
The Donkey and the Monoid
Dynamic Semantics with Control Elements

Albert Visser (albert.visser@phil.uu.nl)
Department of Philosophy, Utrecht University

Abstract. Dynamic Predicate Logic (DPL) is a variant of Predicate Logic intro-
duced by Groenendijk and Stokhof. One rationale behind the introduction of DPL
is that it is closer to Natural Language than ordinary Predicate Logic in the way it
treats scope.

In this paper I develop some variants of DPL that can more easily approxi-
mate Natural Language in some further aspects. Specifically I add flexibility in the
treatment of polarity and and some further flexibility in the treatment of scope.

I develop a framework that is intended to encourage further experimentation
with alternative variants of DPL. In this framework the new meanings are, roughly,
indexed sets of old meanings. The indices can be viewed as ‘files’ or ‘storage de-
vices’. Each such file supports a separate ‘information stream’. The interaction of
the new meanings is ‘programmed’ with the help of certain monoids acting on the
indices. The construction of the new meanings can be viewed as an application of
the Grothendieck Construction to monoids.

Keywords: Dynamic Predicate Logic, Natural Language, Meaning, Information
Streams, File Semantics, Polarity, Scope, Donkey, Monoid, Monoidal Processing

MSC2000 codes: 03B65, 68T50, 91F20

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

dynacondue.tex; 21/01/2004; 12:34; p.1

2 A. Visser

Table of Contents

1 Introduction 3
2 What is a Dynamic Predicate Logic? 6
3 The Polarity Switcher 11

3.1 Definition of the Logic 11
3.2 A Donkey Owner’s Manual 13

4 The Polarity Switcher meets Disjunction 16
4.1 Definition of the Logic 16
4.2 Paraphrases 16

5 Constructing certain e-Monoids 17
6 A Scoping Device 19

6.1 Definition of the Logic 19
6.2 Paraphrases 21

7 Changing File Status Retrospectively 23
7.1 Definition of the Logic 23
7.2 Paraphrases 25
7.3 On the Retrospective Construction 26

8 Perspectives 27
A Relational Representation 28
B Translations 29

B.1 Predicate Logic into DPL 29
B.2 DPL into any Dynamic Predicate Logic 30
B.3 DPL with Polarity Switch into DPL 30
B.4 DPL with Switches for Polarity and Scope into

DPL 31
B.5 DRT into DPL with and without Switches 32

C The Grothendieck Construction 33
D Opposites of Opposites 34

dynacondue.tex; 21/01/2004; 12:34; p.2

The Donkey and the Monoid 3

1. Introduction

Natural Language is more flexible, truly and impressively more flexible,
than any formal language cum semantics cooked up by man.1

Take for example the scoping mechanisms for variables. The scope
of a Natural Language quantifier like a woman easily passes sentence
boundaries, where the scope of the analogous quantifier ∃x in Predicate
Logic is pityfully confined to the formula containing its occurrence.
Next take argument places. In Natural Language arguments seem to
be arbitrarily extendable. Moreover they may travel around widely in
sentences in which their predicate occurs. In Predicate Logic every
predicate symbol is rigidly assigned a fixed number of arguments by the
arity function. What is more, these arguments are jealously confined
to occur in fixed order right behind the occurrence of their predicate
symbol. Or take polarity. Natural Language seems to switch polarity
effortlessly, often on such a thin basis as intonation or clues provided
by the comparison the possible contents of the sentence. In Predicate
Logic occurrences of subformulas have the same or different polarity
in a given formula only on the basis of a count of the nesting of the
antecedents of implications in which they appear.

Dynamic Predicate Logic or DPL is a variant of Predicate Logic.
It was invented by Groenendijk and Stokhof. See their classic paper
(Groenendijk and Stokhof, 1991). DPL was designed as a logic whose
scoping mechanisms are more like the scoping mechanisms of Natural
Language. What can we expect from such a formal language? The
advantage of a language like DPL over Natural Language is quite simply
that we know its syntax and semantics precisely and to the last detail.
Translating a fragment of Natural Language to a language like DPL is,
thus, a good way of specifying a semantics for this fragment. One con-
straint on this project is that the translations must be compositional.
Since DPL is more like Natural Language than Predicate Logic, the
translations can be more easily made compositional. Unfortunately all
this doesn’t mean that by specifying the DPL semantics, we have solved
the riddle of Natural Language Anaphora Resolution. Some of the
mechanisms of Natural Language are still quite different. Specifically
Natural Language does not work with explicit variable names.2

1 Perhaps this is a good point to remind the reader that many formal languages
were developed precisely because this lack of flexibility was, rightly, deemed a
virtue. Less syntactical flexibility means more syntactical control. The aim of Logic’s
founders was to develop languages that allowed us direct and easy syntactical control.
A good example of a wonderful and strong control mechanism is the use of explicit
variable names.

2 To view logics like DPL as ways to specify Natural Language meanings is
not the only way of looking at them. There are at least two other views. First,

dynacondue.tex; 21/01/2004; 12:34; p.3

4 A. Visser

In this paper I will study three simple epicycles to DPL. The idea of
the first epicycle is as follows. We want to make the way DPL handles
polarities more flexible, more like the way Natural Language handles
them. To do this we will build a simple little machine: the polarity
switcher, 1 (‘bowtie’). This little machine will enable us to switch
polarity where and whenever we wish to do so. For example,

1 · ∃x · farmer · hungry(x) · 1 · eats(x)

can serve as a paraphrase of if a farmer is hungry, he eats. Here the
intuitive meaning is taken to be the success condition of the formula.
We interpret the formula as follows. When we start reading, on the
left hand side, we are in the default polarity: the positive one. First we
meet 1. This action switches the polarity to negative. So ∃x · farmer ·
hungry(x) will be at a negative place. Then we have another switch,
which brings us back to the positive polarity. So eats(x) will be positive.
Finally, the definition of success will treat the negative information as
the antecedent of a dynamic implication and the positive information
as the consequent. Note that our switcher is radically different from
negation. Here is a second example.

1 · ∃x · dog(x) · 1 · barks(x) · 1 · ∃y · cat(y) · sees(x, y)

This formula can serve as a paraphrase of a dog barks, if it sees a cat,
where we give a dog a universal reading.

Just as Natural Language does not have variable names, it does not
have an explicit polarity switching device. Natural Language works
with little words like if, then, only, with intonation, with higher level
inference. We will not have much to say in this paper about Natural
Language’s true workings.

The basic idea behind our implementation is to treat negative in-
formation and positive information as two parallel information streams
that are specified linearly on the syntactical level via interleaving. Every
item of information is specified on the semantical level by giving its
contribution to both streams. The switcher just changes the streams to
which the local contributions are added. Apart from the switcher we
will have a test-connective that ‘takes stock of the information we have
obtained in a given period of information receiving’.3 The success of a

logics like DPL could turn out to be useful for computer applications. One could for
example think of adding a variant of DPL to a programme for doing Geometrical
Constructions. Introducing and labeling an arbitrary point corresponds to the DPL
existential quantifier. Etcetera. Secondly, it seems to me that theories like DPL open
up new avenues for Algebraic Logic. See e.g. (Hollenberg, 1997) and (Visser, 1997)
for some preliminary explorations.

3 In fact the only connectives we have in the primary system are composition and
the test-connective. The switcher will be an atomic action.

dynacondue.tex; 21/01/2004; 12:34; p.4

The Donkey and the Monoid 5

formula will correspond, roughly, to the truth of the test of the formula.
The test connective will cause the negative and positive streams to
interact.

In the second epicycle we will add an atomic action M to the first
epicycle. M will change the behaviour of the subsequent text w.r.t.
scope. We will e.g. be able to implement backwards binding. For ex-
ample,

M · ∃x · dog(x) · M · sees(x, y) · M · ∃y · cat(y) · M

will be a paraphrase for a dog sees a cat. As we will see, the resulting
theory has connections to Discourse Representation Theory (DRT).

The polarity switching machine of the first epicycle can only switch
polarity in forward direction. Consider e.g. the following dialogue. (I’m
not recommending this parental behaviour.)

child Daddy, what will you give me?

father I will give you . . . I will give you . . . nothing.

It seems to me that, in semantically processing the father’s utterance,
we shift the interpretation of I will give you to a negative place at
the moment that we hear nothing. So we do not first determine the
polarity and then semantically process I will give you immediately in
the correct ‘polarity file’. In short: we switch polarity retrospectively.
In epicycle 3 we add a backwards acting polarity switcher to epicycle
2 that can better mimick the dramatic reversal of informational status
effected by no, nothing, nobody.

The constructions studied in this paper can be viewed as adding
control elements to the language. A control element is a symbol rep-
resenting an instruction concerning storage of bits of meaning. Thus,
control elements serve to steer semantic processing.

An example of a control element is the polarity switcher 1 that
regulates the polarity of the (interpretation of) the subsequent text.
Polarity in classical Predicate Logic and DPL is regulated at the level
of syntax. We can afford ourselves a more flexible (and thus less strictly
controled syntax) by pushing the machinery that handles polarity into
the semantics. Similar remarks hold for other control elements.

In some sense there is nothing new under the sun, since variable
names can seen as control elements: they tell us where a value should
be stored or where it can be found. Control elements also occur at the
semantical level, in full analogy to variable names.

It would seem to me that many words in natural language, like not
and but can be viewed as being (at least in part) concerned with control.
If this is true, then the present work is a move in the right direction.

dynacondue.tex; 21/01/2004; 12:34; p.5

6 A. Visser

An important methodology of the present paper is the use of mono-
ids to programme the interaction of meanings. In this paper we will
not try to make the semantics fully monoidal. The reader is referred
to (Visser and Vermeulen, 1996) for some discussion of the aims and
claims of monoidal semantics.

