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Abstract
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of the iterated circular multisets and arbitrary trees.
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1 Introduction

1.1 Multisets on a Given Domain

Multisets are very natural objects: they can model a number of different situ-
ations in different contexts, like the store of a shop or the bag of a housewife.
A multiset —a bag in Computer Science— is like a set, except that an element
can have multiple occurrences in it. For example, a grocery shop with 3 apples,
2 pears, 1 banana, and 0 kiwi in store can be modeled by the multiset

[[ apple, apple, apple, pear, pear, banana ]] .

In proof theory sequents are often modeled as pairs of multisets (see e.g. [8]).
Multiple occurrences of an object d ∈ D in a multiset can be described by

a family of relations {∈k: k ∈ Card+}: e.g., if α is the grocery shop above and
a := apple, we have a ∈i α, for i ∈ {1, 2, 3}, a 6∈j α, for j ≥ 4; we say that the
multiplicity of a in the multiset α is 3 or that mα(a) = 3.

We should distinguish between the platonic idea of a multiset and set-
theoretic representations of it. Different representations of the same platonic
idea should be expected to be naturally isomorphic (in a sense to be specified
later). We will see that for certain purposes certain representations are better
than others even if they are naturally isomorphic. We will also meet two salient
platonic ideas of multiset. Before explaining the fact that there are at least two
notions of multiset, let’s first look at some set-theoretic representations.

The first choice that comes to mind is to represent a multiset on a domain D
as a function that associates to each d ∈ D a cardinal number, which says how
many times the element d is present in the multiset. Since we allow domains
that are large classes, but we want to represent multisets on any domain by
sets, we represent a multiset on a class D by a (small) partial function from
D to Card+, where Card+ is the class of all strictly positive cardinals. In other
words, we replace zero by undefined. For example, in the grocery shop above
the domain D is given by the set {a, p, b, k} and the shop is represented by a
function f with f : D → Card+, f(a) = 3, f(p) = 2, f(b) = 1, f(k) = ↑.

Let’s look at a second representation of multiset. A first approximation
is to say that a multiset of elements of D is a function f from a set I, the
set of items, to D. Here D can be viewed as the set of types. In our ex-
ample of the grocery store the items could be taken to be the concrete fruits
apple1, apple2, apple3, pear1, pear2, banana1; the types could be taken apple, pear,
banana, kiwi. We would have f(apple1) = apple, etcetera. This first approxi-
mation is not quite right. It fails to capture the level of abstraction that we
aim at in speaking of multisets. The point is that we want to abstract away
from the concrete individuality of the items. The only thing that interests us
about the items is the type they have and the fact that they differ amongst each
other. We do not want to know about properties they might have that are not
included in the selected set of types D. The way to implement this is to say
that f : I → D and g : J → D stand for the same multiset of elements of D if
there is a bijection h between I and J such that f = g ◦ h.
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It is easy to see how to translate back and forth between the two represen-
tations. A disadvantage of the second representation is that the equivalence
class representing a multiset will be a proper class. We will sidestep this prob-
lem by stipulating that the item set I will always be a cardinal. Our second
representation will be the basis of the functor Γ introduced in Section 3.1.

Up to this point we have been looking at multisets as inert objects. Unless
we have some relations between them and some operations on them, they do
not truly qualify as first class citizens of the realm of mathematics. Let’s ask
ourselves: what are the proper morphisms on mulitsets? Reflecting on our
second presentation, we quickly arrive at the following proposal: a morphism
φ from the D-multiset α to the E-multiset β is a function from D to E, a
translation of types, such that we can find f : I → D, representing α, g : J → E,
representing β, and an injection h : I → J with g ◦ h = φ ◦ f . The basic idea in
our choice of h is that morphisms preserve items.

Let’s translate our definition of morphism to the terms of our first set-
theoretic representation. φ is a morphism from α considered as a partial function
from D to Card+ to β considered as a partial function from E to Card+ if, for
all e ∈ E,

∑
φ(d)=e α(d) ≤ β(e). (Here we treat ‘undefined’ as if it were zero

and we treat the empty sum as zero/undefined.)
Upon reflection, we see that our morphisms have a natural factorization. We

can split φ into the ‘image’-mapping from α to φ[α], where φ[α] is given as the
function on E with φ[α](e) :=

∑
φ(d)=e α(d), and an extension mapping from

φ[α] to β. Extension mappings simply increase the cardinalities of the elements
of a multiset. The image mapping will play a major role in this paper: it will
take the form of the functor Γ.

We could view morphisms as follows. A multiset is an infon representing
how many items of certain types are in a certain store. (We could choose e.g.
between saying that it represents how many items there are precisely and how
many elements there are at least.) The image mapping corresponds to ‘retyping’.
E.g. φ could map apple, pear, banana, and kiwi to fruit. The image of our sample
multiset is now:

[[ fruit, fruit, fruit, fruit, fruit, fruit ]] .

In other words, given that there are (precisely/at least) 3 apples, 2 pears and 1
banana in store and given that apples, pears, bananas and kiwis are fruits, then
there are (precisely/at least) 6 fruits in store. The extension mappings could
correspond to real extensions of the store, in case of the ‘precisely’ variant of
our interpretation, or to epistemic extensions, in case of the ‘at least’ variant:
we learn that there are more items than we originally knew.

The definition of morphism on the cardinality representation has a surprising
aspect. Shouldn’t the morphisms simply have been defined as follows?

φ is a morphism from α considered as a partial function from D to
Card+ to β considered as a partial function from E to Card+ if, for
all d ∈ D, α(d) ≤ β(φ(d)).

Why did we get the sum in the definition? The reason is our implicit treatement
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of the types as exclusive: an item witnessing the presence of an apple cannot
at the same time witness the presence of a pear. If we switch to possibly
overlapping types, we will get the second notion of morphism. We will look at
our multisets as follows. They are pieces of information or infons concerning a
store to the effect that there are at least so many items of this, so many items
of that, . . . . It is essential for our present interpretation that the information
is open-ended: there could turn out to be more of each kind. E.g. our types
could have been apple and rotten. The grocery store could have been described
by [[apple, apple, rotten, rotten]] . This means that there are at least two apples
and at least two rotten things. The description could be taken to be compatible
with there being three items in store: two apples, of which one rotten, and a
rotten pear.

What about morphisms? If we would have a function φ sending both apple
and rotten to fruit, we can view it as the information that both apples and
rotten things are fruits. The φ-image of [[apple, apple, rotten, rotten]] will be
[[fruit, fruit]] , since we learn from the ‘information’ φ that there are at least two
fruits. However, there is also a morphism φ : [[apple, apple, rotten, rotten]] →
[[fruit, fruit, fruit]] , since, via φ and ‘extension’, our information could grow to
the knowledge that there are at least three fruits in store.

It is clear that as before we could split our morphisms into two stages. There
is a new image-mapping defined by φ[α](e) := sup{α(d) |φ(d) = e}. Extension
mappings are as before. This alternative image mapping will lead to our func-
tor ∆. We discover here our second Platonic idea of multiset: multisets with
overlapping types.

Can we find a third representation, in the style of the second representation,
that models the possibility of overlapping types? Here is one way to do it. A
representation of a multiset on D is a binary relation r (modeled as a set of
pairs) such that dom(r) ⊆ D. Two representations r and s of multisets on D
are the same if there is a bijection h between r and s considered as sets of pairs,
such that π1 ◦ h = π1. (Here π1(d, i) = d.)

A morphism φ from the D-multiset α to the E-multiset β is a function from
D to E, such that we can find r, representing α, and s, representing β, and a
function h : r → s such that π2 and h are jointly injective and π2 ◦ h = φ ◦ π2.
(The functions p and q on P are jointly injective if λx∈P · (px, qx) is injective.)
It is easy to see that we did indeed define a category and that our earlier notion
of sameness coincides with isomorphism in this category.

Our third representation has again the disadvantage that the equivalence
classes are proper classes. We will sidestep this problem by working with stan-
dard representatives. This modified version of the third representation will lead
to the uniform form of the functor ∆ introduced in Section 3.2. It is easy to see
that our third representation yields precisely our second notion of morphism if
we switch back to the cardinal representation.
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1.2 Iterated and Circular Multisets

As in the case of ordinary sets we want to represent iterated multisets, where
multisets contain (various occurrences) of other multisets. In this case the do-
main D is made of multisets. By epsilon recursion it is easy to define the class
of wellfounded multisets, but here we are interested in circular situations, like in
non-wellfounded set theory: we want to have the possibility for a multiset x to
be a member of itself, repeated any number of times, i.e. we want to guarantee
the existence of multisets satisfying equations like x = [[x, x]] .

Circular multisets can be modeled using the theory of coalgebras. In the
simpler case of sets, the AFA-universe is described as a final coalgebra for
the powerset functor Pow. This functor sends a class A to the class Pow(A)
of all subsets of A and a class-function f : A → B to the class-function
Pow(f) : Pow(A) → Pow(B), which sends a subset A′ of A to its image via
f : Pow(f)(A′) = {fx : x ∈ A′}. Analogously, we need a multiset functor to
describe the multiset universe. This functor F should send a class A to the
class F(A) of all A-multisets (represented using one of the various possibili-
ties we gave in the introduction), and a function f : A → B to a function
F(f) : F(A) → F(B). Hence, if α ∈ F(A) is the representation of an A-multiset,
we should define a B-multiset β = F(f)(α) ∈ F(B), representing the action of
the class-function f on the multiset α. It is quite clear that β must contain
elements of type fa with a ∈ A, but what about multiplicity? The discussion
made in the preceding section leads to two different Platonic ideas of this action.
The first one arises by considering our types as exclusive, or non-overlapping,
and gives mβ(b) =

∑
f(x)=bmα(x). On the other hand, if we follow the idea of

overlapping types we get mβ(b) = sup{mα(x) : f(x) = b}. We use the exclusive
types idea in Section 3.1 to define the multiset functor Γ, while the overlapping
types idea suggests in Section 3.2 a different functor, which we denote by ∆.
Suppose for example that A = {x, y} and f sends both x, y to z; if α = [[x, x, y]]
then Γ(f)(α) = [[z, z, z]] , while ∆(f)(α) = [[z, z]] . We can then apply the gen-
eral theory of coalgebras to the functors Γ and ∆, obtaining a definition of
Γ-coalgebra and ∆-coalgebra, of Γ- and ∆-bisimulation, of Γ- and ∆-collapse,
and prove the existence of a Γ-final coalgebra and a ∆-final coalgebra. We then
use these two final coalgebras to define two non-isomorphic multiset universes:
the Γ and ∆-multiuniverses. The difference between these two multiuniverses
can be already appreciated at the level of simple (uni-)sets (i.e. the multisets
containing hereditarely at most one occurrence of each element): the unisets
inside the ∆-universe are a model of the well-known non-wellfounded set the-
ory ZFC− + AFA (Zermelo-Fraenkel with choice, with foundation replaced with
the anti-foundation axiom AFA), while the unisets inside the Γ-universe are a
model of ZFC− + Scott. This kind of sets was first proposed by Scott in [7]
and later reconsidered by Aczel in [1]. Using the notion of Scott-bisimulation,
Aczel compared the theory ZFC− + Scott with ZFC− + AFA. Both were ob-
tained from ZFC− (Zermelo-Fraenkel with choice, without foundation) by using
a strengthening of the extensionality axiom, defined in terms of bisimulation:
the maximal bisimulation for ZFC− + AFA, Scott-bisimulation for ZFC− + Scott.
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In this confrontation, the Scott-sets seemed to be less natural and manageable
than the AFA-sets (e.g. in ZFC−AFA any graph has a unique decoration, while
in ZFC− + Scott graphs can have more than one decoration; in ZFC−AFA any
set can be represented by a collapsed graph, while a similar notion of collapse
is not available in ZFC− + Scott).

