
Formal Languages, Regular Expressions and
Finite-State Automata

 Formal Languages in brief

 Regular Expressions

 Finite-State Automata (FSA)

 Non-Deterministic FSA (NFSA or NFA)

 Regular and Non-Regular Languages

 Speech and Language Processing: An
introduction to natural language processing,
computational linguistics, and speech
recognition. Daniel Jurafsky & James H.
Martin. Draft of January 19, 2007.

 An updated draft is available here:

http://www.cs.vassar.edu/~cs395/docs/
2.pdf

http://www.cs.vassar.edu/~cs395/docs/2.pdf
http://www.cs.vassar.edu/~cs395/docs/2.pdf
http://www.cs.vassar.edu/~cs395/docs/2.pdf
http://www.cs.vassar.edu/~cs395/docs/2.pdf
http://www.cs.vassar.edu/~cs395/docs/2.pdf

 A formal language L over an alphabet Σ is a
set of words (strings) over that alphabet.
◦ L = {w1, w2, w3, ….}

◦ Σ = {s1, s2, s3, …}

 A formal language L over an alphabet Σ is a
set of words (strings) over that alphabet.
◦ L = {w1, w2, w3, ….}

◦ Σ = {s1, s2, s3, …}

 For example, consider sheep-talk:
◦ L = {“baa!”, “baaa!”, “baaaa!”, “baaaaa!”…}

◦ Σ = {‘b’,’a’,’!’}

 A formal language L over an alphabet Σ is a
set of words (strings) over that alphabet.
◦ L = {w1, w2, w3, ….}

◦ Σ = {s1, s2, s3, …}

 For example, consider sheep-talk:
◦ L = {“baa!”, “baaa!”, “baaaa!”, “baaaaa!”…}

◦ Σ = {‘b’,’a’,’!’}

 L and Σ can be infinite.

 First developed by Kleene (1956)

 A regexp is a formula in a special language
that is used for specifying classes of strings.

 First developed by Kleene (1956)

 A regexp is a formula in a special language
that is used for specifying classes of strings.

 By definition, any regexp characterizes a
language.

 First developed by Kleene (1956)

 A regexp is a formula in a special language
that is used for specifying classes of strings.

 By definition, any regexp characterizes a
language.

 Simple examples:
◦ /ab/ - {“ab”}

◦ /a[bc]/ - {“ab”,“ac”}

◦ /ab./ - {“aba”,“abb”,“abc”,“abd”,…}

 Regular Expressions are widely used for
pattern recognition in search applications.

 General idea: the user specifies a regxp – a
pattern that stands for a set of strings - and
the application finds all matches in a given
corpus.

 In a typical search application, each line that
contains a match of the regexp is returned
entirely.

 Implementation in unix-based systems: grep
 Examples will follow.

 A regexp is sequence of characters:
◦ /ab/

◦ /a[bc]/

 Slashes are not part of a regexp definition;
they are used to clarify what the boundaries
of the expression are.

 A regexp can consist of a single character
(e.g. /!/) or a sequence of characters (/urgl/)

 Regular expressions are case sensitive.

 Examples (only the first match is marked):

 Note that a blank space (character 0x20) can
be used as is in a regexp (example 3).

Regexp Example Patterns Matched

/woodchucks/ “interesting links to woodchucks and lemurs”

/a/ “Mary Ann stopped by Mona’s”

/Claire says,/ ““Dagmar, my gift please,” Claire says,”

/song/ “all our pretty songs”

/!/ ““You’ve left the burglar behind again!” said Nori”

 Disjunction of characters:
◦ A string of characters inside the braces specify a

disjunction of characters to match.

◦ Examples:

 Regexp Match

/[wW]oodchuck/ Woodchuck or woodchuck

/[abc]/ ‘a’, ‘b’, or ‘c’

/[1234567890]/ Any digit

 Ranges are useful to simplify a cumbersome
notation.

 They are defined using the dash (‘-’)
character:

Regexp Match Example Patterns Matched

/[A-Z]/ An uppercase letter “we should call it ‘Drenched
Blossoms’”

/[a-z]/ A lowercase letter “my beans were impatient
to be hoed!”