2. What is a Dynamic Predicate Logic?

The aim of this section is to specify what we mean by a variant of
Dynamic Predicate Logic. We will call such variants dynamic predicate
logics or dpl’s. Thus, somewhat awkwardly, DPL itself will be a dpl.

All structures we will consider are extended monoids or briefly e-
monoids. Specifically, languages will be free e-monoids. The central
class of e-monoids of this paper is formed by the dynamic relation
algebras or dra’s. These structures function as the analogues of Boolean
algebras. Thus dra’s provide ‘the propositional4 logic of dynamic logic’.5

In the dynamic case the relationship between propositional logic and
predicate logic is tighter than classically. To obtain predicate logic from
propositional logic in the dynamic world, we only need to specialize the
language, we need not extend it with new operations. What this means
in detail will be made clearer below. A pleasant bonus of the convenient
relationship between propositional logic and predicate logic is that we
can manufacture our variants of DPL by modifying the propositional
part only. The methodology of this paper is, thus, to modify dra’s in
several ways to obtain ‘variants of propositional logic’. We will not
analyse what allowable variants of dynamic propositional logic are, we
just state some convenient properties shared by our examples.

e-Monoids

An extended monoid or e-monoid of signature Λ is specified as follows. A
signature Λ for an e-monoid, briefly an e-signature, is is a pair 〈Op,Ar〉.
Here OP is a, possibly empty, set of function symbols and Ar is the arity
function, a function from Op to the natural numbers (including 0). We
will write e.g. [F 2, G3] for the e-signature 〈{F,G}, {〈F, 2〉, 〈G, 3〉}〉. An

4 Propositional is, of course, a misleading designation here, since some of the
meanings are intended to be actions and precisely not propositions. It is only used
here to stress the relative roles of propositonal and predicate logics.

5 Are dra’s really the correct choice for this exalted role? That’s is a serious worry.
E.g. if one considers Dynamic Predicate Logic with partial assignments, one might
wish to change the ‘logic’ to treat the partiality of the inputs in a plausible way. I
propose to set aside this kind of problem for the moment and simply pretend that
dra’s are the right choice.

dynacondue.tex; 21/01/2004; 12:34; p.6

The Donkey and the Monoid 7

e-monoid of e-signature Λ is a structure 〈M, J〉, where M is a monoid
with domain M and J is a function on Λ, where J(F) : MAr(F) →M .

As usual we will write e.g. 〈M, •, id, F,G〉 instead of 〈〈M, •, id〉, J〉
with J mapping {F,G} to suitable functions. We will use ; , ◦, · instead
of • depending on the structures considered. A notational insolubile
is the fact that algebraically speaking id or 1 is a suggestive choice of
notation, but that from the standpoint of logic > is the better choice.
> is especially unhappy since in relational algebra it stands for the
universal relation, not for identity. We will always use id, except when
we are treating logical languages.

A language LΛ
P of signature Λ with ‘variables’ P is simply the free e-

monoid of signature Λ on generators P . If we are talking about language
we always use ·,>. Note the curious ‘dynamic features’ of our language:
brackets for · are automatically omitted, an expression like > · p is
automatically simplified to p.

Consider any e-monoid E of signature Λ. An assignment I for LΛ
P is a

function from P toM . [[.]] I is the unique extension of I to a (structural)
morphism of e-monoids. Thus, [[φ]] I is the interpretation of φ under I.

Dynamic Relation Algebras

A full dynamic relation algebra6 or full dra on a non-empty set X is a
structure RX := 〈Rel(X), ; , id,⊥,→〉. Here:

1. Rel(X) is the set of binary relations on X, i.e., Rel(X) := ℘(X×X).

2. The composition R;S of R and S is defined by:

x(R;S)y :⇔ ∃z xRzSy.

We distinguish ; from ◦ with x(R ◦ S)y :⇔ ∃z xSzRy.

3. id is the identity relation.

4. ⊥ is the empty relation on X.

5. The dynamic implication (R→S) between R and S is defined by:

x(R→S)y :⇔ x = y and ∀z(xRz ⇒ ∃u zSu).

Our use of → here overloads the symbol, since we also use it,
sometimes, for implication in the object language. This notion of
implication is originally due to Kamp ((Kamp, 1981)). In its present
form it was introduced by Groenendijk and Stokhof ((Groenendijk
and Stokhof, 1991)).

6 See (Hollenberg, 1997) and (Visser, 1997). Our usage diverges a bit, but for our
purposes inessentially, from the usage of (Hollenberg, 1997).

dynacondue.tex; 21/01/2004; 12:34; p.7

8 A. Visser

A dynamic relation algebra or dra is a substructure of a full dra.
Note that the dynamic relations algebras are a class of e-monoids of
e-signature [⊥0,→2].

There is a standard embedding diag of the Boolean Algebra

PX := 〈℘X,X, ∅,∩,→〉

to RX . It is given by: diag(Y) := {〈y, y〉 | y ∈ Y }. This embedding is a
(structural) morphism of dra’s.

We will write ¬R for (R → ⊥). We write dom(R) for the domain
of R. It is easy to see that ¬R = diag(X \ dom(R)) and ¬¬R = (id →
R) = diag(dom(R)).

A relation R is a test or condition if R ⊆ id. The range of diag
consists precisely of the conditions.

Variants of Dynamic Relation Algebras

Our framework for variants of DPL provides a function from e-signatur-
es and signatures for predicate logic to the corresponding language
plus model theory. We introduce e-signatures here and signatures for
predicate logic in the subsection below.

The dpl’s or variants of DPL can be given in a way analogous to the
presentation of DPL itself: the only difference is that we replace dra’s
as propositional logic analogue by a different class of structures based
on dra’s. Variants of dra’s are always e-monoids. Their specification
provides us with the following data.

1. An e-signature Λ. The variants are certain e-monoids of signature
Λ. We assume that ⊥ is in Λ.

2. A functor Φ from the category of dra’s to the category of variants
under consideration. The morphisms are here the obvious mor-
phisms of algebras. Φ sends a dra to the variant constructed from
it.

3. A term t of LΛ
p,q. The term t is intended to define (p→ q) over the

variant (in a restricted sense). Thus, t defines a binary function ι
on a given variant V = 〈M, J〉. We map V via a mapping Ψ to an
e-monoid, of signature [⊥0,→2], viz. 〈M, I〉 with I(⊥) = ⊥ and
I(→) = ι.
(Warning: we do not demand that the resulting structure is a dra!)

4. We ask that R, the original dra, can be naturally embedded into
Ψ(Φ(R)) via, say, emb. So modulo definitional extension our origi-
nal dra is supposed to be a substructure of its variant.

dynacondue.tex; 21/01/2004; 12:34; p.8

The Donkey and the Monoid 9

Signatures and Models for Predicate Logic

The treatment of the basics of predicate logic is completely classical. A
signature Σ for predicate logic is a structure 〈Pred,Ar,Con,Var,=〉. We
will call such signatures `-signatures. Pred is a set of predicate symbols;
Ar is a function from Pred to the natural numbers (including 0); Con
is a set of constants; Var is a, possibly empty, set of variables. We put
Ref:=Con∪Var. Ref is the set of referents. = is in Pred and Ar(=) = 2.

A model M of signature Σ is a tuple 〈D, I〉, where D is a non-
empty domain. I is a function on Pred ∪ Cons, where for c ∈ Cons,
I(c) ∈ D, and, for P ∈ Pred, I(P) ⊆ DAr(P). (If Ar(P) = 0, I(P) will
be either ∅ or {2}, where 2 is the empty sequence. Here ∅ has the role
of the truthvalue false and {2} has the role of true.) We demand that
I(=) = {〈d, d〉 | d ∈ D}. We define:

1. Ass := DVar

2. For f ∈ Ass and r ∈ Ref, r[f] := f(r) if r ∈ Var and r[f] := I(r) if
r ∈ Con.

The notion of model only depends on Σ. It is just the classic notion of
model and is not specifically tied up with dynamics.

Language and Semantics

Fix an e-signature Λ and an `-signature Σ. We define:

1. Atcond (= AtcondΣ) is the set of P (r1, · · · , rn), for P ∈ Pred with
Ar(P) = n and r1, . . . , rn ∈ Ref.
Atcond is the set of atomic conditions.

2. Reset (= ResetΣ) is the set of ∃v, for v ∈ Var.

The DPL-language L of signature Λ,Σ is simply LΛ
AtcondΣ∪ResetΣ

.
A dpl is fully specified by giving a class of dra variants plus Φ, t

and emb. Suppose we are given such a class of variants and a model N .
We map our generators, viz. AtcondΣ ∪ResetΣ, via [[.]] 0 —to be defined
below— to elements of Φ(RAss). Here Ass is the class of assignments
for N on the set Var provided by Σ.

− Let ‖P (r1, · · · , rn)‖ := {f∈Ass | 〈r1[f], · · · , rn[f]〉 ∈ I(P)}.
Thus ‖P (r1, · · · , rn)‖ is the usual interpretation of P (r1, · · · , rn) in
Predicate Logic. We take:

[[P (r1, · · · , rn)]] 0 := emb(diag(‖P (r1, · · · , rn)‖)).

dynacondue.tex; 21/01/2004; 12:34; p.9

10 A. Visser

− [∃v] is the relation given by:

f [∃v]g :⇔ ∀w∈Var (w 6≡ v ⇒ f(w) = g(w)).

[∃v] is the relation random-reset. We take: [[∃v]] 0 := emb([∃v]).

We can extend [[.]] 0 in a unique way to the full language L. We call the
resulting interpretation [[.]] .

The set-up presented here will undoubtedly turn out both to broad
and to narrow. Too broad, since we put only very light constraints
on the relation between the e-monoids that our ‘propositional logic
variants’ and the ‘underlying’ dra’s. Too narrow since e.g. the choice
of dra’s is rather restrictive. We could, for example wish to add the
possibility of things getting undefined to our logics.

