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Abstract

In this paper constructions leading to the formation of belief sets by agents are stud-
ied. The focus is on the situation when possible belief sets are built incrementally
in stages. An infinite sequence of theories that represents such a process is called a
reasoning trace. A set of reasoning traces describing all possible reasoning scenarios
for the agent is called a reasoning frame. Default logic by Reiter is not powerful
enough to represent reasoning frames. In the paper a generalization of default logic
of Reiter is introduced by allowing infinite sets of justifications. This formalism
is called infinitary default logic. In the main result of the paper it is shown that
every reasoning frame can be represented by an infinitary default theory. A similar

representability result for antichains of theories (belief frames) is also presented.
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Default Logic and Specification of
Nonmonotonic Reasoning

1 Introduction

An agent that has to act in a world situation usually has incomplete knowledge
about that world. Such knowledge is often not sufficient for the agent to base its
actions on, if only classical deductions are used. The agent requires, and adopts,
additional assumptions extending its partial understanding of the world. In gen-
eral, several sets of additional assumptions may be possible or consistent with the
agent’s knowledge, as there may be alternative ways of interpreting the available
(incomplete) information about the world. This leads to several extensions of the
agent’s initial knowledge. A single one of these extensions (one possible view) will
be called a belief set, and the set of all of these possible views (given the initial
knowledge) will be called a belief frame. Belief frames are not arbitrary collections
of theories. Since agents are seeking possibly complete descriptions of the world,
theories contained in other possible world views are discarded. Hence, belief frames
form antichains - no belief set is a proper subset of another in the same reasoning
frame.

The belief sets may not be available to the agent immediately. We assume that
the agent will have to construct these belief sets by reasoning in a step by step
construction process generating a reasoning trace that finds its limit in a belief set.
A set of these reasoning traces is called a reasoning frame. We will require that the
limits of all traces in a reasoning frame form a belief frame.

These notions will be formalized as follows. A belief set will be defined as a
logical theory (a set of sentences closed under classical deduction). A belief frame
will be defined as a collection of theories forming an antichain. A reasoning trace

will be defined as a countable increasing (under set inclusion) sequence of theories.



The limit of a reasoning trace is its union. A reasoning frame is defined as a set (or
family) of reasoning traces.

Given this conceptualization, two levels of specification of the agent can be
described. The most abstract level only defines the outcomes of the reasoning and
abstracts from the way the outcome was found. A specification at this level defines
a belief frame, abstracting from any reasoning frame behind this belief frame. At
the more detailed level of specification a reasoning frame is defined. The set of
traces represents the reasoning processes of the agent, their limits — the outcomes.

The question studied in this paper is how a variant of default logic can be used
in order to specify nonmonotonic reasoning at these two levels of abstraction. The
problem whether a belief frame can be represented as the collection of extensions
was studied in (Marek et al., 1997). Complete results in the case of representabil-
ity by default theories with finite sets of defaults were obtained there. While the
general problem of representability remained unresolved, it was shown in (Marek
et al., 1997) that the default logic by Reiter is insufficient for specification of belief
frames. Specifically, several examples of belief frames were exhibited, which cannot
be represented as families of extensions of default theories. In the current paper it
is shown that infinitary default logic, a stronger variant of default logic, allowing
infinite sets of justifications, provides an adequate specification language. In par-
ticular, prerequisite-free infinitary default logic provides an adequate specification
language for belief frames. Moreover, infinitary default logic in general provides an
adequate specification language for reasoning frames.

In Section 2 the basic definitions and properties of infinitary default logic (IDL)
are given, as a generalization of Reiter’s default logic. For example, the notion of
Reiter extension is generalized to the notion of an IDL-extension, and a fixpoint
construction for IDL-extensions is given, generalizing the fixpoint construction in

(Reiter, 1980). We also formally define the notions of a reasoning trace and frame



there, and relate these concepts to infinitary default theories.