In this work we claim that the natural context of the Scott-bisimulation is
the multiset-context (defined via the Γ-operator above). We show that Scott-
bisimulation (in its generalization to multigraphs) corresponds precisely to Γ-
bisimulation. Hence, by moving from the set to the multiset context we acquire
the possibility of working with coalgebras having a natural notion of collapse,
decoration, and so on, which were missed in the set-context.

Using the general theory of coalgebras we see that the Γ-multiuniverse can
be modeled using the class of pointed Γ-collapsed multigraphs or, in categorical
terms, by using a final Γ-coalgebra. In the case of the Γ-multiuniverse we prove
that another description is possible which is not generally available using the
theory of coalgebras: Γ-multisets correspond exactly to rooted trees.

We continue our investigation of the ∆- and Γ-multiuniverses with a descrip-
tion of multisets by way of logics. In this context the Γ-multiuniverse appears to
be more natural, since the corresponding logic is a fragment of the well-known
and much used logic of graded modalities.

Finally, we turn to the problem of enriching the structure of our multiuni-
verses. We proceed by introducing singleton and unary unions, using the cate-
gorical notion of monad. In the case of the functor Γ the corresponding Kleisli
category allows to define a product of coalgebras having the same domain, and
this product is shown to be representable by matrix multiplication.

1.3 Organization of the Paper

This paper is organized as follows. In Section 2 we give some notation concerning
multigraphs and review the fundamentals of the theory of coalgebras, which are
used throughout the paper. In Section 3.1 we introduce a multiset functor
Γ, working out the results we can obtain by applying the general theory of
coalgebras. In this way we are able to introduce our first multiuniverse, the
one of exclusive types. Section 3.2 deals with the definition and properties of
the functor ∆ of overlapping types and of the corresponding ∆-multiuniverse.
We then return to exclusive types, and in Section 4 we study the special role
of rooted trees inside the category of Γ-coalgebras and morphisms. In Section
5 we deal with the identification of multisets with formulae of infinitary logics
and finally, in Section 6 we enrich the structure of our multiuniverses by using
monads.
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2 Prerequisites

To understand the paper the reader is supposed to be familiar with the theory
of coalgebras. For an introduction to the subject see e.g. [6]. In the following
we briefly review some of the necessary materials from [1],[3], and [6].

2.1 Coalgebras and Morphisms

In this paper we largely use the theory of coalgebras. A primary example of
coalgebra is given by considering the functor Pow on the category of classes and
functions. We start by briefly discussing this example and its relations with
non-wellfounded sets.

2.1.1 A Prototype: Pow

Let C be the category of classes and class-functions between them. For the mo-
ment we assume only that our universe satisfies ZFC−, that is, Zermelo Fraenkel
Set Theory with choice and without foundation. The powerset operator Pow
can be turned into a functor from C to C by defining it on a class A as:

Pow(A) = {x : x is a set and x ⊆ A},

and on a function f : A→ B as the function Pow(f) : Pow(A) → Pow(B) which
assigns to every x ⊆ A the following subset of B: Pow(f)(x) = {f(y) : y ∈ x}.
We also use the simpler notation f [x] for Pow(f)(x).

Consider now a directed graph G. When possible, we would like to associate
to G a decoration with sets, that is, a function d from the nodes of the graph
to sets such that if v is a node then d(v) = {d(v′) : 〈v, v′〉 is an edge of G}.
Depending on the set theory under consideration the class of graphs having a
decoration can change, and a graph can have zero, one, or various decorations.
For example, under foundation any graph has at most one decoration, and
wellfounded graphs have exactly one, while a version of the well-known anti-
foundation axiom AFA just says that any graph has a unique decoration. These
differences between the various set theories can also be expressed categorically
as follows. Directed graphs (possibly with class domains) can be identified with
coalgebras of the functor Pow, that is, with pairs 〈A, e〉 consisting of a class A
and a function e : A→ Pow(A) (in this identification, the set e(a) corresponds
to {a′ : 〈a, a′〉 is an edge of G}). Coalgebras are the objects of a new category
CoalPow, having as maps coalgebra morphisms, where a function f : A → A′

is a morphism between the coalgebras 〈A, e〉, 〈A′, e′〉 iff the following diagram
commutes:

A Pow(A)

A′ Pow(A′)

-e

?

f

?

Pow(f)

-e′
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We also consider the category AlgPow, whose objects are pairs 〈A, e〉 with e :
Pow(A) → A and whose maps are the algebra morphisms, i.e. functions f :
A→ A′ for which the following diagram commutes:

Pow(A) A

Pow(A′) A′

-e

?

Pow(f)

?

f

-e′

Notice that if V denotes the universe of all sets, then V = Pow(V), so that the
pair (V, id) is a Pow-coalgebra, where id is the identity function. The categorical
description of the set theories above is then given by the following equivalences:

• V is a model of ZFC ⇔ 〈V, id〉 is an initial object in the category AlgPow,

• V is a model of ZFC− + AFA ⇔ 〈V, id〉 is a final object in the category
CoalPow.

2.1.2 Scott’s Sets.

In [7] a model of ZFC− is constructed using rooted irredundant trees modulo
isomorphism, where a tree T is irredundant if it has no proper automorphism,
or, equivalently: for all u ∈ T , u′, v′ ∈ Succ(u), if 〈T , u′〉 is isomorphic to
〈T , v′〉 then u′ = v′. The rooted irredundant trees modulo isomorphism are also
a model for the Scott-axiom, which roughly says that a rooted tree is isomorphic
to the unraveling of a set iff it is irredundant. This axiom is compared with the
AFA-axiom in [1]. First, the definition of Scott-bisimulation is given: two rooted
Pow-coalgebras 〈A, a〉, 〈A′, a′〉 are said to be Scott-bisimilar if their unravelings
are isomorphic (for a definition of unraveling see Section 4.2), and a coalgebra
is said to be Scott-extensional if two different nodes in the coalgebra are never
Scott-bisimilar. A pointed coalgebra 〈A, a〉 is said to be an exact picture of
a set if there exists an injective morphism from 〈A, a〉 to the coalgebra 〈V, id〉.
Using these notions one can give a categorical formulation of the Scott-axiom:

• V is a model of ZFC− + Scott ⇔ the exact pictures are exactly the Scott-
extensional pointed coalgebras.

A consequence is that using ZFC− + Scott as underlying set theory we lose the
finality of the coalgebra 〈V, id〉: it is still true that for any coalgebra A there
exists a morphism from A to 〈V, id〉, but unicity is lost. In Section 3.1 we will
see that the Scott-axiom has a natural interpretation in the context of multisets,
where the finality of the (multi-)universe can be regained.
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2.1.3 Coalgebraic Theory

The above example using the functor Pow can be generalized by considering a
generic endofunctor F on the category C of classes and class functions. The
resulting general theory of coalgebras has been extensively used in Theoretical
Computer Science: coalgebras are used to model automata and transition or
dynamical systems, or, in the semantics of programs, final coalgebras have been
used to deal with infinite data types (see e.g. [6] for useful examples).

If F is an endofunctor of C (that is, a functor from C to C), then a coalgebra
A is a pair 〈A, e〉 where A is a class and e is a class-function from A to F (A) (we
sometimes specify it by giving a function e : A → F (A) and use the subscript
notation ea instead of e(a)). The coalgebra A is small if the domain A is a
set. Notice that F (A) might still be a proper class. A morphism between two
coalgebras A = 〈A, e〉 and A′ = 〈A′, e′〉 is a class-function f from A to A′ such
that the diagram on the right below is commutative.

A F (A)

A′ F (A′)

-e

?

f

?

F (f)

-e′

An isomorphism of coalgebras in a bijective morphism for which the inverse
is also a morphism. One can show that a bijective morphism is always an
isomorphism. If 〈A′, e′〉, 〈A, e〉 are coalgebras with A′ ⊆ A, then 〈A′, e′〉 is a
sub-coalgebra of 〈A, e〉 if the injection inj : A′ → A is a morphism.

Coalgebras and coalgebra-morphisms form a category that we denote by
CoalF . A coalgebra P is final if it is a terminal object in the category CoalF ,
i.e. if for any coalgebra A there exists a unique morphism from A to P.

A relation Z ⊆ A×A′ is an F -bisimulation between coalgebras A = 〈A, e〉,
A′ = (A′, e′) if there exists a coalgebra (Z, z) with domain Z for which the
projections π1 : Z → A, π2 : Z → A′ are morphisms (this notion generalizes the
classical notion of bisimulation between graphs, which is obtained for F = Pow).
An F -bisimulation of a coalgebra A is defined as an F -bisimulation between A
and itself. Since F -bisimulations are closed under unions, in any coalgebra A
the relation ∼A = ∪{Z : Z is an F -bis. on A} is the maximal F -bisimulation
on A. The relation ∼A is an equivalence relation on A. A pointed coalgebra
is a pair 〈A, a〉, where A = 〈A, e〉 is a coalgebra and a ∈ A. A morphism of
pointed coalgebras 〈A, a〉, 〈A′, a′〉 is a morphism f from A to A′ with f(a) = a′.
An F -bisimulation of pointed coalgebras 〈A, a〉, 〈A′, a′〉 is an F -bisimulation of
A,A′ such that 〈a, a′〉 ∈ Z. The collapse A = 〈A, e〉 of a small F -coalgebra
A = 〈A, e〉 is defined as follows. Its domain A is the set of the equivalence
classes of A modulo the maximal F -bisimulation on A. The class-function e is
defined by e([a]) = F (π)(e(a)), where π is the canonical projection from A to
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A∗. One can show that e is well-defined on A and the projection π is a surjective
morphism.

All the above properties hold for a generic endofunctor F . However, there are
useful statements like: there exists a final coalgebra, the kernel of a morphism
is a bisimulation equivalence, the composition of two bisimulations is again a
bisimulation, and the greatest fixed point of F is a final coalgebra, which cannot
be proved without assuming additional properties of the endofunctor F .

2.1.4 Four Important Properties

A functor F is set-based if for all classes C and all a ∈ F (C), there is some
set c ⊆ C and some a0 ∈ F (c) such that a = (Fi)a0, where i is the inclusion of
c in C. It is possible to prove that any set-based functor has a final coalgebra
(see [2]).