Validity

In all our variants of dra’s we can define a unary function val that
sends a meaning to its set of truthmakers. E.g. in DPL, val will be dom,
the domain function. We will define satisfaction in predicate logic as
follows.

− M, f |= φ :⇔ f ∈ val([[φ]])

Original DPL

We obtain DPL, considered as a variant of itself, by taking Λ the signa-
ture of dra’s and Φ, Ψ and emb the appropriate identity functions. We
write [.] for the interpretation function of DPL. Here are some pleasant
abbreviations:

− ¬(φ) for: (φ→ ⊥)

− ?(φ) for: (> → φ) (or, alternatively, for ¬(¬(φ))

− [x := c] for: ∃x · x = c

− ∀x (φ) for: (∃x→ φ)

In subsection B.1 of appendix B, we will discuss how to translate or-
dinary Predicate Logic into DPL. In subsection B.2 of appendix B, we
translate DPL into any dpl.

If we compare the way DPL treats scope with the way Predicate
Logic treats scope, we see that DPL’s way is more like the way Natural
Language does it. We remind the reader of Geach’s famous Donkey
Sentence:

dynacondue.tex; 21/01/2004; 12:34; p.10

The Donkey and the Monoid 11

− If a farmer owns a donkey, then he beats it.
This sentence can be paraphrased by:
(∃x · farmer(x) · ∃y · donkey(y) · owns(x, y) → beats(x, y))

Note that we employ the convention that · binds stronger than →.

3. The Polarity Switcher

In this section we develop our first variant of DPL: we add a polarity
switcher.

3.1. Definition of the Logic

We specify the construction Φpol of an e-monoid from a dynamic re-
lation algebra. In this construction the small monoid Pol will play an
important role.

Pol, the polarities monoid, has elements + and −. We stipulate:
+ · + = − · − = + and − · + = + · − = −. Thus + = idPol. We will
often drop the “·” and write +−, etc. α, β, . . . will range over +,−. Pol
is isomorphic with the monoid Add2 of addition modulo 2, with + in
the role of 0 and − in the role of 1. A second way of viewing it is as
the monoid of the elements 1 and −1. under ordinary multiplication.
A third way of looking at Pol is as the the monoid of relations with
composition, on two elements a, b, consisting of two relations R+ :=
id{a,b}, and R− := {〈a, b〉, 〈b, a〉}. This last representation is suggestive
since the point of the polarities in our set-up is to switch state.

Given any dra, Q = 〈Q, •, id,⊥,→〉, we define an e-monoid as fol-
lows.

N := Φpol(Q) := 〈N, •, id,⊥,1, test〉.

N consists of the triples 〈q−, q+, α〉, where the qβ are in Q. Define:

− id := 〈id, id,+〉

− ⊥ := 〈id,⊥,+〉

− 1 := 〈id, id,−〉

− 〈q−, q+, α〉 • 〈r−, r+, β〉 := 〈q− • r−α, q+ • r+α, αβ〉
Equivalently,
〈q−, q+, α〉 • 〈r−, r+, β〉 := 〈p−, p+, αβ〉
where pγ := qγ • rγα

− test(〈q−, q+, α〉) := 〈id, (q− → q+),+〉

dynacondue.tex; 21/01/2004; 12:34; p.11

12 A. Visser

The intuition is that q− represents the negative information, q+ the
positive information, and α represents the polarity of the subsequent
information. α has the role of a ‘dynamic context’ that steers the way
in which the stored information is merged with the incoming informa-
tion. The test operation gives the negatively stored information scope
priority over the positively stored information. This will happen even
if the negative information is introduced later in the sentence, making
kataphoricity possible. (This strategy —negative before positive— is
undoubtedly too rigid.)

It is easily seen that 〈N, •, id〉 forms a monoid, as desired. (See also
section 5.) Note that in dra’s ⊥ is an annihilator: ⊥ • q = q • ⊥ = ⊥.
However, in N , we have ⊥ •1 6= ⊥. We may extend the mapping Φpol

to morphisms in the obvious way.
Let u, v range over all elements of our e-monoid. We may regain

implication by defining (u→ v) := test(1 • u •1 • v). The functor Ψpol

is given by → thus defined. We define emb by: emb(q) := 〈id, q,+〉. It
is easily seen that emb has the required properties. Note that → only
behaves like implication on the range of emb (or, more precisely, if its
antecedent is in the range of emb). Outside that range it is not all that
meaningful.

We can also embed Pol into N by: emb∗(α) := 〈id, id, α〉. Such em-
beddings are, of course, fully analogous to the embedding of the natural
numbers into the integers. We can see that the extension of semanti-
cal memory need not be dramatically wasteful. For whole stretches of
discourse, we may accumulate positive information in the classic way.
The existence of the embedding tells us that the classical way is simply
there. The fact that we use triples instead of single relations is just
a matter of metamathematical coding. Only when needed we activate
the extra resource which is present in potentia. Among the integers the
natural numbers also reappear as equivalence classes of pairs.

Finally we take val(〈q−, q+, α〉) := dom(q− → q+).
Here are some valid identities. Let x, y range over elements of the

form 〈id,m,+〉.
1. 1 • 1 = id

2. 1 • x • 1 • y = y • 1 • x • 1

3. test(id) = id, test(⊥) = ⊥

4. test(1 • ⊥ • u) = id

5. test(test(u)) = test(u)

The identity in 2 above means that first storing x in the negative file
and then y in the positive file, has the same effect as first storing y in

dynacondue.tex; 21/01/2004; 12:34; p.12

The Donkey and the Monoid 13

the positive file and then x in the negative file and then switching back
to positive. The positive and negative file only interact in the tests.
Thus, in the tests, backwards binding from the negative files to the
positive files becomes possible. See the paraphrases below.

In section 5 we will provide a more abstract view of our construction.
We call our new DPL-variant: DPLpol.

REMARK 3.1. A pleasant alternative way of writing our meanings
is obtained as follows. First we represent the triple 〈q−, q+, α〉 as the
function f on {−,+, pol} with f(−) := q−, f(+) := q+, f(pol) := α.
The elements in the range are all elements of some monoid. We take
the value id to be the default value. We will write e.g. {− : S | pol : −}
for the function g with g(−) := S, g(+) := id, g(pol) := −. Here are
some specifications of meanings using the alternative notations.

− [[P (r1, · · · , rn)]] := {+ : [P (r1, · · · , rn)]}

− [[∃v]] := {+ : [∃v]}

− [[>]] := { }

− [[⊥]] = {+ : ⊥}

− [[1]] = {pol : −}

The proper way to view 1 is as a dynamic bracket, signalling a switch
of polarity. It is somewhat analogous to the bracket $ of LATEX, compare
+ + 1 − −1 + + with plain $ math $ plain. An important difference
between 1 and the brackets developed in (Visser and Vermeulen, 1996)
is that nothing is thrown away when we switch polarity via 1. What
has been stored is remembered and can be further extended as soon
as we return. In contrast a level that is popped by one of the dynamic
brackets of (Visser and Vermeulen, 1996) cannot be returned to.

In appendix A, we give an alternative relational representation of
the semantics of DPLpol In subsection B.3 of appendix B, we show how
to ‘translate’ DPLpol into DPL.

3.2. A Donkey Owner’s Manual

In this section we present some paraphrases of Natural Language sen-
tences in DPLpol. They are intended to illustrate both the flexibility
and the rigidity of our language. To get the intuitive reading, we read
our formulas φ as corresponding success condition i.e. as val([[φ]]). One
should, however, not forget that this fails to represent the dynamic
effect of the sentence in a larger text.

dynacondue.tex; 21/01/2004; 12:34; p.13

14 A. Visser

1. Only if a farmer OWNS a donkey, does he beat it.
1 · ∃x · farmer(x) · ∃y · donkey(y) · 1 · owns(x, y) · 1 · beats(x, y)
In section 6 we will introduce a method to follow the order of
the original even more closely. The semantics makes our sentence
equivalent to:
If a farmer beats a donkey, he owns it.
If we wish to get rid of the assumption of a donkey beating farmer
in the subsequent discourse, we must change our paraphrase to:
?(1 · ∃x · farmer(x) · ∃y · donkey(y) · 1 · owns(x, y) · 1 · beats(x, y))
We may wish to proceed with our discourse still having donkey and
farmer with us, but without the assumption of a beating. E.g.:
Only if a farmer OWNS a donkey, does he beat it.
If he treats it well, he doesn’t own it.
We can do this as follows:
1 · ∃x · farmer(x) · ∃y · donkey(y) ·1 · ?(owns(x, y) ·1 · beats(x, y)) ·
?(1 · w-treats(x, y) · 1 · ¬(own(x, y)))
We do not really supply a semantics for only. It seems to me that
only combines with the emphasis on owns to shift owns to a positive
place. We describe the result but not the mechanism of this shift.

2. Only if a FARMER owns a donkey, does he beat it.
1 · ∃x · 1 · farmer(x) · 1 · ∃y · donkey(y) · owns(x, y) · beats(x, y)
This paraphrase gives as meaning:
If something owns and beats a donkey, then it is a farmer

3. A farmer beats a donkey, if he owns it.
1 · ∃x · farmer(x) · ∃y · donkey(y) · 1 · beats(x, y) · 1 · owns(x, y)
Alternatively:
1 · ∃x · farmer(x) · ∃y · donkey(y) · 1 · ?(beats(x, y) · 1 · owns(x, y))
If we attempt to read the a farmer and the a donkey positively, we
could get:
∃x · farmer(x) · ∃y · donkey(y) · beats(x, y) · 1 · owns(x, y)
Inspecting the semantics of this last example we see that the vari-
ables of owns(x, y) are not bound. An alternative paraphrase does
work:
∃x · farmer(x) · ∃y · donkey(y) · ?(beats(x, y) · 1 · owns(x, y))
Section 6 will provide a nicer alternative.