In Section 3 we focus on the prerequisite-free case. It is proven that the non-
including belief frames are precisely the belief frames that can be obtained as the
set of all IDL-extensions of a prerequisite-free infinitary default theory. This implies
that, in contrast to Reiter’s default logic, IDL is expressive enough to serve as an
adequate specification language of belief frames.

In Section 4 we focus on reasoning frames. It is established that for any reasoning
frame there is an infinitary default theory such that the fixpoint construction of its
IDL-extensions precisely provides the reasoning traces in the given reasoning frame.
The idea is that by using the right prerequisites any given reasoning trace can be
obtained.

In Section 5 we discuss how the notions as presented depend on the initially
given set of facts. The notions of a belief set operator and a reasoning trace operator
are introduced to express this dependency. Conclusions and suggestions for further

research are given in Section 6.

2 Preliminaries

In this section, we will introduce two key concepts of the paper: reasoning trace and
reasoning frame. These concepts are designed to represent the reasoning process of
an agent that starts with some incomplete knowledge and, in a step-by-step process
constructs a sequence of theories, each providing a more complete picture of the
situation (world). We will then introduce the infinitary default logic and show that
infinitary default theories can be used to encode reasoning traces and frames of an
agent. In the following sections of the paper we will present a detailed study of this
relationship.

In this paper, by £ we denote a language of propositional logic with a denumer-

able set of atoms At. These atoms will be denoted by p, g, r, ... with or without sub-



scripts. By a theory we always mean a subset of L closed under propositional prov-
ability. We will often refer to a theory as a belief set. The closure of a set of formulas
A under propositional provability is denoted Cn(A). For formulas ¢1, @2, ..., on we
introduce the notation (@1, @2, ..., n) as an abbreviation of Cn({v1, P2, ..., Pn})-
When specifying reasoning agents, collections of belief sets that form antichains

(no belief set is a proper subset of another) are of particular importance.

Definition 2.1 (Belief Frame) A belief frame is a collection of belief sets (theo-

ries) such that no belief set is a proper subset of another.

Throughout this paper we will use a running example to illustrate the ideas and

constructions.

Example 2.2 (Running example) Define the following theories:

T, = (p,s,t)

T, = (p,s,—u)

T3 = (p,—r,—g,t)
T, = (p,—r,—g,~u)

It is easy to see that B = {11, Ty, T3, T4} is a belief frame.

As discussed in the introduction, belief frames capture only the outcomes of the
reasoning process and abstract from the way these outcomes were found. To get
a detailed specification of an agent we need to represent the process in which a
belief set is constructed. In this paper, we propose to represent such a process by
a sequence of theories — a reasoning trace. Collections of such reasoning traces, in
turn, will form reasoning frames. Throughout the paper we will use the following
notational convention. If an upper case symbol, say E, stands for a sequence of
theories, then the elements of the sequence will be referred to as Ej, Fa, ..., and

their union, |J;2, E; will be denoted by E>.



Definition 2.3 (Reasoning Trace and Reasoning Frame) LetT = (T1,T5,...)

be a sequence of theories from L.
(i) The sequence T is a reasoning trace if:
(a) T; CTivq for i =0,1,...
(b) T; = Tiy1 implies T; =T for j > 1.
(i) The union of a reasoning trace T is called the limit of T.

(i1i) A collection T of reasoning traces is called o reasoning frame if for every
T,SeT:
(a) To = So.
(b) If T C S°°, then T = S.
It is easy to see that the limit of a reasoning trace is a theory, that is, it is

closed under propositional provability, and that the limits of reasoning traces in a

reasoning frame form a belief frame, that is, form an antichain.

Definition 2.4 (Belief Frame of a Reasoning Frame) Let T be a reasoning

frame. The belief frame BT associated with T is defined by:
Br ={T>*:TeT}
Example 2.5 The following is an example of a reasoning frame:
F o= A{p) (P s), (ps,1), (5, 1),..),
(p); (p, ), (p, 5, ~u), (P, 5, ), ...),

(<p>: <pa -, _'q>a <pa -r,—q, t)a (pa -, g, t): )a

((p), (p, =, —q), {p, ~r, —~q, ~u), {p, =, ~q, ~u), ...) }

It is easy to show that this is indeed a reasoning frame. The reader can check that

Br = B where B was defined in Example 2.2.