/[0-9]/ A digit “Chapter 1: Down the Rabbit
Hole”

 Square brackets opened by the caret
character - ‘^’ –can be used to specify
characters that cannot be matched by a
regexp:

 Regexp Match (single characters) Example Patterns Matched

/[ˆA-Z]/ not an uppercase letter “Oyfn pripetchik”

/[ˆSs]/ neither ‘S’ nor ‘s’ “I have no exquisite reason”

/[eˆ]/ either ‘e’ or ‘ˆ’ “look up ˆ now”

/aˆb/ the pattern ‘aˆb’ “look up aˆb now”

 The regexp syntax includes some predefined
ranges:

 Note: /\t/ stands for the tab character, /\n/ stands for new

line, /\r/ stands for carriage return and /\f/ stands for page
break.

Regexp Expansion Match

/\d/ /[0-9]/ Any digit

/\D/ /[ˆ0-9]/ Any non-digit

/\w/ /[a-zA-Z0-9_]/ Any alphanumeric or underscore

/\W/ /[ˆ\w]/ A non-alphanumeric

/\s/ /[\r\t\n\f]/ Whitespace (space, tab)

/\S/ /[ˆ\s]/ Non-whitespace

 The regexp syntax supports various kinds of
repetitions:
◦ To specify that a character (or a sequence of

characters) may appear zero or one time, use the
question mark (‘?’):

Regexp Match Example Patterns Matched

/woodchucks
?/

woodchuck or
woodchucks

“woodchuck is”

/colou?r/ color or colour any colour you like

 The regexp syntax supports various kinds of
repetitions:
◦ To specify that a character (or a sequence of

characters) may appear zero or more times, use the
asterisk mark (‘*’) – called also Kleene* –
pronounced as “cleany star”:

 Regexp Match Example Patterns Matched

/Wood*chuck
s/

woochuck or
woodchucks or
wooddchucks or
…

“woochucks are bad, but
woodchucks are nice”

/baaa*!/ baa! or baaa! or
baaaa!...

“And then we heard
another baaaa!...”

 The regexp syntax supports various kinds of
repetitions:
◦ To specify that a character (or a sequence of

characters) may appear one or more times, use the
plus mark (‘+’) - called also Kleene+:

Regexp Match Example Patterns Matched

/Wood+chuc
ks/

woodchucks or
wooddchucks or
woodddchucks or
…

“woochucks are bad, but
woodchucks are nice”

/baa+!/ baa! or baaa! or
baaaa!...

“And then we heard
another baaaa!...”

 Summary:

 * zero or more occurrences of the
previous char or expression

+ one or more occurrences of the
previous char or expression

? exactly zero or one occurrence of
the previous char or expression

{n} n occurrences of the previous char
or expression

{n,m} from n to m occurrences of the
previous char or expression

{n,} at least n occurrences of the
previous char or expression

 The regexp syntax supports various kinds of
repetitions:
◦ To specify specific amounts of repetitions, use the

curly brackets:

 Regexp Match

/a{3}b{2}ca/ aaabbca

/a{3,}b{2}ca/ aaabbca or aaaabbca or aaaaabbca or …

/a{3,4}b{2}ca/ aaabbca or aaaabbca

/ba{3,}!/ baaa! or baaaa! or baaaaa!...

 The period character – ‘.’ – serves as a
wildcard expression that matches any single
character (except a carriage return):

 Regexp Match Example Patterns

/beg.n/ Any string comprised of a
single character between
‘beg’ and ‘n’.

began
begin
beg’n

/beg.*n/ Any string begins with
‘beg’ followed by one or
more characters and ends
with ‘n’.

begn
begabcden
begun
beguun

/beg\.n/ The string ‘beg.n’ beg.n

 Grouping of a sequence of characters allows
us to define patterns with repeated and/or
alternating sequences.

 Grouping is done by parenthesis.

 Patterns with repeated sequences:

Regexp Match

/a(ba)+c/ abac or ababac or abababac
or …

/(a(bc)+)*c/ c or abcc or abcbcc or …

 Patterns with alternating sequences:

 Notice the use of pipe ‘|’ to separate the
alternating sequences.

 Note that if the regexp is simple a list of
alternating sequences then grouping is not
required: /dog|cat/ matches ‘dog’ or ‘cat’.

Regexp Match

/gupp(y|ies)/ guppy or guppies

/b(i|ou)nd/ bind or bound

 Special characters that anchor regexps to
particular places in a string.