A functor F is standard, if whenever f : A → B is an inclusion, then
F (f) : F (A) → F (B) is also an inclusion. If a functor F is standard then it
is monotone as an operator on classes and hence it has a greatest fixed point
F ∗. Since F (F ∗) = F ∗, the pair F∗ = (F ∗, id) is a coalgebra, where id is the
identity function on F ∗. We call it the greatest fixed point coalgebra (g.f.p.
coalgebra, for short).

The third property we mention here regards the preservation of certain com-
mutative diagrams. A commutative diagram

A B

C D

-f

?
u

?
v

-g

is a weak pullback square if whenever we have two functions i : X → B,
j : X → C with v ◦ i = g ◦ j, there exists a (not necessarily unique) function
l : X → A with u ◦ l = j, f ◦ l = i. Under the axiom of choice, this is equivalent
to: for any b ∈ B and c ∈ C such that v(b) = g(c), we can find an a ∈ A with
f(a) = b, u(a) = c.

A functor F preserves weak pullbacks if the image of every weak pullback
square is itself a weak pullback square:

.

F (A) F (B)

F (C) F (D)

-F (f)

?

F (u)

?

F (v)

-F (g)

Standardness, set-basedness, and preservation of weak pullbacks represent the
minimal properties we require of a functor F to have a well-behaved coalgebraic

11



theory. Functors satisfying these properties are called well-behaved in the follow-
ing; well-behaved functors have final coalgebras and F -bisimulation, morphisms,
and final maps are related as follows.

Proposition 2.1 If F is a standard, set based functor that preserves weak pull-
backs, then the following hold.

1. If f : 〈A1, e1〉 → 〈A, e〉, g : 〈A2, e2〉 → 〈A, e〉 are morphisms then the
pullback of f and g, that is, the relation P = {〈a, b〉 ∈ A1 × A2 : f(a) =
g(b)} is an F -bisimulation between 〈A1, e1〉 and 〈A2, e2〉. In particular, if
f is a morphism from 〈A, e〉 to 〈A′, e′〉, then the kernel of f , that is, the
relation R = {〈a, b〉 ∈ A × A : f(a) = f(b)}, is an F -bisimulation of the
coalgebra 〈A, e〉. Conversely, any bisimulation equivalence is the kernel of
a morphism.

2. Final coalgebras exist in CoalF . If P is a final coalgebra, A is a coalgebra,
and s : A → P is the unique morphism from A to P, then for all a, a′ ∈ A
it holds

a ∼A a′ ⇔ s(a) = s(a′).

In particular, the maximal bisimulation on a final coalgebra P is the diag-
onal ∆P = {〈a, a〉 : a ∈ P}.

One can easily see that if P = (P, π) is final then π is an isomorphism
between P and F (P). We would like to strengthen this property by asking
that the map π is the identity map, as it is the case in the greatest fixed
point coalgebra 〈F ∗, id〉, because this would greatly simplify calculations with
the elements of the final coalgebra. Unfortunately, there exist well-behaved
functors for which the greatest fixed point coalgebra is not a final coalgebra.
This is the reason we look for another property implying the finality of 〈F ∗, id〉.
To describe this property we need to construct a universe of sets on top of a class
of indeterminates X, i.e. a universe in which the elements of X are considered
as atoms. This can be done by considering the functor Pow(X +−), sending a
class A to the class Pow(X +A), where X +A is the disjoint union of X and A
(which we represent by X + A = {0} ×X ∪ {1} × A). We denote the greatest
fixed point of Pow(X +−) by VX . Given a function f : X → V, there exists a
unique function f̂ : VX → V such that, for every v ∈ VX ,

f̂(v) = {f(x) : 〈〈0, x〉 ∈ v} ∪ {f̂(v′) : 〈1, v′〉 ∈ v}.

In other words, the function f̂ is obtained by shifting f inside v as long as
one reaches an atom in X. This can be proved by recursion in ZFC, while in
ZFC− + AFA it is known as the Substitution Lemma (see [1]).

Definition 2.2 A functor F is uniform on maps (see [1, 9]) if for every class
A there exists a map φA : F (A) → VA such that for every function f : A → V
the following diagram commutes:
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.

F (A) VA

F (V) V

-φA

?

F (f)

?

f̂

-ι

where ι denotes the injection of F (V) into V.

Working in ZFC− + AFA it is possible to prove that if F is uniform on maps
then 〈F ∗, id〉 is a final coalgebra.

In order to compare coalgebras of different functors we use natural transfor-
mations. A natural transformation ν from F to G consists of a family of func-
tions {νA}A∈C where νA : F (A) → G(A), such that, for any function f : A→ B,
the following diagram is commutative.

F (A) F (B)

G(A) G(B)

-F (f)

?

νA

?

νB

-G(f)

The natural transformation ν induces a map from the F -coalgebras to the G-
coalgebras that preserves bisimulation. This function sends the F -coalgebra
A = 〈A, e〉 to the G-coalgebra ν(A〉 = 〈A, νA ◦ e〉; it is easy to see that an
F -bisimulation Z on A is a G-bisimulation of ν(A) (see [6]). If ν is a natural
isomorphism (that is, every νA is a bijection), the converse is also true and
moreover:

Proposition 2.3 Suppose F,G are standard, set based functors that preserve
weak pullbacks and suppose ν is natural isomorphism from F to G. Then ν
induces a functor (still denoted by ν) between the category CoalF of F -coalgebras
and the category of CoalG of G-coalgebras, which is faithful on bisimulations and
final coalgebras.

2.2 Multigraphs and Multigraph Notation

In this paper, a multigraph is like a directed graph, but we allow a pair of
nodes to be linked by more than one arrow. Formally, a multigraph can be
described as a pair 〈A, ρ〉 where A is a set and ρ is a partial multiplicity function
ρ : A×A→ Card+. If a ∈ A we denote by Succ(a) the set {b ∈ A : ρ(a, b) ≥ 1}.

A pointed multigraph is a pair 〈A, a〉, where A = 〈A, ρ〉 is a multigraph
and a ∈ A. A pointed multigraph 〈A, a〉 is rooted if for each a′ ∈ A there exists
a finite sequence a0 = a, . . . , an = a′ with ai+1 ∈ Succ(ai), for all i = 1, . . . , n−1.
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In this paper we consider two different notions of multigraph homomor-
phisms, the sup- and sum-homomorphisms. A sup-homomorphism between
multigraphs 〈A, ρ〉 and 〈A′, ρ′〉 is a function f : A→ A′ with ρ(a, b) ≤ ρ′(fa, fb),
where ↑ (i.e. the ‘value’ undefined) is to be considered as smaller than any pos-
itive cardinals. We use this convention throughout the paper. Equivalently, a
sup-homomorphism is a function f such that, if a, b ∈ A, then

sup{ρ(a, c) : c ∈ f−1(fb)} ≤ ρ′(fa, fb).

A sum-homomorphism between multigraphs 〈A, ρ〉 and 〈A′, ρ′〉 is a function
f : A → A′ with

∑
c∈f−1(fb) ρ(a, c) ≤ ρ′(fa, fb). An isomorphism between

〈A, ρ〉 and 〈A′, ρ′〉 is a bijective function f : A → A′ with ρ(a, b) = ρ′(fa, fb).
It is easy to see that our isomorphisms are both precisely the isomorphisms
of the sup-category and precisely the isomorphisms of the sum-category. A
multigraph 〈A, ρ〉 is represented by a picture where nodes a, b ∈ A are linked
with ρ(a, b) arrows (counting ↑ as zero). A morphism (isomorphism) of the
pointed coalgebras 〈A, a〉, 〈A′, a′〉 is a morphism (isomorphism) f between the
multigraphs A,A′ with f(a) = a′.

3 Multisets of Exclusive and Overlapping Types

In this section we apply the general theory of coalgebras to present our universes
of circular multisets. The idea is to define two different well-behaved functors
which can be used to model, via their greatest fixed point coalgebra, the non-
wellfounded multisets of exclusive and overlapping types described in the intro-
duction. This requires a definition of the functors on class and class-functions.
We shall see that the simpler definition that comes to mind for defining the
functors on objects is not adequate, because the g.f.p. coalgebra is not a final
coalgebra. To solve the problem, we use more elaborated definitions on objects,
so that the resulting functors are well-behaved and uniform on maps. This will
imply the finality of the g.f.p. coalgebras for both functors.

Once our universes of multisets are correctly defined, we look at the unisets
inside the two multiuniverses, that is, at those multisets that hereditarily contain
only elements with at most multiplicity one. We will easily prove in Section 3.2
that the unisets inside the multiuniverse of overlapping types are AFA-sets.
The same question for the multiuniverse of exclusive types is postponed until
Section 4, where an anwer is obtained as a corollary of a deeper study on the
role of trees inside the category of Γ-coalgebras. By using trees we prove that
the unisets inside the multiuniverse of exclusive types are Scott’s sets.

3.1 Multisets and Sums

We first construct a multiuniverse based on the idea of exclusive types: a func-
tion f : A → B transforms an A-multiset α in a B-multiset f [α], where the
multiplicity of an element y = fx in f [α] is the sum of all the multiplicities
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in A of the elements in f−1(y). E.g. if A = {a, b}, B = {c}, f(a) = f(b) = c,
and α = [[a, a, b]] , then f [α] = [[c, c, c]] . Following this idea, we define an end-
ofunctor Γ̆ on the category C of classes and class-functions: for each class A,
Γ̆(A) represents the class of all A-multisets and for each function f : A → B,
Γ̆(f)(α) is the B-multiset f [α] as above. The natural choice for representing
the A-multisets is to consider Γ̆(A) as the class of all partial functions from A
to positive cardinals.

Definition 3.1 The Γ̆-functor
Let C be the category of classes and class-functions. The endofunctor Γ̆ on C is
defined as follows.

• if A ∈ C, then

Γ̆(A) := {α : α is a small function, dom(α) ⊆ A, range(α) ⊆ Card+}.

• If f : A→ B, then Γ̆(f) : Γ̆(A) → Γ̆(B) is defined by

Γ̆(f)(α) := {〈fx,
∑

fx′=fx

α(x′)〉 : x ∈ dom(α)},

(with the convention that an empty sum counts as ↑ and that ↑+ k = k,
for any positive cardinal k).

Notice that the notion of a small Γ̆-coalgebra can be identified with that of a
multigraph: the multigraph corresponding to the Γ̆-coalgebra e : A→ Γ̆(A) has
the same domain A and multiplicity function equal to ρ(a, a′) := ea(a′). In view
of this correspondence, when considering a Γ̆-coalgebra we will use indifferently
the coalgebraic or the multigraph notation.

A function h : A → A′ is a Γ̆-morphism between the small Γ̆-coalgebras
〈A, e〉 and 〈A′, e′〉 iff (using the multigraph notation): ρ′(ha, hb) =

∑
{ρ(a, b′) :

h(b′) = h(b)}. By comparing the notion of coalgebraic morphism with the one
of homomorphism between multigraphs we see that coalgebraic morphisms are
the sum-multigraph homomorphisms for which the value of ρ′(ha, hb) is the
smallest possible. Notice that the classes of Γ̆-isomorphisms and multigraph
isomorphisms coincide.

