “look up ˆ now” 

/aˆb/ the pattern ‘aˆb’ “look up aˆb now” 



 The regexp syntax includes some predefined 
ranges: 

 

 

 

 

 

 

 
 Note: /\t/ stands for the tab character, /\n/ stands for new 

line, /\r/ stands for carriage return and /\f/ stands for page 
break. 

Regexp Expansion Match 

/\d/ /[0-9]/ Any digit 

/\D/ /[ˆ0-9]/ Any non-digit 

/\w/ /[a-zA-Z0-9_]/ Any alphanumeric or underscore 

/\W/ /[ˆ\w]/ A non-alphanumeric 

/\s/ /[ \r\t\n\f]/ Whitespace (space, tab) 

/\S/ /[ˆ\s]/ Non-whitespace 



 The regexp syntax supports various kinds of 
repetitions: 
◦ To specify that a character (or a sequence of 

characters) may appear zero or one time, use the 
question mark (‘?’): 

 
Regexp Match Example Patterns Matched 

/woodchucks
?/ 

woodchuck or 
woodchucks 

“woodchuck is” 

/colou?r/ color or colour any colour you like 



 The regexp syntax supports various kinds of 
repetitions: 
◦ To specify that a character (or a sequence of 

characters) may appear zero or more times, use the 
asterisk mark (‘*’) – called also Kleene* – 
pronounced as “cleany star”: 

 Regexp Match Example Patterns Matched 

/Wood*chuck
s/ 

woochuck or 
woodchucks or  
wooddchucks or  
… 

“woochucks are bad, but 
woodchucks are nice” 

/baaa*!/ baa! or baaa! or 
baaaa!... 

“And then we heard 
another baaaa!...” 



 The regexp syntax supports various kinds of 
repetitions: 
◦ To specify that a character (or a sequence of 

characters) may appear one or more times, use the 
plus mark (‘+’) - called also Kleene+: 

 
Regexp Match Example Patterns Matched 

/Wood+chuc
ks/ 

woodchucks or  
wooddchucks or  
woodddchucks or 
… 

“woochucks are bad, but 
woodchucks are nice” 

/baa+!/ baa! or baaa! or 
baaaa!... 

“And then we heard 
another baaaa!...” 



 Summary: 

 * zero or more occurrences of the 
previous char or expression 

+ one or more occurrences of the 
previous char or expression 

? exactly zero or one occurrence of 
the previous char or expression 

{n} n occurrences of the previous char 
or expression 

{n,m} from n to m occurrences of the 
previous char or expression 

{n,} at least n occurrences of the 
previous char or expression 



 The regexp syntax supports various kinds of 
repetitions: 
◦ To specify specific amounts of repetitions, use the 

curly brackets: 

 Regexp Match 

/a{3}b{2}ca/ aaabbca 

/a{3,}b{2}ca/ aaabbca or aaaabbca or aaaaabbca or … 

/a{3,4}b{2}ca/ aaabbca or aaaabbca 

/ba{3,}!/ baaa! or baaaa! or baaaaa!... 



 The period character – ‘.’ – serves as a 
wildcard expression that matches any single 
character (except a carriage return): 

 Regexp Match Example Patterns 

/beg.n/ Any string comprised of a 
single character between 
‘beg’ and ‘n’. 

began 
begin  
beg’n 

/beg.*n/ Any string begins with 
‘beg’ followed by one or 
more characters and ends 
with ‘n’. 

begn 
begabcden 
begun 
beguun 

/beg\.n/ The string ‘beg.n’ beg.n 



 Grouping of a sequence of characters allows 
us to define patterns with repeated and/or 
alternating sequences. 

 Grouping is done by parenthesis. 

 Patterns with repeated sequences: 

 

 

Regexp Match 

/a(ba)+c/ abac or ababac or abababac 
or … 

/(a(bc)+)*c/ c or abcc or abcbcc or … 



 Patterns with alternating sequences: 

 

 

 

 Notice the use of pipe ‘|’ to separate the 
alternating sequences. 

 Note that if the regexp is simple a list of 
alternating sequences then grouping is not 
required: /dog|cat/ matches ‘dog’ or ‘cat’. 