4. He beats it, if a farmer owns a donkey.
beats(x, y) · 1 · ∃x · farmer(x) · ∃y · donkey(y) · owns(x, y)
Deviant? We can do it anyway. However, this is not of much help,
since we cannot do:
He beats it, if a farmer owns a donkey.

dynacondue.tex; 21/01/2004; 12:34; p.14

The Donkey and the Monoid 15

He treats it well, if he doesn’t own it.
We will show how to do this text in section 6.

5. We cannot do:
If he owns it, a farmer beats a donkey.
Here e.g. a farmer will not succeed in binding he, even if we put a
farmer on a negative place. Section 6 will provide a solution.

6. Not English, but we do understand it:
If he owns it, he beats it. A farmer, a donkey.
?(1 · owns(x, y) · 1 · beats(x, y)) · 1 · ∃x · farmer(x) · ∃y · donkey(y)
We cannot do it when we insist on the positive reading for a farmer,
a donkey. The method of section 6 will provide also a reasonable
paraphrase for the positive reading.

7. He was quite angry. John. He was MAD.
We can do this, if we are prepared to allow a little trick:
q-angry(x) · 1 · ∃x · john = x · 1 ·MAD(x)
It is undeserved to shift John here to a negative place. Section 6
will allow us to do the trick positively.

8. A man keeps his word. He is honest.
1 · ∃x ·man(x) · 1 · keepword(x) · honest(x)

9. A dog barks. If it is beaten, it whines.
1 · ∃x · dog(x) · 1 · barks(x) · ?(1 · beaten(x) · 1 · whines(x))
Note that the following paraphrase gets it wrong by also making
the barking conditional on the beating:
1 · ∃x · dog(x) · 1 · barks(x) · 1 · beaten(x) · 1 · whines(x)

10. A dog barks. It whines, if beaten.
1 · ∃x · dog(x) · 1 · barks(x) · ?(whines(x) · 1 · beaten(x))

11. John sees nobody
⊥ · 1 · ∃y · person(y) · sees(j, y)
Note that we are forced to shift the nobody to the beginning of the
sentence. In section 7 we will explore a way to be more faithful
to the original order. The paraphrase of nobody as ⊥ · 1 · ∃y ·
person(y) makes nobody into a mix of quantifier and control ele-
ment. This interpretation diverges markedly from what is usual in
the literature.

12. No man sees a woman
⊥ · 1 · ∃x ·man(x) · ∃y · woman(y) · sees(x, y)
Here no is paraphrased by ⊥·1 · ∃x. Thus, like nobody, no is partly
‘about’ control.

dynacondue.tex; 21/01/2004; 12:34; p.15

16 A. Visser

13. A man comes in. He sees no woman
∃x ·man(x) · comes-in(x) · ?(⊥ · 1 · ∃y · woman(y) · sees(x, y))

4. The Polarity Switcher meets Disjunction

In this section we extend DPLpol with disjunction. We call the resulting
theory cum semantics DPLpol(∨).

4.1. Definition of the Logic

We extend the e-signature of DPLpol with a binary operation symbol
∨. We take as interpretation of ∨ the operation t, which is defined as
follows:

− 〈q−, q+, α〉 t 〈r−, r+, β〉 := (〈q−; r−, q+ ∪ r+,+〉)

Note that t doesn’t use the polarities α and β. Here is a heuristics for
the definition. 〈q−, q+, α〉 is a bit like (q0 → q1) in ordinary proposi-
tional logic. Similarly 〈r−, r+, α〉 is like (r0 → r1). Now 〈q−, q+, α〉 t
〈r−, r+, β〉 will have to be like ((q0 → q1) ∨ (r0 → r1)), which is
equivalent in ordinary propositional logic to ((q0 ∧ r0) → (q1 ∨ r1)).
Finally, ((q0 ∧ r0) → (q1 ∨ r1)) is like 〈q−; r−, q+ ∪ r+,+〉. The really
important step is here the move from the static ∧ in the antecedent to
the dynamic ; in the negative file.

Modulo the addition of ∨, our logic as specified like DPLpol. We will
abbreviate ?((φ ∨ ψ)) by ?(φ ∨ ψ). We take · to bind stronger than ∨.

Simple union of relations as employed in the second component of t
is not necessarily the correct way to model disjunction or choice. E.g.
one might think that too much of the identity of the relations that are
thrown together is lost. This makes it hard, for example, to paraphrase
examples in which each disjunct is picked up anaphorically in later
discourse. I propose to ignore these worries in the present paper.

4.2. Paraphrases

Here are some paraphrases in DPLpol(∨). Remember that the intuitive
readings are supposed to corespond to the success conditions.

1. This house has no bathroom or it is very small.
⊥ · 1 · ∃x · bathroom(x) · has(h, x) ∨ verysmall(x)
This gives us the same meaning as:
If this house has a bathroom, then it is very small.

dynacondue.tex; 21/01/2004; 12:34; p.16

The Donkey and the Monoid 17

2. A man drinks nothing or it is beer.
1 · ∃x ·man(x) · 1 · ⊥ · 1 · ∃y · drinks(x, y) ∨ beer(y)
The translation of nothing is ⊥ · 1 · ∃y

3. A man drinks a beer or he doesn’t drink anything.
1 · ∃x ·man(x) ·1 · ∃y · beer(y) · drinks(x, y) ∨ ⊥ ·1 · ∃z · drinks(x, z)
This gives us the same meaning as:
If a man drinks something, he drinks a beer.
Note that the following paraphrase also works:
1 ·∃x ·man(x) ·1 ·∃y ·beer(y) ·drinks(x, y) ∨ ?(⊥·1 ·∃z ·drinks(x, z))

4. A man drinks it or it is not a beer
1 · ∃x ·man(x) · 1 · drinks(x, y) ∨ ⊥ · 1 · ∃y · beer(y)
Dear reader, judge the plausibility for yourself. We get as meaning,
roughly, the meaning of:
Every man drinks every beer.

5. A dog barks or it whines. It is nuisance.
(1 · ∃x · dog(x) · 1 · barks(x) ∨ whines(x)) · nuisance(x)
Alternatively:
1 · ∃x · dog(x) · 1 · (barks(x) ∨ whines(x)) · nuisance(x)

6. A man drinks a beer or a coke. He finds it refreshing.
1 ·∃x ·man(x) ·1 ·(∃y ·beer(y) ∨ ∃y ·coke(y)) ·drinks(x, y) ·finref(x, y)
Alternatively:
1 · ∃x ·man(x) ·1 · ∃y · (beer(y) ∨ coke(y)) · drinks(x, y) · finref(x, y)

5. Constructing certain e-Monoids

In this section we generalize the construction Φpol. As will pointed out
in appendix C the construction is nothing but a special case of the well
known Grothendieck Construction. In the present paper we will only
use an embarrassingly small part of the construction. My justification
for including it, is twofold. First I think it really becomes more clear
what is going on by looking at the more general construction. Secondly,
I hope to encourage the reader to vary the construction to produce her
own variants of DPL. We restrict ourselves to the monoidal part. We
first give a general construction, make it more specific and, then, make
it more specific a second time to arrive at (the monoidal part of) Φpol.

Let I be any non empty set. Let A := 〈A, ·, id〉 be a monoid. A will
be our generalization of Pol. A right action of A on I is a function
µ : (I ×A) → I with the following properties. Writing i · a for µ(i, a):

dynacondue.tex; 21/01/2004; 12:34; p.17

18 A. Visser

− i · id = i

− i · (a1 · a2) = (i · a1) · a2

A left action is similarly defined.
We extend the notion of an action of a monoid on a set to the

notion of an action of a monoid on a monoid in te following way. Let
A := 〈A, ·, id〉 and B := 〈B, •, id〉 be monoids. µ : (B × A) → B is a
right action of A on B if µ is a right action of A on B and the mapping
µa : b 7→ µ(b, a) is a morphism of monoids, i.o.w.

− idB · a = idB

− (b1 • b2) · a = (b1 · a) • (b2 · a)

Left actions are defined in the obvious way. Let ν be a left action of A
on B. Define

∑
A ν := 〈A×B, •, id〉. Here:

− 〈a1, b1〉 • 〈a2, b2〉 := 〈a1 · a2, b1 • (a1 · b2)〉

− idP
A ν := 〈idA, idB〉

We can show that
∑

A ν is a monoid. E.g.:

(〈a1, b1〉 • 〈a2, b2〉) • 〈a3, b3〉 = 〈a1 · a2, b1 • (a1 · b2)〉 • 〈a3, b3〉
= 〈a1 · a2 · a3, b1 • (a1 · b2) • (a1 · a2 · b3)〉
= 〈a1 · a2 · a3, b1 • (a1 · (b2 • (a2 · b3))〉
= 〈a1, b1〉 • 〈a2 · a3, b2 • (a2 · b3)〉
= 〈a1, b1〉 • (〈a2, b2〉 • 〈a3, b3〉)

In appendix C we indicate how to view the present construction as a
special case of the well known Grothendieck construction. We make our
construction more specific. We replace B in our construction by a more
specific monoid and we replace ν by a more specific left action. Let I be
any non-empty set. I is the set of indices, files, streams, states Let ρ be
a right action of A on I. Let D be any monoid. D is our generalization
of the algebra of relations under composition. We consider DI . Define:

− id : I → D is given by: id(i) := idD

− For f, g : I → D, (f • g)(i) := f(i) • g(i)

It is easy to see that DI := 〈DI , •, id〉 is a monoid. We give DI the role
of B above. We define a left action λ := λρ,D of A on DI , as follows.