It is possible to prove that the functor Γ̆ is well-behaved and hence it has,
up to a certain point, a good coalgebraic theory. However, its greatest fixed
point coalgebra is not a final coalgebra, assuming ZFC or even ZFC− +AFA.
This is easy to see in the case of ZFC because there cannot be any morphism
from a loop to 〈Γ̆∗, id〉, while in the case of ZFC− + AFA we can prove that
uniqueness is lost, as the following example shows.

Example. Consider the following Γ̆-coalgebra A (represented by drawing
the corresponding multigraph):
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We prove (assuming AFA) that there are two different morphisms from A to
〈Γ̆∗, id〉. The first is given by considering an AFA set γ such that γ = {〈γ, 2〉}.
One can easily check that γ ∈ Γ̆∗ and that we get a morphism φ : A → 〈Γ̆∗, id〉
by defining φ(a) = φ(b) = γ. The second morphism is given by considering
two AFA-sets α, β with α = {〈β, 2〉} and β = {〈β, 1〉, 〈α, 1〉}. It is then clear
that α 6= β and α, β ∈ Γ̆∗. We get a morphism ψ : A → 〈Γ̆∗, id〉 by putting
ψ(a) = α, ψ(b) = β. Notice that φ 6= ψ.

The above example shows that using Γ̆(A) we are not allowed to view non-
wellfounded multisets as elements of the greatest fixed point coalgebra of Γ̆,
although we can look at them as elements of a final coalgebra. We can solve
this inconvenience by choosing a different representation of A-multisets, given
by a functor Γ, wich is naturally isomorphic to Γ̆, but which is uniform on maps.
The natural isomorphism between Γ and Γ̆ provides a bijective correspondence
between Γ-coalgebras and Γ̆-coalgebras that preserves bisimulation and final
coalgebras. Moreover, since Γ is uniform on maps, the g.f.p. coalgebra 〈Γ∗, id〉
is final and we can represent non-wellfounded multisets using its elements. By
moving from Γ̆ to Γ we maintain all good properties of Γ̆, but we also acquire the
possibility of working with the greatest fixed point coalgebra instead of working
just with a generic final coalgebra.

It turns out to be convenient to introduce an auxiliary functor Γ0 before we
give Γ. The elements of Γ(A) will be equivalence classes of elements of Γ0(A).
We will see that Γ0-coalgebras are quite useful in studying Γ-coalgebras. We
take Γ0(A) to be the set of numbered multisets of elements of A. This means two
things: (i) we do not yet abstract away from the individuality of the underlying
items of the multisets and (ii) we ‘normalize’ the item sets to cardinals.1 The
second move is just a convenient trick to make sure that the equivalence classes
leading to Γ will be sets. Here is the definition of Γ0.

Definition 3.2 The Γ0-multiset functor
Let C be the category of classes and class functions. The endofunctor Γ0 on C
is defined by:

• if A ∈ C then Γ0(A) = {l : l is a function, dom(l) ∈ Card, range(l) ⊆ A};

• if f : A → B, then Γ0(f) from Γ0(A) to Γ0(B) is defined by Γ0(f)(l) :=
f ◦ l.

1We employ the usual representation of cardinals as initial ordinals. Thus, a cardinal κ is
the set of ordinals of cardinality strictly less than κ.
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We call the coalgebras of Γ0 numbered multigraphs, and denote them with
letters A,A′,B. . . . By definition, a Γ0-morphism between Γ0-coalgebras A =
〈A, e〉 and A′ = 〈A′, e′〉 is a function h : A→ A′ such that e′ha = h ◦ ea.

In order to go from numbered A-multisets to A-multisets, we consider an
equivalence relation on Γ0 whose classes are defined as follows: if l ∈ Γ0, then

[l] = {l′ ∈ Adom(l) : there exists a permutation p on dom(l) with l′ = l ◦ p}.

In this way we abstract away from the individuality of the underlying items of
the multisets: the only relevant information left is how many items of a certain
types belongs to the given multiset.

Definition 3.3 The Γ-multiset functor
Let C be the category of classes and class functions. The endofunctor Γ on C is
defined by:

• if A ∈ C, then Γ(A) = {[l] : l ∈ Γ0(A)};

• if f : A→ B, then Γ(f) : Γ(A) → Γ(B) is defined by Γ(f)([l]) := [f ◦ l].

Notice that the definition of Γ on functions does not depend on the representa-
tive l of the A-multiset [l], and that the multiplicity mΓ(f)([l])(fx) of fx as an
element of the B-multiset Γ(f)([l]) is given by

∑
fx′=fxm[l](x′). Hence the def-

inition of the operator Γ on functions corresponds to the idea presented in the
introduction that the action of a function on a multiset is obtained by summing
the multiplicity of all elements having the same image.

There exists a natural transformation [·] from Γ0 to Γ sending l ∈ Γ0(A) to
[l] ∈ Γ(A). This natural transformation yields a functor —par abus de langage
again [·]— from numbered multigraphs to multigraphs.

Γ-coalgebras are denoted with the letters A,A′,B . . .. Given a Γ0-coalgebra
A = 〈A, e〉 we can consider the corresponding unnumbered version, which is a
Γ-coalgebra and is denoted by [A]:

[A] = 〈A, [e]〉,

where [e](a) = [e(a)], for all a ∈ A. If h : A → B is a Γ0-morphism from the
Γ0-coalgebra A = 〈A, e〉 to B = 〈B, f〉, then it is easily seen that h is also a
Γ-morphism between [A] and [B]. The converse is not generally true, but it is
possible to tune the Γ0-coalgebra A so that h becomes a Γ0-morphism as well.
This is stated in the following lemma, which will be used to transfer results from
the category of Γ0-coalgebras to the category of Γ-coalgebras.

Lemma 3.4 Let A = 〈A, e〉 and B = 〈B, f〉 be Γ0-coalgebras. If h is a Γ-
morphism between [A] and [B], then there exists a Γ0-coalgebra C with [C] = [A]
such that h is a Γ0-morphism between C and B.

Proof.
Since h is a Γ-morphism we know that [fha] = [h ◦ ea]. For any a ∈ A, fix a
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permuatation pa on dom(fha) = dom(ea) such that fha = h ◦ ea ◦ pa. Then the
Γ0-coalgebra C = 〈A, e ? p〉, where (e ? p)(a) = ea ◦ pa, is such that [C] = [A].
From fha = h ◦ ea ◦ pa, we see that the function h is a Γ0-morphism between C
and B. 2

To apply the general theory of coalgebras to our functors Γ0 and Γ we prove
that they are well-behaved functors:

Lemma 3.5 The endofunctors Γ0 and Γ are standard, set-based, preserve weak-
pullbacks, and are uniform on maps.

Proof.
We only prove that Γ0,Γ preserve weak pullbacks, leaving the rest to the reader.
Consider first Γ0. Suppose we have a weak pullback

A B Γ0(A) Γ0(B)

C D To prove that Γ0(C) Γ0(D)

-f

?

u

?

v

-Γ0(f)

?

Γ0(u)

?

Γ0(v)

-g -Γ0(g)

is also a weak pullback, suppose that β, γ are such that Γ0(v)(β) = Γ0(g)(γ),
where β ∈ Γ0(B) and γ ∈ Γ0(C). In particular, dom(β) = dom(γ). We have to
find a α ∈ Γ0(A) with Γ0(f)(α) = β and Γ0(u)(α) = γ. This can be done as
follows. Fix a d ∈ D. Since the first diagram is a weak pullback square, by the
axiom of choice for any pair 〈b, c〉 ∈ v−1(d) × g−1(d) we can select an element
ab,c ∈ A with f(ab,c) = b, u(ab,c) = c. Since Γ0(v)(β) = Γ0(g)(γ), we have
〈β(k), γ(k)〉 ∈ v−1(d)×g−1(d), for d = v(β(k)) = u(γ(k)). Define α(k) = aβk,γk.
Then Γ0(f)(α)(k) = f ◦α(k) = f(aβk,γk) = βk, while Γ0(u)(α)(k) = u ◦α(k) =
u(aβk,γk) = γk.

Consider now the corresponding diagram for Γ and suppose that [β], [γ] are
such that Γ(v)[β] = Γ(g)[γ], where β ∈ Γ0(B) and γ ∈ Γ0(C). It follows that
[v◦β] = [g◦γ] and hence that, for some permutation p of dom(β), v◦β◦p = g◦γ.
Let β′ := β ◦ p. We find: Γ0(v)(β′) = Γ0(g)(γ). By our previous result,
there is an α ∈ Γ0(A) such that Γ0(f)(α) = β′ and Γ0(u)(α) = γ. Then
Γ(f)[α] = [β′] = [β] and Γ(u)[α] = [γ]. 2

Since the functor Γ is uniform on maps, assuming ZFC− + AFA we know
that the coalgebra 〈Γ∗, id〉 is a final coalgebra. We can then consider Γ∗ as
the domain of a multiuniverse of exclusive types (or Γ-multiuniverse), with
relations ∈k defined by: x ∈k y iff |l−1(x)| ≥ k for a function l with y = [l].
We can define the Γ-unisets as the Γ-multisets x such that whenever we have
a descending sequence of multi-memberships xn ∈kn xn−1 ∈kn−1 . . . x1 ∈k1 x,
then kn = kn−1 = . . . = k1 = 1. In Section 4 we shall investigate this new
multiuniverse and prove that the unisets inside it are, modulo isomorphism,
the standard model of the Scott-universe. This will justify the new name of
Scott-multisets for Γ-multisets.
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3.2 Multisets and Sups

We now present our second universe of circular multisets, taking the overlapping
types point of view: a function f : A → B transforms an A-multiset α in a B-
multiset f [α], where the multiplicity of an element y = fx in f [α] is the sup of
all the multiplicities in A of the elements in f−1(y). E.g. if A = {a, b}, B =
{c}, f(a) = f(b) = c, and α = [[a, a, b]] , then f [α] = [[c, c]] . Following this idea,
we define an endofunctor ∆̆ on the category C of classes and class-functions: for
each class A, ∆̆(A) represents the class of all A-multisets and for each function
f : A→ B, ∆̆(f)(α) is the B-multiset f [α] as above.

Definition 3.6 The ∆̆-functor
Let C be the category of classes and class-functions. The endofunctor ∆̆ on C is
defined as follows.

• if A ∈ C, then

∆̆(A) := {α : α is a small function, dom(α) ⊆ A, range(α) ⊆ Card+}.

• If f : A→ B, then ∆̆(f) : ∆̆(A) → ∆̆(B) is defined by

∆̆(f)(α) := {〈fx, sup{α(x′) : fx′ = fx}〉 : x ∈ dom(α)},

(with the convention that ↑ is smaller than any positive cardinal k).

Notice that the notion of a small ∆̆-coalgebra can be identified with that
of a multigraph: the multigraph corresponding to the ∆̆-coalgebra e : A →
∆̆(A) has the same domain A and multiplicity function equal to ρ(a, a′) :=
ea(a′). In view of this correspondence, when considering a ∆̆-coalgebra we
will use indifferently the coalgebraic or the multigraph notation. A function
h : A→ A′ is a ∆̆-morphism between the small ∆̆-coalgebras 〈A, e〉 and 〈A′, e′〉
iff (using the multigraph notation): ρ′(ha, hb) = sup{ρ(a, b′) : h(b′) = h(b)}.
Hence coalgebraic morphisms are the sup-multigraph homomorphisms for which
the value of ρ′(ha, hb) is the smallest possible. Notice that the classes of ∆̆-
isomorphisms and multigraph isomorphisms coincide.