 

 

Regexp Match 

/gupp(y|ies)/ guppy or guppies 

/b(i|ou)nd/ bind or bound 



 Special characters that anchor regexps to 
particular places in a string. 

 Line boundaries: 
◦ Beginning of line: ^  

◦ End of line: $ 

 Word boundaries: \b 
Regexp Match 

/^The/ the word The only at the 
start of a line 

The bus was late 

/ˆThe dog\.$/ The exact line ‘The dog.’ The dog. 

/\bthe\b/ the word the Others than the...  



 Why does /the*/ match ‘theeee’ and not 
‘thethe’? 

 Why does /the|any/ match ‘the’ or ‘any’ and 
not ‘theny’? 

 The answers are in the operator precedence 
hierarchy defined for regular expressions: 

 

 
Operator Precedence  Hierarchy 

Parenthesis ( ) 

Counters * + ? {} 

Sequences and Anchors  the ^my end$ 

Disjunction | 



 Consider the regexp /[a-z]*/ matched against 
the string ‘hello’.  

 The regexp can match zero or more letters 
and hence it’s interpretation is apparently 
ambiguous. 

 The ambiguity is resolved by favoring the 
largest string that can be matched, i.e. ‘hello’.  

 We say that patterns are greedy in the sense 
of expanding to cover as much of a string as 
they can. 

 



 Escaping is needed when meta-characters 
like ‘*’ or ‘.’ need to be matched as they are 
without being interpreted according to their 
special role in the regexp syntax 

 Regexps escaping is done by the backslash 
character – ‘\’. 

 

 
Escaped character Character to be matched 

\. . 

\* * 

\+ + 



 A regexp is a formula in a special language 
that is used for specifying classes of strings.  

 Any regexp characterizes some language. 

 A typical search application takes a document 
and a regexp as an input and returns the list 
of lines from the document in which the 
regexp can be matched. 



 Regexp: /woodchucks?/ 

 Text: 

Imagine that you have become a passionate fan 
of woodchucks.  

Desiring more information on this celebrated 
woodland creature, you turn to your favorite 
Web browser and type in woodchuck.  

Your browser returns a few sites.  

You have a flash of inspiration and type in 
woodchucks. 



 Regexp: /woodchucks?/ ( - {woodchuck,   ) 

 Text:         woodchucks} 

Imagine that you have become a passionate fan 
of woodchucks.  

Desiring more information on this celebrated 
woodland creature, you turn to your favorite 
Web browser and type in woodchuck.  

Your browser returns a few sites.  

You have a flash of inspiration and type in 
woodchucks. 



 Resources: 
◦ http://www.regular-expressions.info/ 

◦ http://en.wikipedia.org/wiki/Regular_expression 

◦ http://www.zytrax.com/tech/web/regex.htm 
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 Finite State Automata are a specific type of state 
machines: A set of states and transitions that may 
reach an Accept or Reject state according to a given 
input. 

 

 Finite State Automata are commonly used to 
recognize formal languages and are computationally 
equivalent to regular expressions. 

 

 Any language that a regexp can characterize, an FSA 
can characterize as well (and vice versa) 

 

 Singular: Automaton; Plural: Automata 



 Visually, finite state automata are drawn as 
graphs with nodes that stand for the states 
and links that stand for the transitions per 
input. For example: 

 

 

 

 

 Q: What language does this automaton 
recognize? 

An ‘Accept’ 
state 

The ‘start’ 
state 



 Formally, an FSA is defined as follows: 
◦ Q = q0q1q2 . . .qN−1 a finite set of N states 

◦  - a finite input alphabet of symbols 

◦ q0 - the start state 

◦ F - the set of accepting (final) states, F  Q 

◦ (q, i) the transition function or transition matrix 
between states.  

 



 For example, the FSA below is defined as 
follows: 
◦ Q = {q0,q1,q2,q3,q4} 
◦  = {‘a’,’b’,’!’} 

◦ q0 - the start state 

◦ F – q4 

◦ (q, i) = 

 



 How an FSA recognizes a language: 

 

 On the surface, an FSA is only a set of states 
and transitions. It describes relations between 
states according to user input. 

 

 A function is needed to feed it input and use 
the transition function to change states. 

 

 The D-RECOGNIZE function. 