 Line boundaries:
◦ Beginning of line: ^

◦ End of line: $

 Word boundaries: \b
Regexp Match

/^The/ the word The only at the
start of a line

The bus was late

/ˆThe dog\.$/ The exact line ‘The dog.’ The dog.

/\bthe\b/ the word the Others than the...

 Why does /the*/ match ‘theeee’ and not
‘thethe’?

 Why does /the|any/ match ‘the’ or ‘any’ and
not ‘theny’?

 The answers are in the operator precedence
hierarchy defined for regular expressions:

Operator Precedence Hierarchy

Parenthesis ()

Counters * + ? {}

Sequences and Anchors the ^my end$

Disjunction |

 Consider the regexp /[a-z]*/ matched against
the string ‘hello’.

 The regexp can match zero or more letters
and hence it’s interpretation is apparently
ambiguous.

 The ambiguity is resolved by favoring the
largest string that can be matched, i.e. ‘hello’.

 We say that patterns are greedy in the sense
of expanding to cover as much of a string as
they can.

 Escaping is needed when meta-characters
like ‘*’ or ‘.’ need to be matched as they are
without being interpreted according to their
special role in the regexp syntax

 Regexps escaping is done by the backslash
character – ‘\’.

Escaped character Character to be matched

\. .

* *

\+ +

 A regexp is a formula in a special language
that is used for specifying classes of strings.

 Any regexp characterizes some language.

 A typical search application takes a document
and a regexp as an input and returns the list
of lines from the document in which the
regexp can be matched.

 Regexp: /woodchucks?/

 Text:

Imagine that you have become a passionate fan
of woodchucks.

Desiring more information on this celebrated
woodland creature, you turn to your favorite
Web browser and type in woodchuck.

Your browser returns a few sites.

You have a flash of inspiration and type in
woodchucks.

 Regexp: /woodchucks?/ (- {woodchuck,)

 Text: woodchucks}

Imagine that you have become a passionate fan
of woodchucks.

Desiring more information on this celebrated
woodland creature, you turn to your favorite
Web browser and type in woodchuck.

Your browser returns a few sites.

You have a flash of inspiration and type in
woodchucks.

 Resources:
◦ http://www.regular-expressions.info/

◦ http://en.wikipedia.org/wiki/Regular_expression

◦ http://www.zytrax.com/tech/web/regex.htm

http://www.regular-expressions.info/
http://www.regular-expressions.info/
http://www.regular-expressions.info/
http://www.regular-expressions.info/
http://www.regular-expressions.info/
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression
http://www.zytrax.com/tech/web/regex.htm
http://www.zytrax.com/tech/web/regex.htm

 Finite State Automata are a specific type of state
machines: A set of states and transitions that may
reach an Accept or Reject state according to a given
input.

 Finite State Automata are commonly used to
recognize formal languages and are computationally
equivalent to regular expressions.

 Any language that a regexp can characterize, an FSA
can characterize as well (and vice versa)

 Singular: Automaton; Plural: Automata

 Visually, finite state automata are drawn as
graphs with nodes that stand for the states
and links that stand for the transitions per
input. For example:

 Q: What language does this automaton
recognize?

An ‘Accept’
state

The ‘start’
state

 Formally, an FSA is defined as follows:
◦ Q = q0q1q2 . . .qN−1 a finite set of N states

◦ - a finite input alphabet of symbols

◦ q0 - the start state

◦ F - the set of accepting (final) states, F Q

◦ (q, i) the transition function or transition matrix
between states.

 For example, the FSA below is defined as
follows:
◦ Q = {q0,q1,q2,q3,q4}
◦ = {‘a’,’b’,’!’}

◦ q0 - the start state

◦ F – q4

◦ (q, i) =

 How an FSA recognizes a language:

 On the surface, an FSA is only a set of states
and transitions. It describes relations between
states according to user input.

 A function is needed to feed it input and use
the transition function to change states.

 The D-RECOGNIZE function.