− For a ∈ A and f : I → D, (a · f)(i) := f(i · a)

dynacondue.tex; 21/01/2004; 12:34; p.18

The Donkey and the Monoid 19

It is easy to check that λ is indeed a left action. We have e.g.:

(a1 · (a2 · f))(i) = (a2 · f)(i · a1) = f(i · a1 · a2) = (a1 · a2) · f(i),

so a1 · (a2 · f) = (a1 · a2) · f . Define ΦρD :=
∑

A λρ,D.
Clearly a monoid A defines a right action ρA on A. We will notation-

ally confuse A and ρA. If we take A := Pol and D the monoidal part
of a given dra, the we find that our original Φpol(D) is isomorphic to
ΦPol(D). An element 〈r, s, α〉 of Φpol(D) will correspond to an element
〈α, {〈−, r〉, 〈+, s〉}〉 of ΦPol(D).

6. A Scoping Device

In this section we extend DPLpol with an extra scoping device. The
logic so obtained will be called DPLpol,sco. We will introduce two ‘scope
files’ or ‘scope streams’.

6.1. Definition of the Logic

Posco is defined as Pol × Add2. Here Add2 is the monoid of addition
modulo 2. So Posco is, modulo isomorphism, just the additive part of
Z2 × Z2.

The idea is that the things stored at the files labeled 〈α, 1〉 will have
scope priority over the things stored at 〈α, 0〉. Since what is stored
negatively takes, in test1, precedence in scope over what is stored pos-
itively, the ‘scope ordering’ will be 〈−, 1〉, 〈−, 0〉, 〈+, 1〉, 〈+, 0〉. This
is, of course, still a fairly rigid strategy of managing scope. We hope
that the present example will encourage people to explore more flexible
strategies.

Given any dra, Q = 〈Q, •, id,⊥,→〉, we define a new algebra as
follows.

N := Φpol,sco(M) := 〈N, •, id,⊥,1,M, test0, test1〉.

The monoidal part of N is simply 〈N, •, id〉 := ΦPosco(M), as defined
in section 5. The full definition is as follows.

− N := Q4 × {+,−} × {0, 1}.
We write an element of N as 〈q−,1, q−,0, q+,1, q+,0, α, i〉.

− id := 〈id, id, id, id,+, 0〉

− ⊥ := 〈id, id, id,⊥,+, 0〉

− 1 := 〈id, id, id, id,−, 0〉

dynacondue.tex; 21/01/2004; 12:34; p.19

20 A. Visser

− M := 〈id, id, id, id,+, 1〉

− 〈q−,1, q−,0, q+,1, q+,0, α, i〉 • 〈r−,1, r−,0, r+,1, r+,0, β, j〉 :=
〈q−,1 • r−α,1+i, q−,0 • r−α,i, q+,1 • rα,1+i, q+,0 • rα,i, α.β, i+ j〉
Written down in a more perspicuous way,
〈q−,1, q−,0, q+,1, q+,0, α, i〉 • 〈r−,1, r−,0, r+,1, r+,0, β, j〉 :=
〈p−,1, p−,0, p+,1, p+,0, α.β, i+ j〉
where pγ,k := qγ,k • rγ.α,k+i

− test0(〈q−,1, q−,0, q+,1, q+,0, α, i〉) :=
〈q−,1, id, q+,1, (q−,0 → q+,0),+, 0〉

− test1(〈q−,1, q−,0, q+,1, q+,0, α, i〉) :=
〈id, id, id, ((q−,1 • q−,0) → (q+,1 • q+,0)),+, 0〉

The test1 operation is our overall evaluation operation. In many cases
we want to extend the scopes of actions with ‘strong scope’ beyond the
sentence, but close the scope of the actions with ‘weak scope’ in the
sentence. for this purpose the test0 is useful. See the paraphrases below.
We will use ?i as the conective in the language corresponding to testi.

We can easily extend Φpol,sco to morphisms. To finish our description
of the logic, define:

− embQ(q) := 〈id, id, id, q,+, 0〉

− valQ(〈q−,1, q−,0, q+,0, q+,1, α, i〉) = dom((q−,1; q−,0) → (q+,1; q+,0))

Thus, the satisfaction relation will be:

− M, f |= φ :⇔ ∀g (f([[φ]]−,1; [[φ]]−,0)g ⇒ ∃h g([[φ]] +,1; [[φ]] +,0)h)

Note that M, f |= φ⇔M, f |=?1(φ).

REMARK 6.1. As in remark 3.1 we may represent the elements
of N as functions on I := ({+,−} × {0, 1}) ∪ {pol, sco}. Under the
conventions of remark 3.1, we can rewrite some of our definitions as
follows.

− id := { }

− ⊥ := {〈+, 0〉 : ⊥}

− 1 := {pol : −}

− M := {sco : 1}

− test0(q) := {〈−, 1〉 : q−,1 | 〈+, 1〉 : q+,1 | 〈+, 0〉 : (q−,0 → q+,0)}

dynacondue.tex; 21/01/2004; 12:34; p.20

The Donkey and the Monoid 21

− test1(q) := {〈+, 0〉 : ((q−,1 • q−,0) → (q+,1 • q+,0))}

We have developed a logic with two scope files. Perhaps, it is more
plausible to have rather an infinity of such files/streams, say structured
as Z with sucessor and predecessor acting on them. It does not seem
difficult to build a logic according to this alternative plan.

In subsection B.4 we show how to translate DPLpol,sco into DPL. In
subsection B.5 we discuss the translation of Discourse Representation
Theory (DRT) into DPLpol,sco and into DPL. That discussion indicates
that DPLpol,sco can be viewed as a kind of generalization of both DPL
and DRT.

6.2. Paraphrases

We read our formulas as the corresponding success conditions, i.e. as
the truth of their test1’s.

1. A farmer owns a Donkey. He beats it.
?0(M · ∃x · farmer(x) ·M ·owns(x, y) ·M · ∃y ·donkey(y) ·M ·beats(x, y))
I added the test0 in the paraphrase, just for reasons of systematicity
of paraphrasing. Other examples suggest that it is natural to close
every sentence with a 0-test.

The example illustrates that we are able to keep closer to the natu-
ral order of discourse using our scoping device. However, the same
effect can be obtained more convincingly by treating argument
places like variables. A rough approximation of the paraphrase one
obtains using this alternative strategy is as follows.
∃sub·∃ob·∃val·sub = val·∃x·x = val·farmer(val)·val E·owns(sub, ob)·
∃val · ob = val · ∃y · y = val · donkey(val) · val E · sub E · ob E ·
∃sub · ∃ob · ∃val · sub = val · x = val · val E · beats(sub, val) ·
∃val · ob = val · y = val · val E · sub E · ob E
Here E is the exit operator, which throws away a declared variable.
(Of course, more should be said about the semantics of the exit
operator. See e.g. (Visser and Vermeulen, 1996).) We can make
the paraphrase more readable by introducing the following abrevi-
ations: [v for ∃v; 〈 for [sub·[ob; (for [val; a for a = val; donkey for
donkey(val), etc. Here is the improved paraphrase.
〈·(·sub · [x·x · farmer·) · owns · (·ob · [y·y · donkey·)·〉 ·
〈·(·sub · x·) · beats · (·ob · y·)·〉
It would be interesting to see how the dynamic treatment of argu-
ment places combines with the machinery of the present paper.

dynacondue.tex; 21/01/2004; 12:34; p.21

22 A. Visser

2. Only if a farmer OWNS a donkey, does he beat it.
If he treats it well, he doesn’t own it.
?0(1 ·M · ∃x · farmer(x) ·M ·1 · owns(x, y) ·1 ·M · ∃y · donkey(y) ·M ·
beats(x, y)) ·
?0(1 · w-treats(x, y) · 1 · ?0(⊥ · 1 · own(x, y)))
Note that the M’s allow us to ‘export’ the farmer and his donkey
out of the 0-tests.

3. Only if a FARMER owns a donkey, does he beat it.
?0(1 ·M · ∃x ·1 · farmer(x) ·1 ·M · owns(x, y) ·M · ∃y · donkey(y) ·M ·
beats(x, y))

4. A farmer beats a donkey, if he owns it.
?0(M ·1 · ∃x · farmer(x) ·1 ·M · beats(x, y) ·M ·1 · ∃y · donkey(y) ·1 ·
M · 1 · owns(x, y))
A positive reading is also possible:
?0(M·∃x·farmer(x)·M·beats(x, y)·M·∃y ·donkey(y)·M·1·owns(x, y))
Note that the use of ?1 instead of ?0 would get it wrong.

5. He beats it, if a farmer owns a donkey.
He treats it well, if he doesn’t own it.
?0(beats(x, y)·1·M·∃x·farmer(x)·M·owns(x, y)·M·∃y ·donkey(y)·M)·
?0(w-treats(x, y) · 1 · ?0(⊥ · 1 · own(x, y)))

6. If he owns it, a farmer beats a donkey.
We give the universal reading:
?0(1 · owns(x, y) · M · ∃x · farmer(x) · M · 1 · beats(x, y) · 1 · M · ∃y ·
donkey(y) · M)

7. If he owns it, he beats it. A farmer, a donkey.
We give the existential reading:
?0(1·owns(x, y)·1·beats(x, y))·?0(M·∃x·farmer(x)·∃y ·donkey(y)·M)

8. He was quite angry. John. He was MAD.
?0(q-angry(x)) · ?0(M · ∃x · john = x · M) · ?0(MAD(x))
The ?0’s do no real work. I only supplied them, to suggest a certain
systematic way of translating.

9. If he would have tried, a pilot would have hit a mig
that chased him. He was too hesitant.
?0(1·wht(x)·1·M·∃x·pilot(x)·M·whh(x, y)·M·∃y·mig(y)·chased(x, y))·
?0(toohes(x))

10. A man saw no one on the stairs.
?0(M · ∃x ·man(x) ·M · ?1(1 · saw(x, y) ·1 · ⊥ ·1 ·M · ∃y · person(y) ·
on-stairs(y)))

dynacondue.tex; 21/01/2004; 12:34; p.22

The Donkey and the Monoid 23

The necessary use of ?1 strikes me as somewhat ad hoc. Note that, in
accordance with my intuitions, we cannot meaningfully paraphrase:
A man saw no one on the stairs. He was afraid of her.