 The D-RECOGNIZE function: 
function D-RECOGNIZE(tape,machine) returns accept or reject 

index  Beginning of tape 

current-state  Initial state of machine 

Loop 

 if End of input has been reached then 

  if current-state is an accept state then 

   return accept 

  else 

   return reject 

 elsif transition-table[current-state,tape[index]] is empty then 

  return reject 

 else 

  current-state  transition-table[current-state,tape[index]] 

  index = index + 1 

end Loop 

end 



 Two ways to handle rejected strings: 
◦ By empty slots in the transition table that stand for 

‘unsupported input’ and treated accordingly by D-
recognize (as we seen above) 

◦ By a dedicated ‘fail’ state in the automaton: 

 

A ‘fail’ state 



 So far we have seen regular expressions and 
finite state automata. 

 Both are used to characterize formal languages: 
◦ A Regexp describes a pattern for which the matched 

strings constitute the language.  

 A regexp characterizes a language by generating it 
from a pattern. 

◦ An FSA describes a set of states and transitions that 
determine the set of strings (i.e. a language) that are 
accepted. 

 An FSA characterizes a language by recognizing it.  

 



 Automata with decision points like in q2 in the 
automaton below are called non-deterministic FSAs 
(or NFSAs or NFAs). 

 

 

 

 Non-determinism may appear also by the use of 
epsilon transitions (q3q2) that allow the 
recognizer to switch states without any input: 



 Accepting strings is more complex in the non-
deterministic case 

 Since there is more than one choice at some point, 
we might take the wrong choice. 

 Several solutions: 
◦ Backup strategy: a marker is placed in each choice 

point.Then if it turns out that we took the wrong choice, we 
could back up and try another path. 

◦ Look-ahead strategy: We could look ahead in the input to 
help us decide which path to take. 

◦ Parallelism strategy: Whenever we come to a choice point, 
we could look at every alternative path in parallel. 

◦ Alternative: convert the NFSA to an FSA and then accept the 
strings. But Is this possible? 

 

 



 NFSAs may seem to have more computational 
power in the sense of allowing more complex 
languages to be defined. 

 However, it turns out that in terms of 
computational power they are equivalent. 

 Formally, any non-deterministic FSA is 
translatable to a deterministic FSA. 

 The translated FSA may require more memory 
space but nonetheless it would accept the 
same language as the NFSA. 



 Slides by Harry H. Porter, 2005 
 http://web.cecs.pdx.edu/~harry/compilers/sl

ides/LexicalPart3.pdf 
 

 General idea: 
◦ Construct an FSA by simulating a parallel transition 

on the original NFSA 
◦ Each state in the FSA will correspond to a set of 

NFSA states.  
 

 Full example in the original slides. 
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 Consider the following NFSA: 

 

 

 

 

 

 It accepts strings such as ‘aabb’, ‘abb’, ‘bbb’, 
etc. 



 Consider the following NFSA: 

 

 

 

 

 A translation to an FSA: 
     A={0,1,2,4,7} 

     B={1,2,3,4,6,7,8} 

     C={1,2,4,5,6,7} 

     D={1,2,4,5,6,7,9} 

     E={1,2,4,5,6,7,10} 



 The general idea is to create an NFSA for each 
basic sequence in a regexp and then to 
connect all NFSAs by epsilon links. 

 For basic sequences: 

 



 For Kleene*: We create a new final and initial 
state, connect the original final states of the 
FSA back to the initial states by e-transitions 
and then put direct links between the new 
initial and final states by e-transitions. 



 For example, concatenation: We just string 
two FSAs next to each other by connecting all 
the final states of FSA2 by epsilon links 



 The class of languages that can be defined by 
regular expressions is exactly the same as the 
class of languages that can be characterized 
by finite-state automata (whether 
deterministic or non-deterministic).  

 Because of this, we call these languages the 
regular languages. 

  



 It turns out that not all languages are regular. 

 For example:  

 The automaton/regexp needs to ‘remember’ 
the exact number of ‘a’s in order to match it 
with the number of ‘b’s. 

 This cannot be achieved without some sort of 
on-the-fly memory resource  

 Theory of computation: 

Diagram Source: Wikipedia  
http://en.wikipedia.org/wiki/Regular_language 

http://en.wikipedia.org/wiki/Regular_language
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