In this paper we will show that the language of infinitary default logic can be
used to describe specifications of an agent both on the level of belief frames as well
as reasoning frames. Some results in this direction were obtained in (Marek et al.,
1997), where the problem of encoding belief frames by (finitary) default theories
was studied in detail. In addition to a number of positive results, it is proved in
(Marek et al., 1997) that not every belief frame can be represented as the family
of all extensions of a default theory. In this paper we will generalize default logic
by allowing infinite sets of justifications. Then we will prove that infinitary default
logic is powerful enough to serve as a specification language for arbitrary belief and
reasoning frames.

An infinitary default (IDL-default, for short) is an expression d:

T
gl
5 (1)

where o and 8 are formulas from £, and T is a set, possibly infinite, of formulas from
L. The formula « is called the prerequisite of d (p(d), in symbols) and 3 is called the
consequent of d (c(d), in symbols). The set of formulas T is called the justification
set of d and is denoted by j(d). If p(d) is a tautology, d is called prerequisite-free.
In such case, p(d) is usually omitted from the notation of d. This terminology is
naturally extended to a set of defaults D. Namely, the prerequisite, consequent and
Justification sets of D, in symbols p(D), ¢(D) and j(D), are defined by:

p(D) = L@}, D)= J{e(d)}, (D)= ] i@.

deD deD deD

A pair (D, W), where D is a set of IDL-defaults and W C L is a set of formulas,
is called an infinitary default theory (or IDT). Rules with infinite sets of justifications
were considered in (Ferry, 1991) in the context of logic programs.

We will now generalize the notion of an extension, introduced by Reiter (Reiter,
1980) for standard default theories, to the case of IDTs. To this end, we will

introduce the concept of an S-trace. This notion is closely related to the fixpoint



construction of extensions presented by Reiter (Reiter, 1980).

Definition 2.6 Let (D, W) be an IDT. Let S C L be a theory. By the S-trace of

(D, W) we mean the sequence E of theories defined recursively as follows:

1. Eo = CTL(W),

2. for every integer n > 0:

E.i1 =Cn(E,U{c(d): d€ D, p(d) € E, and for all v € j(d), —y ¢ S}).

The notion of an S-trace allows us to introduce the notion of an IDL-extension

of an IDT.

Definition 2.7 Let (D, W) be an IDT. A set S C L is an IDL-extension of (D, W)

if

where E is the S-trace for (D, W).

Clearly, each standard (finitary) default theory (with each default having only
finitely many justifications) is, in particular, an IDT. Moreover, it is easy to see
that if an IDT happens to be finitary, then the notion of an IDL-extension coincides
with that of extension. Therefore, throughout the paper we will refer to the IDL-
extensions simply as extensions.

We will denote by ext(D, W) the collections of all extensions of an IDT (D, W).
The collection of all S-traces of (D, W), where S € ext(D,W) will be denoted by
tr(D,W).

There are several alternative characterizations of extensions of standard default
theories (Marek and Truszczynski, 1993). We will now generalize one of them to
the case of infinitary default theories. It can be stated in terms of the reduct of

the set of defaults. A default d (a set of defaults D) is applicable with respect to a



theory S (is S-applicable) if St/ —y for every v € j(d) (j(D), respectively). By the

reduct Dg of D with respect to S we mean the set of monotone inference rules:

:T :T
Dg = {%: for some I' C L, a? € D, and a? is S—applicable} .

Fach set B of standard monotone inference rules determines a formal proof sys-
tem, denoted by PC + B, in which derivations are built by means of propositional
provability and rules in B. The corresponding provability operator will be denoted
by Fp and the consequence operator by Cn®(-) (Marek and Truszczyriski, 1993).
In particular, each set Dg determines the provability operator Fp, and the conse-

quence operator CnPs (-).