To define ∆̆(A) we used the natural representation of A-multisets as func-
tions from A to Card+, but as in the case of exclusive types we can prove that
the g.f.p. coalgebra of ∆̆ is not final: as before, this is easy to see if we assume
ZFC, while the following example proves the same in the case of ZFC−+AFA.

Example. Consider the following ∆̆-coalgebra A (represented by drawning
the corresponding multigraph):
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Assuming AFA we can prove that there are two different morphisms from A
to 〈∆̆∗, id〉. The first is given by considering an AFA set γ such that γ = {〈γ, 2〉}.
One can easily check that γ ∈ ∆̆∗ and that we get a morphism φ : A → ∆̆∗ by
defining φ(a) = φ(b) = γ. The second morphism is given by considering two
AFA-sets α, β with α = {〈β, 2〉} and β = {〈β, 2〉, 〈α, 1〉}. It is then clear that
α 6= β and hence that α, β ∈ ∆̆∗. We get a morphism ψ : A → 〈∆̆∗, id〉 by
putting ψ(a) = α, ψ(b) = β. Notice that φ 6= ψ.

Hence, using ∆̆ we are not allowed to view non-wellfounded multisets as
elements of the greatest fixed point coalgebra of ∆̆, although we can look at
them as elements of a final coalgebra. As in the case of exclusive types we will
solve this problem by defining a functor ∆ which is naturally isomophic to ∆̆
and it is uniform on maps, but first we prove:

Lemma 3.7 The endofunctor ∆̆ is standard, set-based, and preserves weak-
pullbacks.

We only prove that ∆̆ preserves weak pullbacks. Suppose we have a weak
pullback square

A B ∆̆(A) ∆̆(B)

C D To prove that ∆̆(C) ∆̆(D)

-f

?

u

?

v

-∆̆(f)

?

∆̆(u)

?

∆̆(v)

-g -∆̆(g)

is also a weak pullback, suppose that β, γ are such that ∆̆(v)(β) = ∆̆(g)(γ),
where β ∈ ∆̆(B) and γ ∈ ∆̆(C). We have to find an A-multiset α with
∆̆(f)(α) = β and ∆̆(u)(α) = γ. We define:

α(x) =
{

min{β(fx), γ(ux)} if v(fx) = g(ux);
↑ otherwise

Using the definition of the functor ∆̆ on functions one can easily show that
∆̆(f)(α) = β and ∆̆(u)(α) = γ. 2

Notice that if A = 〈A, e〉 is a graph (i.e. if ea(a′) = 1, whenever defined),
then the concepts of ∆̆-bisimulation and ∆̆-collapse on A coincide with the
classical notions of bisimulation and collapse of A as a graph.

Returning to the problem of finality of the g.f.p. coalgebra, we now define a
functor ∆ which is naturally isomorphic to ∆̆ and it is uniform on maps.

Definition 3.8 The ∆ functor
Let C be the category of classes and class-functions. The endofunctor ∆ on the
category C of classes and class functions is defined as follows.
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• if A ∈ C then a ∆-multiset on A (i.e. an element of ∆(A)) is a small
relation r ⊆ A×Ord with the property: if a ∈ A and h, k are ordinals such
that the cardinality of h is smaller or equal than the cardinality of k, then
ark ⇒ arh.

• If f : A→ B, then ∆(f) : ∆(A) → ∆(B) is defined as

∆(f)(r) := {〈fx, k〉 : 〈x, k〉 ∈ r}.

It is easy to see that ∆(f)(r) is a ∆-multiset on B 2. There is a natural
isomorphism ν between the functors ∆̆ and ∆ which sends a function α ∈ ∆̆(A)
to the relation νA(α) = {〈a, k〉 : a ∈ dom(α), k < α(a)} ∈ ∆(A). The advantage
of the ∆ functor is that its definition on functions commutes with substitution:
∆ is uniform on maps (see Definition 2.2). The natural isomorphism between
∆̆ and ∆ provides a bijective correspondence between ∆̆-coalgebras and ∆-
coalgebras which preserves bisimulation and final coalgebras. Moreover, since
∆ is uniform on maps, assuming AFA we know that the coalgebra 〈∆∗, id〉 is
final. By moving from ∆̆ to ∆ we acquire the possibility of working with the
greatest fixed point coalgebra instead of working with a generic final coalgebra.

The results of this section allow us to give the formal definition of the multiset
universe of overlapping types, that we call the AFA-multiuniverse (this name
will have a formal justification in the next theorem). Its domain is given by the
g.f.p. of the functor ∆∗, while we define s ∈k r iff 〈s, h〉 ∈ r for each ordinal
h < k.

The unisets inside the AFA-multiuniverse are defined as those AFA-multisets
x such that whenever we have a descending sequence of multi-memberships
xn ∈kn

xn−1 ∈kn−1 . . . x1 ∈k1 x, then kn = kn−1 = . . . = k1 = 1. As we already
pointed out, the notion of ∆-bisimulation generalizes the classical notion of
bisimulation on graphs, in the sense that if a multigraph A is a graph, then a
binary relation on A is a ∆-bisimulation if and only if it is a bisimulation of the
graph. This implies that the unisets inside the AFA-multiuniverse are AFA-sets,
i.e. they are a model for the theory ZFC− + AFA. We give a formal coalgebraic
proof of this in the following theorem.

Theorem 3.9 (Assuming ZFC− +AFA)
The unisets inside the AFA-multiuniverse are a model of ZFC− +AFA.

Proof.
By definition, the class U of unisets can be described as:

U = {x ∈ ∆∗ : 〈xn, hn〉 ∈ xn−1, . . . 〈x1, h1〉 ∈ x⇒ hn = . . . = h1 = 0}.
2The relation between our present definition and the representation in the introduction of

multisets with possibly overlapping items as equivalence classes of relations is as follows. The
equivalence classes of the introduction were proper classes, so we cannot use them directly to
define ∆, but it is easy to see that every equivalence class contains precisely one small relation
as in the definition of ∆. Our witnessing element normalizes the range of the relation to a
cardinal and maximizes the overlap of the items. The ∆(f) can be shown to correspond to
the image-mappings discussed in the introduction.
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Consider a new functor P, defined on classes by P(A) = {r ∈ ∆(A) : r ⊆ A×{0}}
and on functions: if f : A → B, then P(f) : P(A) → P(B) is P(f)(r) :=
{〈f(x), 0〉 : 〈x, 0〉 ∈ r}. One can easily show that P is uniform on maps and
hence its g.f.p. coalgebra 〈P∗, id〉 is a final coalgebra. Moreover, the unisets
U inside the AFA-multiuniverse ∆∗ are exactly given by the g.f.p. coalgebra
of the functor P: one can easily check that any element of P∗ belongs to U
and that U ⊆ P∗(U). This implies U = P∗. On the other hand, there is an
obvious natural isomorphism ν between the functor P and the functor Pow:
if A is a class and r ∈ P(A) we define νA(r) = {a ∈ A : 〈a, 0〉 ∈ r}. Any
Pow-coalgebra A = 〈A, e〉 provides an interpretation ∈APow of the membership
relation on the domain A (where a ∈APow a

′ iff a ∈ e(a)) and this interpretation
is a model of ZFC− + AFA, if the coalgebra A is final. Similarly, in the domain
of a P-coalgebra A = 〈A, e〉 we interpret the membership relation as a ∈AP a′

iff 〈a, 0〉 ∈ e(a′). By Proposition 2.3 we know that the natural isomorphism ν
induces a bijective correspondence between P and Pow-coalgebras in which a
P-coalgebra A = 〈A, e〉 is sent to the Pow-coalgebra ν(A) = 〈A, νA ◦ e〉; one can
easily verify that for all a, a′ ∈ A it holds:

a ∈AP a′ ⇔ a ∈νA
Pow a

′,

so that 〈A,∈AP 〉 and 〈A,∈νA
Pow〉 are isomorphic interpretations of the language of

set theory. Consider then the Pow-coalgebra νP? = 〈P∗, νP∗〉 that corresponds
via ν to the g.f.p. coalgebra P∗ = 〈P∗, id〉 of the functor P. Since P is uniform
on maps, 〈P∗, id〉 is a final P-coagebra, hence νP∗ is a final Pow-coalgebra and
〈P∗,∈νP∗

Pow 〉 is a model of ZFC− + AFA; by the preceding discussion it follows
that 〈P∗,∈P∗P 〉 (i.e. the unisets inside the AFA-multiuniverse) are a model of
ZFC− + AFA as well. 2

4 Trees and Exclusive Types

We now return to the exclusive types multiuniverse. In Section 4.1 we prove that
trees and numbered trees play a special role in the class of Γ and Γ0-coalgebras:
the embedding functor from numbered trees to numbered multigraphs has a
right adjoint, the unraveling functor, and this adjunction is used in Section 4.2
to prove that Γ-unisets are Scott-sets.

4.1 An Adjunction

A pointed numbered multigraph e : A→ Γ0(A) with point a is a rooted numbered
tree with root a if:

1. For any a′ ∈ A, e(a′) is an injection, i.e. a numbered tree is a numbered
unigraph,

2. Let’s write c ≺1 c
′ for e(c)(k) = c′, for some k in the domain of e(c). Then

for any a′ ∈ A there is precisely one sequence a = b1 ≺1 b2 · · · ≺1 bn = a′.
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The rooted numbered trees can be considered as the objects of a category
T having as morphisms tree isomorphisms. T is a subcategory of the pointed
numbered multigraphs (actually, a full subcategory, because the results of this
section prove that a Γ0-morphism between rooted numbered trees is always an
isomorphism). Let emb be the corresponding embedding functor. We want to
prove that emb has a right adjoint. To this end, we define an unraveling functor
from Γ0-coalgebras to rooted numbered trees and prove in Theorem 4.2 that it
is a right adjoint of emb.

Definition 4.1 The unraveling functor unr from numbered pointed multigraphs
to rooted numbered trees is described as follows.
The unraveling 〈A, a〉u := unr〈A, a〉 of a pointed Γ0-coalgebra A = (e : A →
Γ0(A)) with point a is the pointed Γ0-coalgebra (e′ : A′ → Γ0(A′)) with as point
the empty sequence ε and:

• A′ is a class of sequences of ordinals σ = k1 · · · kn. We will define by
simultaneous recursion sets A′

n of sequences of ordinals of length ≤ n and
a mapping σ 7→ aσ from A′

n to A. A′ is the union of the A′
n. The union

of the mappings σ 7→ aσ will be a mapping from A′ to A.

– A′
0 := {ε}, aε := a,

– σk ∈ A′
i+1 if σ ∈ Ai and k ∈ dom(e(aσ)), aσk := e(aσ)(k).

• e′(σ)(k) = σk, if σk ∈ A′.