11. If a woman is American, she loves Bill.
If she is Dutch, she loves Wim.
?0(1 · M · ∃x · woman(x) · M · American(x) · 1 · loves(x, b)) ·
?0(1 · Dutch(x) · 1 · loves(x,w))

12. If a farmer owns a donkey, then he owns a horse.
If he doesn’t own it, then he owns a cow.
?0(1 · M · ∃x · farmer(x) · M · owns(x, y) · M · ∃y · donkey(y) · M · 1 ·
?1(owns(x, z) · M · ∃z · horse(z))) ·
?0(1 · ?0(⊥ · 1 · own(x, y)) · 1 · ?1(owns(x, u) · M · ∃u · cow(u)))
Note that we have to use ?1 to make the ownership of the horse
dependent upon the ownership of the donkey and to make the own-
ership of the cow dependent on the non-ownership of the donkey.

13. If a farmer is rich then he loves a donkey.
If he is poor, he hates it.
?0(1 · M · ∃x · farmer(x) · M · rich(x) · 1 · loves(x, y) · M · ∃y ·
donkey(y)) · ?0(1 · poor(x) · 1 · hates(x, y))
Note that here we cannot have ?1 in the beginning of the consequent
of the first implication. We need to have the donkey independent
of the farmer’s prosperity. Of course, we could also give a donkey
a negative reading here.

7. Changing File Status Retrospectively

We introduce a logic DPLpol
pol,sco in which we can change polarity in

backwards direction. We only explore the idea of minimum interaction
between the forwards and the backwards polarity changes. It should be
stressed that the material below has only the status of a first experiment
to see how such a construction could work.

7.1. Definition of the Logic

Given any dra, Q = 〈Q, •, id,⊥,→〉, we define a new algebra as follows.

N := Φpol
pol,sco(Q) := 〈N, •, id,⊥, /, .,M, test0, test1〉.

Here:

dynacondue.tex; 21/01/2004; 12:34; p.23

24 A. Visser

− N := {+,−} ×Q4 × {+,−} × {0, 1}.
We write an element of N as 〈αb, q−,1, q−,0, q+,1, q+,0, αf , i〉.

− id := 〈+, id, id, id, id,+, 0〉

− ⊥ := 〈+, id, id, id,⊥,+, 0〉

− / := 〈−, id, id, id, id,+, 0〉

− . := 〈+, id, id, id, id,−, 0〉

− M := 〈+, id, id, id, id,+, 1〉

− 〈αb, q−,1, q−,0, q+,1, q+,0, αf , i〉 • 〈βb, r−,1, r−,0, r+,1, r+,0, βf , j〉 :=
〈αb.βb, p−,1, p−,0, p+,1, p+,0, αf .βf , i+ j〉.
Here pγ,k := qβb.γ,k • rγ.αf ,k+i

− test0(〈αb, q−,1, q−,0, q+,1, q+,0, αf , i〉) :=
〈+, q−,1, id, q+,1, (q−,0 → q+,0),+, 0〉

− test1(αb, 〈q−,1, q−,0, q+,1, q+,0, αf , i〉) :=
〈+, id, id, id, ((q−,1 • q−,0) → (q+,1 • q+,0)),+, 0〉

In the evident way we can extend Φ to morphisms. Note that . is just
our old friend 1 in new clothes.

REMARK 7.1. As in remark 3.1 we may represent the elements of
N as functions on I := ({+,−}× {0, 1}) ∪ {polb, polf, sco}. Under the
conventions of remark 3.1, we can rewrite some of our definitions as
follows.

− id := { }

− ⊥ := {〈+, 0〉 : ⊥}

− / := {polb : −}

− . := {polf : −}

− M := {sco : 1}

− test0(q) := {〈−, 1〉 : q−,1 | 〈+, 1〉 : q+,1 | 〈+, 0〉 : (q−,0 → q+,0)}

− test1(q) := {〈+, 0〉 : ((q−,1 • q−,0) → (q+,1 • q+,0))}

Finally we specify emb and val.

dynacondue.tex; 21/01/2004; 12:34; p.24

The Donkey and the Monoid 25

− embQ(q) = 〈+, id, id, id, q,+, 0〉

− valQ(〈αb, q−,1, q−,0, q+,1, q+,0, αf , i〉) =
dom((q−,1; q−,0) → (q+,1; q+,0))

We will write n for / · ⊥ · .. The expression n paraphrases the Natural
Language not. We have e.g.:

− [[n]] = 〈−, id, id, id,⊥,−, 0〉

− 〈−, id, id, id,⊥,−, 0〉 • 〈+, q−,1, q−,0, q+,1, q+,0,+, i〉 =
〈+, q−,1, q−,0, q+,1, q+,0,+, i〉 • 〈−, id, id, id,⊥,−, 0〉 =
〈−, q+,1, q+,0, q−,1,⊥,−, i〉

− 〈−, id, id, id,⊥,−, 0〉 • 〈−, id, id, id,⊥,−, 0〉
= 〈+, id,⊥, id, id,+, 0〉
This is, evidently, a somewhat strange meaning for a double nega-
tion. To make double negations work reasonably in the present
set-up we have to interpose test operators.

7.2. Paraphrases

1. Only if a farmer OWNS a donkey, does he beat it.
If he treats it well, he doesn’t own it.
?0(M·∃x·farmer(x)·M·/·owns(x, y)·.·M·∃y·donkey(y)·M·beats(x, y))·
?0(w-treats(x, y) · / · ?0(⊥ · . · own(x, y)))

2. Only if a FARMER owns a donkey, does he beat it.
?0(M·∃x·/·farmer(x)·.·M·owns(x, y)·M·∃y·donkey(y)·M·beats(x, y))

3. Every dog sees a cat. It chases it.
?0(M · ∃x ·dog(x) ·M ·/ · sees(x, y) ·M · ∃y · cat(y) ·M) · ?0(chases(x, y))

4. Mary did not see Karin
?0(n · sees(m, k))
Alternatively:
?0(M · ∃x · x = m · M · ?0(n · sees(x, y)) · M · ∃y · k = y · M)

5. A man comes in. He sees nobody in the room
?0(M · ∃x ·man(x) · M · comes-in(x)) ·
?1(sees(x, y) · n · M · ∃y · person(y) · M · in-room(y))
Replacing the ?1 by ?0 would make a man dependent on a person.
The second sentence gets the same meaning as he does not see
anybody in the room. Note that we may view n ·M · ∃y ·person(y) ·M
as giving the meaning of nobody.

dynacondue.tex; 21/01/2004; 12:34; p.25

26 A. Visser

6. Nobody sees nobody
?0(n · M · ∃x · person(x) · M · ?0(sees(x, y) · n · M · ∃y · person(y) · M))
This gives us the meaning of everybody sees someone. Note that
?0(n · M · ∃x · person(x) · M · sees(x, y) · n · M · ∃y · person(y) · M)
gives the unexpected meaning specified by:
M · ∃x · person(x) · ∃y · person(y) · M
This shows, that at least in the present approach, for two not’s or
no’s, we have to choose which one governs which one.

7. No dog sees no cat. It chases it.
?0(n·M·∃x·dog(x)·M·?0(sees(x, y)·n·M·∃y·cat(y)·M))·?0(chases(x, y))

7.3. On the Retrospective Construction

As in section 5 we will go from general to specific. Let three monoids
A := 〈A, ·, id〉, B := 〈B, •, id〉 and C := 〈C, ·, id〉 be given. Suppose µ
is a left action of A on B and ν is a right action of C on B. As usual
we write a · b for µ(a, b) and b · c for ν(b, c). We demand the following
further property:

− (a · b) · c = a · (b · c)

Define a new algebra, say D, as follows. D = 〈A×B × C, •, id〉. Here:

− idD := 〈idA, idB, idC〉

− 〈a1, b1, c1〉 • 〈a2, b2, c2〉 := 〈a1 · a2, (b1 · c2) • (a1 · b2), c1 · c2〉

We claim that D is a monoid. We verify associativity.
Let di := 〈ai, bi, ci〉, for i = 1, 2, 3. We have:

(d1 • d2) • d3 = (〈a1, b1, c1〉 • 〈a2, b2, c2〉) • 〈a3, b3, c3〉
= 〈a1 · a2, (b1 · c2) • (a1 · b2), c1 · c2〉 • 〈a3, b3, c3〉
= 〈a1 · a2 · a3, (((b1 · c2) • (a1 · b2)) · c3) • (a1 · a2 · b3),

c1 · c2 · c3〉
= 〈a1 · a2 · a3, (b1 · c2 · c3) • (a1 · b2 · c3) • (a1 · a2 · b3),

c1 · c2 · c3〉
= 〈a1 · a2 · a3, (b1 · c2 · c3) • (a1 · ((b2 · c3) • (a2 · b3))),

c1 · c2 · c3〉
= 〈a1, b1, c1〉 • 〈a2 · a3, (b2 · c3) • (a2 · b3), c2 · c3〉
= 〈a1, b1, c1〉 • (〈a2, b2, c2〉 • 〈a3, b3, c3〉)
= d1 • (d2 • d3)

dynacondue.tex; 21/01/2004; 12:34; p.26

The Donkey and the Monoid 27

We will replace B by a more specific monoid and our actions by more
specific actions. Let E be any monoid and let I be any non-empty set.
The monoid B that we are interested in, will be of the form EI . Let ρ be
a right action of A on I and let λ be a left action of C on I. We write i·a
for ρ(i, a) and c·i for λ(c, i). We demand that (c·i)·a = c·(i·a). We take
(a · f)(i) := µ(a, f)(i) := f(i · a) and (f · c)(i) := ν(f, c)(i) := f(c · i).