 The D-RECOGNIZE function:
function D-RECOGNIZE(tape,machine) returns accept or reject

index Beginning of tape

current-state Initial state of machine

Loop

 if End of input has been reached then

 if current-state is an accept state then

 return accept

 else

 return reject

 elsif transition-table[current-state,tape[index]] is empty then

 return reject

 else

 current-state transition-table[current-state,tape[index]]

 index = index + 1

end Loop

end

 Two ways to handle rejected strings:
◦ By empty slots in the transition table that stand for

‘unsupported input’ and treated accordingly by D-
recognize (as we seen above)

◦ By a dedicated ‘fail’ state in the automaton:

A ‘fail’ state

 So far we have seen regular expressions and
finite state automata.

 Both are used to characterize formal languages:
◦ A Regexp describes a pattern for which the matched

strings constitute the language.

 A regexp characterizes a language by generating it
from a pattern.

◦ An FSA describes a set of states and transitions that
determine the set of strings (i.e. a language) that are
accepted.

 An FSA characterizes a language by recognizing it.

 Automata with decision points like in q2 in the
automaton below are called non-deterministic FSAs
(or NFSAs or NFAs).

 Non-determinism may appear also by the use of
epsilon transitions (q3q2) that allow the
recognizer to switch states without any input:

 Accepting strings is more complex in the non-
deterministic case

 Since there is more than one choice at some point,
we might take the wrong choice.

 Several solutions:
◦ Backup strategy: a marker is placed in each choice

point.Then if it turns out that we took the wrong choice, we
could back up and try another path.

◦ Look-ahead strategy: We could look ahead in the input to
help us decide which path to take.

◦ Parallelism strategy: Whenever we come to a choice point,
we could look at every alternative path in parallel.

◦ Alternative: convert the NFSA to an FSA and then accept the
strings. But Is this possible?

 NFSAs may seem to have more computational
power in the sense of allowing more complex
languages to be defined.

 However, it turns out that in terms of
computational power they are equivalent.

 Formally, any non-deterministic FSA is
translatable to a deterministic FSA.

 The translated FSA may require more memory
space but nonetheless it would accept the
same language as the NFSA.

 Slides by Harry H. Porter, 2005
 http://web.cecs.pdx.edu/~harry/compilers/sl

ides/LexicalPart3.pdf

 General idea:
◦ Construct an FSA by simulating a parallel transition

on the original NFSA
◦ Each state in the FSA will correspond to a set of

NFSA states.

 Full example in the original slides.

http://web.cecs.pdx.edu/~harry/compilers/slides/LexicalPart3.pdf
http://web.cecs.pdx.edu/~harry/compilers/slides/LexicalPart3.pdf
http://web.cecs.pdx.edu/~harry/compilers/slides/LexicalPart3.pdf

 Consider the following NFSA:

 It accepts strings such as ‘aabb’, ‘abb’, ‘bbb’,
etc.

 Consider the following NFSA:

 A translation to an FSA:
 A={0,1,2,4,7}

 B={1,2,3,4,6,7,8}

 C={1,2,4,5,6,7}

 D={1,2,4,5,6,7,9}

 E={1,2,4,5,6,7,10}

 The general idea is to create an NFSA for each
basic sequence in a regexp and then to
connect all NFSAs by epsilon links.

 For basic sequences:

 For Kleene*: We create a new final and initial
state, connect the original final states of the
FSA back to the initial states by e-transitions
and then put direct links between the new
initial and final states by e-transitions.

 For example, concatenation: We just string
two FSAs next to each other by connecting all
the final states of FSA2 by epsilon links

 The class of languages that can be defined by
regular expressions is exactly the same as the
class of languages that can be characterized
by finite-state automata (whether
deterministic or non-deterministic).

 Because of this, we call these languages the
regular languages.

 It turns out that not all languages are regular.

 For example:

 The automaton/regexp needs to ‘remember’
the exact number of ‘a’s in order to match it
with the number of ‘b’s.

 This cannot be achieved without some sort of
on-the-fly memory resource

 Theory of computation:

Diagram Source: Wikipedia
http://en.wikipedia.org/wiki/Regular_language

http://en.wikipedia.org/wiki/Regular_language

 Michael Sipser (1997). Introduction to the
Theory of Computation. PWS
Publishing. ISBN 0-534-94728-X.

 Hopcroft, John E.; Motwani, Rajeev; Ullman,
Jeffrey D. (2000). Introduction to Automata
Theory, Languages, and Computation (2nd
ed.). Addison-Wesley.