The unraveling hu := unr(h) of a morphism of pointed Γ0-coalgebras
h : 〈(e : A→ Γ0A), a〉 → 〈(f : B → Γ0B), b〉

is simply:
hu := idA′ .

To see that hu is indeed a morphism of rooted numbered trees, we only need
to verify that unr(〈(e : A → Γ0A), a〉) = unr(〈(f : B → Γ0B), b〉). We prove
this by induction on the length of the elements of A′, proving simultaneously
bσ = h(aσ). For the case of the empty sequence we are easily done. We have

h(aσk) = h(e(aσ)(k))
= f(h(aσ))(k)
= f(bσ)(k)
= bσk

Note that also dom(e(aσ)) = dom(f(bσ)), so A′ = B′. So clearly unr is a functor.
We define the natural transformation end : emb ◦ unr → id as follows.

end〈A,a〉(σ) := aσ.

To see that end〈A,a〉 is indeed a morphism of Γ0-coalgebras, note that:

e(end〈A,a〉(σ))(k) = e(aσ)(k)
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. = end〈A,a〉(σk)
= end〈A,a〉(e′(σ)(k))
= Γ0(end〈A,a〉)(e′(σ))(k)

It is immediate that end is a natural transformation by the fact that if h : 〈(e :
A→ Γ0A), a〉 → 〈(f : B → Γ0B), b〉

is a Γ0-morphism, then h(aσ) = bσ. In case our coalgebra is rooted rather
than pointed clearly end is surjective.

Theorem 4.2 The functor unr is right adjoint to the functor emb.

Proof.
We start with the functor emb from the category of the rooted numbered trees
to the category of the pointed numbered multigraphs. We assign to a pointed
numbered multigraph 〈A, a〉 a rooted numbered tree 〈A, a〉u by unraveling as
described above. We have to show that end〈A,a〉 : emb(〈A, a〉u) → 〈A, a〉 is
universal from emb to 〈A, a〉 (see e.g. [4]). We check the relevant universality
condition. Consider any rooted numbered tree 〈T , t〉 and let h : T → 〈A, a〉.
We have to show that there is a unique isomorphism h′ : T → 〈A, a〉u such
that h = end〈A,a〉 ◦ h′. Let T be given by the Γ0-coalgebra τ : T → Γ0T with
root t. Consider any t′ in T . Let t = t1 ≺1 t2 · · · ≺1 tn = t′ be the unique
path from t to t′. Let ki be the unique ordinal so that τ(ti)(ki) = ti+1. We
take h′(t′) := k1 · · · kn−1. Since h is a morphism and τ(ti)(ki) = ti+1 we have
e(h(ti))(ki) = h(ti+1), so h′(t′) is indeed in A′. We show that h′ is a morphism:

e′(h′(t′))(k) = e′(k1 · · · kn−1)(k)
= k1 · · · kn−1k

= h′(τ(t′)(k))
= Γ0(h′)(τ(t′))(k)

Clearly end〈A,a〉 ◦ h′ = h. The uniqueness of h′ is easily shown by induction on
the distance of t′ from t. We leave to the reader the verification that h is one
to one and onto. 2

We now consider the notion of unraveling for (unnumbered) pointed multi-
graphs.

Definition 4.3 The Unraveling of a pointed multigraph 〈A, a〉 = 〈〈A, ρ〉, a〉 (or
equivalently, of a pointed Γ-coalgebra) is the pointed multigraph UNR〈A, a〉 =
(〈A, a〉)U := 〈〈AU , ρU 〉, a〉 where:

(a) AU is the set of finite sequences

a0k1a1 . . . knan,

where ai ∈ A for i ∈ {0, . . . , n}, a0 = a, and the ki’s are ordinal numbers
satisfying: ki+1 < ρ(ai, ai+1), for all i ∈ {0, . . . , n − 1} (in particular, if
a0k1a1 . . . knan ∈ AU then ρ(ai, ai+1) ≥ 1 and ai+1 ∈ Succ(ai), for all
i < n).
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b) The point is the sequence a.

c) ρU (σ, σkn+1an+1) = 1, for all σkn+1an+1 ∈ AU .

Let us relate this construction with the corresponding one on numbered
multigraphs. We can go from rooted numbered trees to ordinary rooted trees
by forgetting structure, say the functor is forget. We can go from pointed
numbered multigraphs to pointed multigraphs via [·]. We have the mapping
UNR unraveling pointed multigraphs to rooted trees. Now the point is that
UNR([〈A, a〉]) is isomorphic to forget(〈A, a〉u). So UNR can be viewed like this.

1. Start with a pointed multigraph 〈A, a〉.

2. Pick a [·]-original 〈A, a〉. This choice preprogrammes arbitrary choices in
the unraveling.

3. Unravel via unr. You have a rooted numbered tree.

4. Forget structure and you have a rooted tree.

5. Modulo isomorphism this is precisely what we get via UNR.

The mapping UNR is easily defined on the objects but you cannot get it to work
on the morphisms, the point being that in the absence of ‘numberedness’ we
don’t know which sequence to send to which sequence. For example, consider
the multigraph 〈A, ρ〉: A = {a, b, c} and ρ(a, b) = ρ(a, c) = 2; the multigraph
〈A′, ρ′〉: A′ = {a′, b′} and ρ(a′, b′) = 4; and the Γ-morphism h sending a to a′

and b, c to b′. Considering the two unravelings, there is no intrinsic reason to
send e.g. a1b to a′3b′, etc.

As in the numbered case, we can easily prove that the function end from AU

to A defined as
end(a0k1a1 . . . knan) = an

is a coalgebra morphism from the unraveling 〈A, a〉U to 〈A, a〉; in particular,
the pointed Γ-coalgebra 〈A, a〉U is Γ-bisimilar to 〈A, a〉, and can be used as a
representative for the Γ-bisimulation class of 〈A, a〉. But we can prove more
than this. Consider the preorder ≤, defined by 〈A, a〉 ≤ 〈A′, a′〉 iff there exists
a morphism from 〈A, a〉 to 〈A′, a′〉. Since the quotient 〈A, [a]〉 of a rooted coal-
gebra 〈A, a〉 modulo the maximal Γ-bisimulation is a collapsed multigraph and
two rooted coalgebras are bisimilar iff their collapses are isomorphic, we easily
obtain: 〈A, [a]〉 is the unique maximum (modulo isomorphism) whit respect to
≤ in the bisimulation class of 〈A, a〉. This holds generally, for any well-behaved
functor. In the case of Γ (or Γ0) an easy consequence of the following theorem is
that the order ≤ also have a unique minimum, given by the unraveling 〈A, a〉U
of an element 〈A, a〉 ∈ X. Hence, for these functors we have two natural repre-
sentatives for a rooted coalgebra, the maximum and the minimum of ≤, given
respectively by its collapse and its unraveling.

Notice that the existence of a minimum does not generally hold for well-
behaved functors. For example, it does not hold for the functor Pow: given a

25



Pow-coalgebra A we can always find a smaller coalgebra (with respect to ≤)
which is not isomorphic to it by using an appropriate k-unraveling of A.

Theorem 4.4 If 〈T, t〉 is a rooted numbered tree, then any morphism h from
a rooted Γ0-coalgebra 〈A, a〉 to 〈T, t〉 is an isomorphism; vice versa, any rooted
numbered coalgebra satisfying this property is isomorphic to a rooted numbered
tree. The same is true for rooted trees and rooted multigraphs.

Proof.
We prove the numbered version and leave to the reader the corresponding proof
for Γ, which is easily obtained by applying Lemma 3.4. Consider the natural
transformation end from the unraveling functor unr to the identity functor. If
h : 〈A, a〉 → 〈T, t〉 is a morphism, then, since unr(h) is the identity, we have
end〈T,t〉 = h◦end〈A,a〉. But end〈T,t〉 is an isomorphism and end〈A,a〉 is surjective,
hence h is a bijection. Vice versa, suppose that 〈A, a〉 is such that any morphism
arriving at it is an isomorphism. Then end : 〈A, a〉u → 〈A, a〉 is an isomorphism
and 〈A, a〉 is isomorphic to the rooted numbered tree 〈A, a〉u. 2

4.2 Scott Bisimulation and Trees

In this section we show that the notion of Γ-bisimulation between Γ-coalgebras
(that we identify with multigraphs) is the natural generalization of the notion
of Scott-bisimulation between graphs (see [1]). Scott-bisimulation on graphs is
described by means of the notion of unraveling, that can also be used used to
characterize the maximal bisimulation on pointed graphs. The unraveling of a
graph produces a rooted tree, in which every node is copied once (in the simple
unraveling) or k-times for a cardinal k (in the k-unraveling). It is possible to
prove that two graphs are bisimilar if and only if there exists a cardinal k such
that the k-unravelings of the graphs are isomorphic. In Definition 4.3 we gener-
alized the notion of simple unraveling to multigraphs and now in Corollary 4.5
we show that two Γ-coalgebras (i.e. two multigraphs) are Γ-bisimilar if and only
if their unravelings are isomorphic. Since Scott-bisimulation (in the equivalent
definition given in [1]) relates two pointed graphs exactly when their unravel-
ings are isomorphic, we see that the notion of Γ-bisimulation is a generalization,
from graphs to multigraphs, of Scott-bisimulation. We then use this result to
prove that the unisets of the Γ-multiuniverse are Scott-sets.

Theorem 4.5 If h is a Γ-morphism between two pointed Γ-coalgebras A, B
then A, B have isomorphic unravelings. In particular, two pointed Γ-coalgebras
are Γ-bisimilar if and only if they have isomorphic unravelings.

Proof.
Consider a Γ0-original B of B, that is: B = [B]. From Lemma 3.4 we know
that there exists a Γ0-original A of A such that h is a Γ0-morphism from A to
B. But then we know that Au is equal to Bu. Since UNR(A) is isomorphic to
forget(Au) and UNR(B) is isomorphic to forget(Bu), we are done. 2
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Theorem 4.5 allows us to identify Γ-multisets and (isomorphism classes of)
rooted trees. Define the canonical rooted tree T (x) of a Γ-multiset x ∈ Γ∗ as
〈〈Γ∗, id〉, x〉U . In this way we pick exactly a rooted tree in any isomorphism
class of rooted trees. The rooted trees modulo isomorphism give then an equiv-
alent representation of multisets and using this representation we prove that
the unisets inside the Γ-multiuniverse are Scott-sets. This is stated in the fol-
lowing theorem and to prove it we shall use the representation, given in [1], of
Scott-sets by means of rooted irredundant trees modulo isomorphism: a tree T
is irredundant if it has no proper automorphism, or, equivalently: for all u ∈ T ,
u′, v′ ∈ Succ(u), if 〈T , u′〉 is isomorphic to 〈T , v′〉 then u′ = v′.

Theorem 4.6 (Assuming ZFC−+AFA) The Γ-unisets are a model of ZFC−+
Scott.