We make things even more special by taking I := A×C, 〈a, c〉 ·a′ :=
〈a · a′, c〉 and c′ · 〈a, c〉 := 〈a, c′ · c〉.

Finally, the monoidal part of Φpol
pol,sco(Q), can be obtained, modulo

isomorphism, by taking E the monoidal part of Q, by taking A :=
Posco = Pol× Add2 and by taking C := Pol.

In appendix D we sketch how to understand the construction of this
subsection in terms of the construction of subsection 5.

8. Perspectives

In the present treatment we still have connectives like test that employ
syntactical rather than semantical memory. Thus, while e.g. the bowtie
is a meaningful bracket, reflected by an action in the semantics, the
round brackets accompanying test are syncategorematical. I think we
can avoid this and push all memory into the semantics. This would force
us to construct substantially more complex meanings. Something like
stacking cells, perhaps, where on each level we have a pair of relations
stored.7 For example we would like to represent the discourse John sees
nobody somewhat as follows.

in between sentences . . .

hearer Evidently, we have a break in the discourse here. I wil put a blocker in my

database to remind myself of this.

speaker John

hearer OK, . . . , John. Got it. What about him?

speaker sees

hearer Yes, he sees. But, what does he see?

speaker nobody

hearer . . . Oh, fooled . . . Good that I put down that blocker. I will add somebody

and then convert all information from the blocker on to negative polarity.

7 See (Visser, 1994) and (Visser and Vermeulen, 1996) for a discussion of stacking
cells.

dynacondue.tex; 21/01/2004; 12:34; p.27

28 A. Visser

in between sentences . . .

Another issue is the issue of global versus local assignments. We have
followed the classic Groenendijk & Stokhof approach by employing
assignments that are defined on a given fixed set of variables.8 This
strategy forces us to give the existential quantifier the meaning reset,
rather than create. Localizing the approach forces the issue of referential
time travel in clearer perspective: how can we constrain a variable that
has not yet been introduced?

A third issue is the treatment of argument places. The more flexible
treatment of argument places proposed in (Visser and Vermeulen, 1996)
could combine nicely with the present approach. E.g a more principled
treatment of (Only John was hungry) could become available.

A fourth matter is extending the present framework to phenomena
connected to focus. Rick Nouwen in his masters thesis (Nouwen, 1999a)
made a preliminary exploration of this field. See also his (Nouwen,
1999b).

Acknowledgements

I thank Nuel Belnap for asking me the question about the semantics of

Only if a farmer owns a donkey, does he beat it.

I thank Kees Vermeulen, Freek Wiedijk, Rick Nouwen and Henriëtte
de Swart for enlightening and stimulating discussions. I am grateful to
Bart Jacobs for helpful comments. I thank the referee for his/her careful
and critical report, which helped to improve the paper on several points.

Appendix

A. Relational Representation

The result of our construction Φpol was not a relational algebra where •
ends up as relation composition. In the case where the input monoid is
a monoid of relations between assignments, we can elegantly rephrase
things in such a way that pol becomes an extra variable with certain

8 Calling the opposition at issue here total versus partial is a less happy choice of
words. A function is partial if it does not give values to some inputs present among
a previously specified domain. We are talking here about growing domains. Our
assignments are total on the referents at hand.

dynacondue.tex; 21/01/2004; 12:34; p.28

The Donkey and the Monoid 29

special values and in such a way that • becomes relation composition
between relations on extended assignments.

Suppose R is a monoid of relations on DVar. Define the mapping: F :
〈r−, r+, α〉 7→ R, where R is a relation between functions on Var∪ {pol}
that send elements of Var to elements of D and that send pol to + or
−. We write f∗ for f � Var. Our new relation R is given by:

fRg :⇔ f∗(rf(pol))g
∗ and g(pol) = f(pol) · α

Let R := F(〈r−, r+, α〉), S := F(〈s−, s+, β〉), T := F(〈r−, r+, α〉 •
〈s−, s+, β〉). We find:

f(R;S)g ⇔ ∃h f∗(rf(pol))h
∗(sh(pol))g

∗, h(pol) = f(pol) · α and
g(pol) = h(pol) · β

⇔ f∗(rf(pol); sf(pol)·α)g∗ and g(pol) = f(pol) · α · β
⇔ fTg

Moreover, clearly, F(id) = id. Also it is easily seen that F is injective.
So we succeeded in embedding the monoidal part of our e-monoid into
relations with composition. Note that the ⊥ and the → of the e-monoid
do not correspond with the empty relation (of the new relations) and
the relational → on the new relations.

It is quite easy to generalize the present idea to the context of the
more abstract treatment of section 5.

B. Translations

We fix an `-signature Σ.

B.1. Predicate Logic into DPL

We show how to translate the formulas of ordinary Predicate Logic into
the formulas of DPL. Suppose e.g. we axiomatized Predicate Logic with
logical constants >, ⊥, ∧, →, ∀, ∃. Then the translation, say ε, can be
taken:

− ε commutes with P (r1, · · · , rn), >, ⊥, →

− (φ ∧ ψ)ε := φε;ψε

− (∀x φ)ε := (∃x→ φε)

− (∃x φ)ε := ?(∃x · φε)

dynacondue.tex; 21/01/2004; 12:34; p.29

30 A. Visser

In a given model, we find [φε] = diag(‖φ‖)). Here ‖.‖ is the interpreta-
tion function of Predicate Logic. Moreover we have: M, f |=pred φ ⇔
M, f |=DPL φ

ε.

B.2. DPL into any Dynamic Predicate Logic

Consider any dpl DPLD. Here D contains Φ, t, and emb. We trans-
late the DPL-formulas of `-signature Σ into the DPLD-formulas of `-
signature Σ. ζ is defined, by recursion on the DPL-language9, as follows.
ζ commutes with all atomic formulas and connectives except →. (φ→
ψ)ζ := t(φζ , ψζ). We find: [[φζ]] = emb([φ]). Moreover, for a suitable
model M, we have M, f |= φ⇔M, f |=D φζ .

B.3. DPL with Polarity Switch into DPL

The translation backwards from DPLpol into DPL asks for a different
approach. We translate a DPLpol-formula φ, via the translation η, to
a triple 〈φ−, φ+, α〉, where the φβ are DPL-formulas. We define two
operations on triples:

− 〈φ−, φ+, α〉 • 〈ψ−, ψ+, β〉 = 〈φ− • ψ−α, φ+ • ψ+α, α · β〉

− test(〈φ−, φ+, α〉) := 〈>, (φ− → φ+),+〉

η is given by the following clauses.

− (P (r1, · · · , rn))η := 〈>, P (r1, · · · , rn),+〉

− (∃v)η := 〈>,∃v,+〉

− >η := 〈>,>,+〉

− ⊥η := 〈>,⊥,+〉

− 1η := 〈>,>,−〉

− (φ · ψ)η := φη • ψη

− (?(φ))η := test(φη)

Suppose φη = 〈φ−, φ+, α〉. We find: [[φ]] = 〈[φ−], [φ+], α〉. Moreover,
for a suitable model M, we have M, f |=pol φ⇔M, f |= (φ− → φ+).

There is an analogy between the semi-syntactical triples and DRS’s.
We will elaborate on that analogy in subsection B.5.

9 Remember that this recursion is really between free e-monoids of different
signature. It is easy to see that it is well defined.

dynacondue.tex; 21/01/2004; 12:34; p.30

The Donkey and the Monoid 31

B.4. DPL with Switches for Polarity and Scope into DPL

We turn to ‘translation’ from DPLpol,sco to DPL. This translation is
like the one DPLpol to DPL described in subsection B.3. We work
again with the slightly modified DPL-formulas of subsection B.3. We
translate a DPLpol,sco-formula φ, via the translation κ, to a sextuple
〈φ−,1, φ−,0, φ+,1, φ+,0, α, i〉. We define three operations on sextuples:

− 〈φ−,1, φ−,0, φ+,1, φ+,0, α, i〉 • 〈ψ−,1, ψ−,0, ψ+,1, ψ+,0, β, j〉 =
〈χ−,1, χ−,0, χ+,1, χ+,0, α · β, i+ j〉
where χγ,k := φγ,k • ψγ·α,k·i

− test0(〈φ−,1, φ−,0, φ+,1, φ+,0, α, i〉) :=
〈φ−,1,>, φ+,1, (φ−,0 → φ+,0),+, 0〉

− test1(〈φ−,1, φ−,0, φ+,1, φ+,0, α, i〉) :=
〈>,>,>, ((φ−,1 • φ−,0) → (φ+,1 • φ+,0)),+, 0〉

κ is given by the following clauses.

− (P (r1, · · · , rn))κ := 〈>,>,>, P (r1, · · · , rn),+, 0〉

− (∃v)κ := 〈>,∃v,+〉

− >κ := 〈>,>,>,>,+, 0〉

− ⊥κ := 〈>,>,>,⊥,+, 0〉

− 1κ := 〈>,>,>,>,−, 0〉

− Mκ := 〈>,>,>,>,+, 1〉

− (φ · ψ)κ := φκ • ψκ

− (?0(φ))κ := test0(φκ)

− (?1(φ))κ := test1(φκ)

Suppose φκ = 〈φ−,1, φ−,0, φ+,1, φ+,0, α, i〉. We find:

[[φ]] = 〈[φ−,1], [φ−,0], [φ+,1], [φ+,0], α, i〉.

Moreover, for a suitable model M, we have

M, f |=pol,sco φ⇔M, f |= ((φ−,1 • φ−,0) → (φ+,1 • φ+,0)).

dynacondue.tex; 21/01/2004; 12:34; p.31

32 A. Visser

B.5. DRT into DPL with and without Switches

We can translate the language of Discourse Representation Theory,
DRT, with its semantics into the language cum semantics of DPLpol,sco.
For information about DRT the reader is referred to (Kamp, 1981),
(Kamp and Reyle, 1993), (Zeevat, 1991). Let a signature Σ be given.
The DRT-language of signature Σ is just the DPL-language of the same
signature. A DRT-meaning (in a given model M of signature Σ is a
pair 〈V, F 〉, where V is a finite set of variables and where F is a set of
assignments. We write [V] for the relation between assignments with

f [V]g :⇔ ∀w∈Var \ V f(w) = g(w)

We assign to a DRT-meaning 〈V, F 〉 a relation [〈V, F 〉], abbreviated as
[V, F], as follows: [V, F] := [V]; diag(F).

We define two operations on DPL-meanings.

− 〈V, F 〉 • 〈W,G〉 := 〈V ∪ W,F ∩ G〉

− (〈V, F 〉 → 〈W,G〉) := 〈∅, dom([V, F] → [W,G])〉
Here dom is the function that gives the domain of the given rela-
tion.

Clearly • gives us a monoid with identity 〈∅,Ass〉. Here is the definition
of the DRT-interpretation function:

− (P (r1, · · · , rn)) := 〈∅, ‖P (r1, · · · , rn)‖〉.
Remember that ‖P (r1, · · · , rn)‖ was defined as the meaning as-
signed to P (r1, · · · , rn) in Predicate Logic.

− (∃v) := 〈{v},Ass〉

− (>) := 〈∅,Ass〉

− (⊥) := 〈∅, ∅〉

− (φ · ψ) := (φ) • (ψ)

− (φ→ ψ) := ((φ) → (ψ))

Satisfaction for DRT is defined as follows.

− M, f |=drt φ :⇔ ∃g f [(φ)]g

We can translate DRT to DPLpol,sco as follows. Say the translation is δ.

− δ commutes with formulas of the form P (r1, . . . , rn), >, ⊥

− (∃v)δ := M · ∃v · M

dynacondue.tex; 21/01/2004; 12:34; p.32

The Donkey and the Monoid 33

− δ commutes with ·

− (φ→ ψ)δ := ?1(1 · φδ · 1 · ψδ)

We embed DRT-meanings into DPLpol,sco-meanings via:

emb◦ : 〈V, F 〉 7→ 〈id, id, [V], diag(F),+, 0〉.

We find: [[φδ]] = emb◦((φ)). Moreover:

M, f |=drt φ⇔M, f |=dpl,pol,sco φ
δ.

It is interesting to translate first DRT via δ to DPLpol,sco, and subse-
quently via κ to DPL. We get e.g.:

∃x.P (x).∃y.Q(y) 7→ 〈>,>,∃x∃y, P (x)Q(y),+, 0〉

This last translation is strongly reminiscent of a Discourse Represen-
tation Structure or DRS, in our example: 〈{x, y}, {P (x), Q(y)}〉. The
main differences are (i) a few empty locations, (ii) strings of existential
quantifiers instead of sets of the corresponding variables, (iii) strings
of conditions instead of sets of conditions. The empty locations are
inessential. They are not activated. Except for the 0, they are due
to the fact that we are carrying around a polarity mechanism that is
absent from DRT. We can abstract from the strings in the case of DRT
for a simple reason. Reset relations are commutative and idempotent.
Conditions have the same properties. This fact makes it possible to
abstract from order and number of occurrences in strings of resets and
in strings of conditions, thus obtaining sets.

C. The Grothendieck Construction

The reader who knows a bit about category theory, will have noted that
the construction of section 5 is just the Grothendieck Construction
for monoids. See e.g. (Barr and Wells, 1989) or (Bénabou, 1985) or
(Tarlecki et al., 1991) or (Jacobs, 1999). We will give a bit of detail
here.

We will think of categories in the usual way. Thus, f ◦ g means:
first g then f . We consider a monoid M = 〈M, •, id〉 as a one object
category in the following way:

− ObM := {∗}, ArrM := M

− dom(m) := cod(m) := ∗

− id∗ := idM

dynacondue.tex; 21/01/2004; 12:34; p.33

34 A. Visser

− m ◦ n := n •m (The reversal of order is because we intend ‘n •m’
to mean: first n, then m.)

Consider two monoids A and B and let ν be a left action of A on B.
Define the contravariant functor Θ = Θν from A to Cat, by:

− Θ(∗) := B

− (Θ(a))(∗) := ∗

− (Θ(a))(b) := a · b

It is easily seen that Θ(a) is a functor from B to B. Moreover, Θ(idA) =
IDB and:

(Θ(a1 ◦ a2))(b) = (Θ(a2 · a1))(b)
= (a2 · a1) · b
= a2 · (a1 · b)
= (Θ(a2))((Θ(a1))(b))
= (Θ(a2) ◦Θ(a1))(b)

So Θ is indeed a contravariant functor. We get:
∫
A Θµ =

∑
A µ. Here∫

A Θµ is the Grothendieck completion of the functor Θµ, considered as
a split indexed category.

D. Opposites of Opposites

In this appendix we show how the construction of subsection 7.3 can
be obtained from the construction of section 5.

For any monoid M, we take Mop to be the opposite monoid of
M, i.e. the monoid we obtain by taking the monoidal operation in
reverse order. Of course, Mop is just the opposite of M considered as
a category. Note the following simple facts:

1. If ρ is a right action of N on M, then ρop := λ, where λ(m,n) :=
ρ(n,m), is a left action of N op on M. If we use ∗ is to denote both
λ and the monoid operation of N op, we have e.g.

(n1 ∗ n2) ∗m = m · (n2 · n1) = (m · n2) · n1 = n1 ∗ (n2 ∗m)

2. If λ is a left action of N on M, then λ∗ with where λ∗(m,n) :=
λ(m,n), is a left action of N on Mop. (So the only difference
between λ and λ∗ consists in the structure acted upon.)

dynacondue.tex; 21/01/2004; 12:34; p.34

The Donkey and the Monoid 35

Let A, B, C be monoids and let ν be a left action of A on B and let µ
be a right action of C on B. Define a right action ρµ of C on E :=

∑
A ν

as follows:

− 〈a, b〉 · c := 〈a, b · c〉

We have e.g.

(〈a1, b1〉 • 〈a2, b2〉) · c = 〈a1 · a2, b1 • (a1 · b2)〉 · c
= 〈a1 · a2, (b1 • (a1 · b2)) · c〉
= 〈a1 · a2, (b1 · c) • (a1 · b2 · c)〉
= 〈a1, b1 · c〉 • 〈a2, b2 · c〉
= (〈a1, b1〉 · c) • (〈a2, b2〉 · c)

D is isomorphic to (
∑

Cop ρ
op,∗
µ)op via the mapping 〈a, b, c〉 7→ 〈c, 〈a, b〉〉.

Let’s use ~ for the opposite of • and � for the opposite of ·. We have
e.g.

〈c1, 〈a1, b1〉〉 • 〈c2, 〈a2, b2〉〉 = 〈c2, 〈a2, b2〉〉~ 〈c1, 〈a1, b1〉〉
= 〈c2 � c1, 〈a2, b2〉~ (c2 � 〈a1, b1〉)〉
= 〈c2 � c1, 〈a2, b2〉~ 〈a1, c2 � b1〉〉
= 〈c1 · c2, 〈a1, b1 · c2〉 • 〈a2, b2〉〉
= 〈c1 · c2, 〈a1 · a2, (b1 · c2) • (a1 · b2)〉〉

References

Barr, M. and C. Wells: 1989, Category Theory for Computing Science. New York:
Prentice Hall.

Bénabou, J.: 1985, ‘Fibered categories and the foundations of naive category theory’.
The Journal of Symbolic Logic 50(1), 10–37.

Groenendijk, J. and M. Stokhof: 1991, ‘Dynamic Predicate Logic’. Linguistics and
Philosophy 14, 39–100.

Hollenberg, M.: 1997, ‘An equational axiomatisation of dynamic negation and
relational composition’. Journal of Language, Logic and Information 6(4),
381–401.

Jacobs, B.: 1999, Categorical Logic and Type Theory, No. 141 in Studies in Logic
and the Foundations of Mathematics. Amsterdam: North Holland.

Kamp, H.: 1981, ‘A Theory of Truth and Semantic Representation’. In: J. G. et al.
(ed.): Truth, Interpretation and Information. Dordrecht: Foris, pp. 1–41.

Kamp, H. and U. Reyle: 1993, From Discourse to Logic, Vol. I, II. Dordrecht: Kluwer.
Nouwen, R.: 1999a, ‘Action-Only Semantics: a study of the use of control ele-

ments in DPL’. Master’s thesis, CKI, Dept. of Philosophy, Utrecht University.
http://www.phil.uu.nl/ckiscripties.html.

dynacondue.tex; 21/01/2004; 12:34; p.35

36 A. Visser

Nouwen, R.: 1999b, ‘DPL with control elements’. In: P. Dekker (ed.): Proceedings of
the twelfth Amsterdam Colloquium.

Tarlecki, A., R. Burstall, and J. Goguen: 1991, ‘Some fundamental algebraic tools
for the semantics of computation: Part 3. Indexed categories’. 91, 239–264.

Visser, A.: 1994, ‘Actions under Presuppositions’. In: J. van Eijck and A. Visser
(eds.): Logic and Information Flow. Cambridge, Mass.: MIT Press, pp. 196–233.

Visser, A.: 1997, ‘Dynamic Relation Logic is the logic of DPL-relations’. Journal of
Language, Logic and Information 6(4), 441–452.

Visser, A. and C. Vermeulen: 1996, ‘Dynamic Bracketing and Discourse Represen-
tation’. Notre Dame Journal of Formal Logic 37, 321–365.

Zeevat, H.: 1991, ‘A Compositional Approach to DRT’. Linguistics and Philosophy
12, 95–131.

Address for Offprints:
Albert Visser
Department of Philosophy
Heidelberglaan 8, 3584 CS Utrecht
The Netherlands

dynacondue.tex; 21/01/2004; 12:34; p.36