Proof.
By the preceding discussion we only need to prove that the unraveling of a
uniset x ∈ Γ∗ is an irredundant rooted tree and that any irredundant rooted
tree is isomorphic to such an unraveling. Suppose that T = 〈〈Γ∗, id〉, x〉U is not
irredundant: then there are u ∈ T , u′, v′ ∈ Succ(u) with u′ 6= v′ such that 〈T , u′〉
is isomorphic to 〈T , v′〉. Then end(u′) and end(v′) are Γ-bisimilar nodes in
〈Γ∗, id〉 and since 〈Γ∗, id〉 is final, by Proposition 2.1 we obtain end(u′) = end(v′).
But u′, v′ were different successors of u in 〈〈Γ∗, id〉, x〉U , hence end(u′) can be
equal to end(v′) only if the multiplicity of end(u′) as an element in the multiset
end(u) is greater than one. This is a contradiction because we supposed x to be
a uniset.

To prove that any irredundant rooted tree is isomorphic to 〈〈Γ∗, id〉, x〉U , for
a uniset x, we first show: if the unraveling T = 〈A, a〉U of a rooted multigraph
is irredundant, then the multigraph must be a graph. Suppose not: then there
are two nodes b, c of A with ρ(b, c) > 1; if t ∈ T is such that end(t) = b, then
t0c, t1c are nodes in T , and 〈T , t0c〉, 〈T , t1c〉 are isomorphic, a contradiction.
Suppose then that 〈T , t〉 is an irredundant rooted tree. By considering T as a Γ-
coalgebra we can find a Γ-morphism h : T → 〈Γ∗, id〉. By Theorem 4.5 we know
that 〈T , t〉 is isomorphic to 〈〈Γ∗, id〉, h(t)〉U and by the preceding discussion we
know that h(t) must be a uniset. 2

5 Multisets and the Logics of Graded Modalities

In this section we give a characterization of ∆ and Γ-bisimulation via logic. In
the set-context the appropriate logic for describing bisimulation between graphs
was proved to be infinitary modal logic ([3]). In the Γ-context we shift to the
graded extension of this logic by proving that two pointed multigraphs are Γ-
bisimilar iff they satisfy the same formulae of infinitary graded modal logic.
More than this, we prove that any multigraph can be characterized modulo
Γ-bisimulation by a single infinitary graded modal formula, and we isolate a
class of formulae that correspond to Scott-multisets. In this way we have three

27



alternative ways for modeling Scott-multisets: as collapsed multigraphs, as trees,
or as infinitary formulae. The same can be done for the functor ∆ and AFA-
multisets, with the difference that now the formulae of infinitary graded modal
logic are interpreted in a non-standard way.

Consider the language obtained from infinitary propositional logic by adding
the unary operators 3h, for all h ∈ Card+. More formally, we define our formulae
F as the smallest class closed under infinitary conjunction (if Φ ⊆ F is a set
then

∧
Φ ∈ F), negation (if φ ∈ F then ¬φ ∈ F), and graded diamonds (if h

is a strictly positive cardinal and φ ∈ F then 3hφ ∈ F). In the following, we
denote the operator 31 by the more familiar symbol 3 and

∧
∅ by ⊥. Since

we are dealing with pure multisets, our language does not contain propositional
variables. However, the results of the following sections are generalizable to
multisets with atoms and in this case our language would contain propositional
variables.

5.1 Graded Modalities and Exclusive Types

In the case of the Γ-functor we define the truth of a formula φ of F in a pointed
multigraph 〈A, a〉 = 〈〈A, ρ〉, a〉 (or, equivalently, in a pointed Γ-coalgebra) by
adding the clause below to the inductive definition of truth in infinitary propo-
sitional logic:

〈A, a〉 |= 3hφ ⇔
∑

〈A,b〉|=φ

ρ(a, b) ≥ h.

The resulting logic is denoted by Lgrad
∞ . If the multigraph A = 〈A, ρ〉 is clear

from the context, we write a |= φ instead that 〈A, a〉 |= φ.
Notice that our logic Lgrad

∞ coincides on pointed graphs with the well-known
infinitary graded modal logic. We write 〈A, a〉 ≡Γ 〈A′, a′〉 (or simply a ≡Γ

a′) if 〈A, a〉, 〈A′, a′〉 are two pointed multigraphs that satisfy the same Lgrad
∞ -

formulae. The following theorem show that Lgrad
∞ is the appropriate language

for characterizing Γ-bisimulation.

Theorem 5.1 Two pointed multigraphs 〈A, a〉 = 〈〈A, ρ〉, a〉 and 〈A′, a′〉 =
〈〈A′, ρ′〉a′〉 are Γ-bisimilar if and only if they satisfy the same Lgrad

∞ -formulae.

Proof.
(⇒) By an easy induction on the complexity of Lgrad

∞ -formulae.
(⇐) We prove that ≡Γ∩(A×A′) is a Γ-bisimulation between A and A′. Suppose
〈w,w′〉 ∈ ≡Γ ∩ (A×A′).

CLAIM 1. For any v ∈ Succ(w) ∪ Succ(w′), there exists a formula φv ∈ Lgrad
∞

such that for any z ∈ Succ(w) ∪ Succ(w′) it holds

(?) z |= φv ⇔ z ≡Γ v.

Suppose v ∈ Succ(w) ∪ Succ(w′). For any u ∈ Succ(w) with u 6≡Γ v let ψu ∈
Lgrad
∞ be such that u 6|= ψu and v |= ψu. We define

φv :=
∧
ψu,
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and prove that φv verifies property (?) above. The direction from right to left
is obvious since φv ∈ Lgrad

∞ and v |= φv. For the other direction, suppose first
that z ∈ Succ(w): if z 6≡Γ v, then the conjunct ψz of φv is such that z 6|= ψz,
and hence z 6|= φv. If z ∈ Succ(w′) and z |= φv, we prove that for any formula
θ ∈ Lgrad

∞ , if z |= θ then v |= θ. This is enough to prove that z ≡Γ v. If z |= θ
then w′ |= 3(θ ∧ φv), hence w |= 3(θ ∧ φv) and there exists s ∈ Succ(w) with
s |= θ ∧ φv. But for s ∈ Succ(w) we already proved that s |= φv implies s ≡Γ v;
hence v |= θ.

Notice that the construction of the formula φv is not symmetric: the point
v can be either in Succ(w) or in Succ(w′), but the formula φv is in any case
the conjunction of formulae ψu for u ∈ Succ(w). A symmetric construction is
possible and even simpler, but using the asymmetric one we will be able to prove
the stronger Theorem 5.2 below.

We now use the claim to prove that the equivalence relation ≡Γ restricted
to A×A′ satisfies: if 〈w,w′〉 ∈ ≡Γ ∩ (A×A′) and c ∈ Succ(w)∪ Succ(w′) then:∑

{ρ(w, a′) : a′ ≡Γ c} =
∑

{ρ′(w′, b′) : b′ ≡Γ c}.

From this it easily follows that the relation ≡Γ ∩ (A×A′) is a Γ-bisimulation.
Suppose c ∈ Succ(w) and h =

∑
{ρ(w, a′) : a′ ≡Γ c}. By property (?) above

we have w |= 3hφc ∧ ¬3h+φc, where h+ is the first cardinal greater then h.
Then w′ |= 3hφc ∧ ¬3h+φc, and

∑
{ρ′(w′, b′) : b′ ≡Γ c} = h.

Suppose c ∈ Succ(w′). By using the claim again, we can construct a formula
φc such that for z ∈ Succ(w) ∪ Succ(w′) it holds

z |= φc ⇔ z ≡Γ c.

Since w′ |= 3φc, we have w |= 3φc and there exists a v ∈ Succ(w) such that
v ≡Γ c. Then we can reason as above, using v instead of c. 2

We now show how to modify the proof of Theorem 5.1 to achieve a stronger
result: any pointed multigraph can be characterized, modulo Γ-bisimulation, by
a single formula in Lgrad

∞ . Given a cardinal h, denote by Lh the fragment of Lgrad
∞

which is obtained by restricting infinitary conjunctions to sets of cardinality
strictly smaller than h and graded diamonds to 3k with k < h. Notice that
Lh forms a set (while Lgrad

∞ is a class which is not a set). Denote the relation
to satisfy the same Lh-formulae by ≡h. Given a multigraph A = 〈A, ρ〉, let
hA be the smallest cardinal which is strictly greater then

∑
v∈Succ(w) ρ(w, v),

for any w ∈ A. Notice that in the preceding proof we always used infinitary
conjunctions on sets of cardinality smaller than h+

A and graded diamonds 3h

only for h < h+
G . This means that a similar proof can be exploited to prove that

≡h+
A

is a Γ-bisimulation between A and any multigraph A′. Consider then the
formula

φ〈A,w〉 =
∧
{φ ∈ Lh+

A
: w |= φ}.

If A′ is a multigraph and 〈A′, w′〉 |= φ〈A,w〉, then 〈A, w〉 ≡h+
A
〈A′, w′〉; by the

previous consideration we can deduce that 〈A, w〉, 〈A′, w′〉 are Γ-bisimilar. This
proves:
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Theorem 5.2 For any pointed coalgebra 〈A, w〉 there exists a formula φ〈A,w〉 ∈
Lgrad
∞ which characterizes 〈A, w〉 modulo Γ-bisimulation, i.e., for any multigraph

A′ it holds:

〈A′, w′〉 |= φ〈A,w〉 ⇔ 〈A, w〉 is Γ-bisimilar to 〈A′, w′〉.

It follows that any Γ-multiset is characterized by an infinitary graded modal
formula. This result suggests another representation of the class of Γ-multisets,
in which the domain of the universe is a fragment of the class of infinitary graded
modal formulae. We only sketch this in the following. First, we characterize
the graded formulae of type φ〈A,a〉 for a pointed multigraph 〈A, a〉 (for a set-
analogue, see [3]).

Definition 5.3 Consider the preorder ≤ defined in Lgrad
∞ by ψ ≤ φ⇔|= ψ → φ,

where |= ψ → φ stands for: any pointed multigraph that satisfies ψ, satisfies φ
as well. Define the class MS(Lgrad

∞ ) as the one containing, modulo equivalence,
all satisfiable Lgrad

∞ -formulae which are minimal with respect to ≤ on satisfiable
formulae, that is:

φ ∈MS(Lgrad
∞ )

m

φ is satisfiable and for all satisfiable ψ if ψ ≤ φ then ψ is equivalent to φ.

Lemma 5.4 φ ∈MS(Lgrad
∞ ) ⇔ ∃〈A, a〉 with |= (φ〈A,a〉 ↔ φ).

Then, we identify the class of Γ-multisets with the class MS(Lgrad
∞ ), with

∈k given by the relation {〈φ, ψ〉 ∈MS(Lgrad
∞ )×MS(Lgrad

∞ ) :|= φ→ 3kψ}.

5.2 Graded Modalities and Overlapping Types

The results of the previous section can be adapted to give a logic description
of AFA-multisets, provided we change the interpretation of a formula 3hφ in a
pointed multigraph 〈〈A, ρ〉, a〉 (considered as a ∆-coalgebra) as follows:

〈〈A, ρ〉, a〉 |= 3hφ ⇔ sup{ρ(a, b) : b |= φ} ≥ h.

The resulting logic is denoted by Lo-grad
∞ . If the multigraph 〈A, ρ〉 is clear from

the context, we write a |= φ instead that 〈〈A, ρ〉, a〉 |= φ.
Notice that if 〈A, a〉 is a pointed graph, then for all a ∈ A and all h ≥ 2

we have a |= ¬32φ, for all φ ∈ F . Hence, on pointed graphs the logic Lo-grad
∞

has the same expressive power than infinitary modal logic. We write 〈A, a〉 ≡∆

〈A′, a′〉 (or simply a ≡∆ a′) if (〈A, a〉, 〈A′, a′〉 are two pointed multigraphs that
satisfy the same Lo-grad

∞ -formulae. Then all the results of the previous section
transfer to this context: one only has to substitute ∆ for Γ and Lo-grad

∞ for
Lgrad
∞ .
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5.3 Relations with Coalgebraic Logic.

Given a well-behaved functor F , a general method for constructing a logic char-
acterizing F -coalgebras modulo F -bisimulation is given in [5]. There it is also
shown that for certain functors, the uniform ones, a single formula of the logic
suffices for characterizing a pointed coalgebra. In Section 3 we proved that our
functors Γ and ∆ are uniform and hence the results of [5] apply to our context.
Moreover, one can prove that Moss logics relative to our functors are a frag-
ment of the logics described in the previous sections. The method described in
[5] is very general and applies to a large class of functors, but the description
of the syntax and semantics of the logics is quite involved; our logics have the
advantage of being simply extensions of infinitary modal logics by means of
operators.

6 Multisets & Monads

The coalgebraic framework that we have employed in the construction of multi-
set universes has as drawback that it doesn’t yield extra structure on the objects
produced in an automatic way. E.g. the categorical framework does not pro-
vide the desired morphisms or operations between the multisets. We think this
drawback can be overcome by enriching the categorical framework. We will not
attempt that task in this paper. There is however one enrichment that can be
added easily on top of the coalgebraic framework. We can study the dynamics
of Γ-coalgebras (or multirelations) by extending the analogues of the powerset
functor to monads. This allows us to define composition of Γ-coalgebras in a
satisfactory way.

6.1 Singleton and Unary Union

Singleton and unary union are fundamental operators on sets. Together, they
fit into the definition of a well-known construction in category theory: the triple
〈Pow, sing, union〉 is a primary example of a monad.

Definition 6.1 A monad on a category C is a triple 〈F, ν, µ〉, where F is an
endofunctor on C and ν : 1 → F , µ : F 2 → F are natural transformations
satisfying: for all A ∈ C the following are commutative diagrams.

F (A) F 2(A) F 3(A) F 2(A)

F 2(A) F (A) F 2(A) F (A)

-F (νA)

?

νF A

@
@

@
@@R

idF (A)

?

µA

?

F (µA)

-µF A

?

µA

-
µA

-
µA

In this section we consider the singleton and unary union operators for multisets.
No difference in the definition of the singleton operator arises between exclusive

31



or overlapping types, because given an element a ∈ A the natural choice for νA

is simply νA(a) = [[a]] . As for the unary union, from our informal definition
of exclusive and overlapping types it should be clear that the definition of the
union operator is different in the two contexts.

Let us start by defining the unary union µe in the exclusive types. We
define the unary union of a multiset δ ∈ Γ2(A) as the A-multiset in which any
element a ∈ A appears with multiplicity equal to

∑
z∈Γ(A)mδ(z)mz(a). Hence,

the formal definition of the natural transformation µe from Γ2 to Γ can be
given as follows. If δ ∈ Γ2(A), then δ = [λx1.fx1] with fx1 ∈ Γ(A), for all
x1 ∈ domf ; then fx1 = [λx2.fx1x2] with fx1x2 ∈ A. Consider the set of pairs
I = {〈x1, x2〉 : x1 ∈ dom(f), x2 ∈ dom(fx1)}. We define µe

A(δ) as the function
with domain equal to I and µe

A(δ)〈x1, x2〉 = fx1x2 (this is not entirely correct
because the domain of an A-multiset should be a cardinal, but for the sake of
simplicity we omit the biunivocal correspondence between I and a cardinal).

Lemma 6.2 The triple 〈Γ, ν, µe〉 forms a monad.

Proof.
We leave to the reader the verification that ν and µe are natural transformations.
The diagram on the left of the monad definition simply say that if α ∈ Γ(A) is
an A-multiset then µe

A( [[α]] ) = α = µe
A(Γ(νA)(α)), which is easily checked. As

for the diagram on the right, consider γ ∈ Γ3(A). We want to show that

µA(µΓ(A)(γ)) = µA(ΓµA
(γ)),

where we omitted the superscript e for the sake of readability. Suppose γ =
[λx1.fx1], fx1 = [λx2.fx1x2], and fx1x2 = [λx3.fx1,x2x3]. Then µΓ(A)(γ) =
[λ〈x1,x2〉.fx1x2] and µA(µΓ(A)(γ)) = [λ〈〈x1,x2〉,x3〉.fx1,x2x3]. Hence, µA(µΓ(A)(γ))
is equal to [g] with

dom(g) = {〈〈x1, x2〉, x3〉 : x1 ∈ dom(f), x2 ∈ dom(fx1), x3 ∈ dom(fx1,x2)},

and g〈〈x1, x2〉x3〉 = fx1,x2x3. On the other hand,

ΓµA
(γ) = [µA ◦ λx1.fx1]

= [λx1.µA(fx1)]
= [λx1.µA([λx2.fx1x2])]
= [λx1.µA([λx2.[λx3.fx1,x2x3])]
= [λx1.[λ〈x2,x3〉.fx1,x2x3]].

Then µA(ΓµA
(γ)) = [h] where

dom(h) = {〈x1, 〈x2, x3〉〉 : x1 ∈ domf, x2 ∈ domfx1 , x3 ∈ domfx1,x2}

and h〈x1〈x2, x3〉〉 = fx1,x2x3. It is then clear that [g] = [h] and hence that
µA(µΓ(A)(γ)) = µA(ΓµA

(γ)). 2
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Considering the context of overlapping types, it is easy to see that µe is not a
natural transformation from ∆2 to ∆. We define instead a unary union for mul-
tiset of overlapping types as follows. Using the ∆̆ representation of multiset, we
define a natural transformation µo from ∆̆2 to ∆̆ as follows. Suppose δ ∈ ∆̆2(A),
that is, δ : ∆̆(A) → k. Then if a ∈ A we define µo

A(δ)(a) := sup{α(a)δ(α) :
α ∈ ∆̆(A)}. One can then prove that the triple 〈∆̆, ν, µo〉 forms a monad (and
since ∆̆ is naturally isomorphic to ∆ we obtain a corresponding monad on the
functor ∆).

Lemma 6.3 The triple 〈∆̆, ν, µo〉 forms a monad.

6.2 Kleisli Categories for Multisets

Given a monad 〈F, ν, µ〉 on a category C, the Kleisli category CF of 〈F, ν, µ〉 has
the same objects as C, while a Kleisli-arrow from A to B is a C-arrow from A to
F (B). The monad structure allows to define the composition ? of Kleisli arrows
as follows: if f : A→ B and g : B → C are arrows in the Kleisli category, then
g ? f : A→ C is defined as g ? f := µC ◦ F (g) ◦ f . In particular, if f is a Kleisli
arrow from A to B then f ?νA = f = νB ?f , and νA serves as the identity arrow
in the Kleisli category. Notice that F -coalgebras can be identified with looping
arrows. Hence, if the functor F can be extended to a monad, then the monad
structure allow us to define the composition of F -coalgebras. This composition
is particularly interesting from a coalgebraic point of view, because we can prove
that it is preserved under bisimulation.

Lemma 6.4 Suppose R is a bisimulation between e1 : A→ F (A) and e′1 : A→
F (A), say via r1 : R → F (R) and that the same R is a bisimulation between
e2 : A → F (A) and e′2 : A → F (A), say via r2 : R → F (R). Then R is a
bisimulation between e2 ? e1 and e′2 ? e

′
1, viz. via r2 ? r1.

Proof.
Since r2 ? r1 = µR ◦ F (r2) ◦ r1, one can see that R is a bisimulation between
e2 ? e1 and e′2 ? e

′
1 by composing the commutative diagrams below.

A F (A) F 2(A) F (A)

R F (R) F 2(R) F (A)

A F (A) F 2(A) F (A)

-e1 -F (e2) -µA

?

π2

-r1

6

π1

-F (r2)

6

F (π1)

?

F (π2)

6

F 2(π1)

-µR

?

F 2(π2)

6

F (π1)

?

F (π2)

-e′1 -F (e′2) -µA

2
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Let us consider our multiset monads. The Kleisli composition is a very familiar
object in the case of Γ, because it can be identified with matrix multiplications.
To see this, notice first that a multigraph (or a Γ-coalgebra) A = 〈A, ρ〉 can be
seen as a matrix having A-rows and A-columns, with entry 〈a, b〉 equal to ρ(a, b).
If A′ = 〈A, ρ′〉 is another coalgebra with the same domain, then the reader can
check that the matrix corresponding to A ?A′ is the rows by columns product
of the matrix corresponding to A′ and A.

7 Afterword

What have we accomplished in this paper? We gained a better understanding
of the fact that there are two salient notions of multiset. It was shown how the
Scott universe can be fitted into the coalgebraic framework. The relationship
between multisets and trees was elaborated. Some insight was provided on why
unraveling fails to be a functor. Finally we briefly considered how the dynamics
of multirelations can be added on top of the coalgebraic framework.

The present work can be viewed as a case study in coalgebraic theory. We
looked in detail at particular functors. It turned out that reasonable uniform
versions could be found for both types of functors considered. One may won-
der precisely which endofunctors of the category of sets and classes of the AFA-
universe do have uniform naturally isomorphic variants. A striking phenomenon
is the fact that the uniform versions seem to be philosophically superior. They
seem to be closer to an ‘explanatory modeling’ than their non-uniform brethren.
Note however that there are many uniform variants of a given functor modulo
natural isomorphism. Some of them could be utterly philosophically unenlight-
ening. However that may be, we could be moved to consider the following
hypothesis. Whenever we have a sufficiently clear intuitive concept that lends
itself to coalgebraic analysis at all, then there is a uniform functor that models
the intuitive concept better than any naturally isomorphic non-uniform functor.

What have we not accomplished? First, we did not develop axiomatizations
of the two universes of multisets. We are not sure how interesting this question
is. Secondly, we feel that there are two closely related defects to the coalgebraic
framework that we have employed. (i) It is not abstract enough and (ii) it
is not rich enough. The lack of abstraction shows itself where it is not fully
perspicuous which specific properties of sets and classes are employed in the
proofs. The poverty shows itself where we construct a universe of multisets,
but e.g. the question about what the appropriate multiset morphisms are is left
undecided by the framework. Of course we know what the morphisms should
be, but this insight is not fully reflected in the framework. It seems that a more
full understanding of the universes of multisets from the coalgebraic point of
view would require a reworking of the coalgebraic framework. Thus we end our
paper with a challenge for the future, the challenge to generalize and enrich the
coalgebraic framework.
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