Proposition 2.8 Let D be a set of IDL-defaults,and let W and S be subsets of L.

Then, S is an extension if and only if S = CnPs(W).

Let us introduce one more useful notion. A default d is generating for a theory
S if p(d) € S and S tf —y for every v € j(d). The set of all defaults from D which
are generating for S is denoted by GD(D, S).

Once the reduct is computed the distinction between infinitary and standard
defaults disappears. This explains why many of the properties of default logic

remain true in the infinitary case. In particular, we have the following results.
Proposition 2.9 Let (D,W) be an IDT. Then:

1. If S is an extension of (D, W), then S is a belief set (theory).

2. The operator CnPs (W) is monotone in D and W, and antimonotone in S.

3. The collection ext(D,W) is a belief frame. That is, if T1,T> € ext(D, W) and

T1 g TQ, then T1 = TQ.

4. If S is an extension of (D, W) then S = Cn(W U c¢(GD(D, S))).

10



5. If all defaults in D are prerequisite-free then S is an extension of (D, W) if

and only if S = Cn(W Uc¢(GD(D, S))).

Parts (1) and (3) of Proposition 2.9 show that IDTs can be used to represent be-
lief frames. The next result shows that they can also be used to represent reasoning

frames.

Proposition 2.10 Let (D,W) be an IDT.

1. Let S be a theory in L. If E is the S-trace for (D,W) then E is a reasoning

trace.

2. The collection of reasoning traces tr(D, W) is a reasoning frame.

We can now formally introduce the notions of representability of belief frames

and reasoning frames by default theories.

Definition 2.11 Let B be a family of belief sets contained in L. The family B is
representable by an IDT A if ext(A) = B. Similarly, if T is a family of reasoning

traces, then it is representable by an IDT A if tr(A) =T.

Example 2.12 It turns out that the belief frame B of Example 2.2 is representable.

Define the IDT (D, W) by

w

{p} and

pgVr p:ms 18 sV-oriu sV gt

D:{ > ) }

) ?
s or g t U

It can be easily verified that ext(D,W) = B. Furthermore, it can also be checked
that tr(D,W) = F, where F was defined in Example 2.5. This means that F is

also representable.

The notion of representability by default theories was studied in (Marek and
Truszczynski, 1993; Marek et al., 1997). A complete description of families of the-

ories that are representable by default theories with a finite set of defaults was

11



given there. However, the general question of representability by arbitrary default
theories remained unsettled. The main difference between a standard and an infini-
tary default is that the latter can encode an infinite set of constraints determining
its applicability (in the form of infinite sets of justifications). Our results in the
next section show that the infinitary default logic is more expressive than the de-
fault logic by Reiter. In particular, we show that every family of theories satisfying
the necessary condition for the representability, described in Proposition 2.9(3), is

representable by an infinitary default theory.

3 Representability of Belief Frames by IDTs

We start with the result that allows us to replace any IDT with an equivalent IDT

in which all defaults are prerequisite-free.

Theorem 3.1 For every IDT A, there is a prerequisite-free IDT A' equivalent to

A.

Proof: Let A = (D,W). By a quasi-proof from D and W we mean any proof from

W in the system PC + D™, where

«a a:T
D™ =4 —: forsomeI C L, —ED}.
{ﬂ - B

For every quasi-proof € from D and W, let D, be the set of all defaults used in e.

For each such proof €, define

_ :j(De)
4= NeD.)

(observe that D, is finite and, so, d. is well-defined). Next, define
Q = {d.: € is a quasi-proof from W}.

Each default in @ is prerequisite-free. Put A" = (Q,W). We will show that A’ has
exactly the same extensions as (D,W). To this end, we will show that for every

theory S and for every formula ¢,
Wkps ¢ ff Wigs .

12



Assume first that W Fp, . Then, there is a quasi-proof € of ¢ such that all defaults
in D, are applicable with respect to S. Moreover, W U ¢(D.) F ¢. Observe that
c(de) F ¢(De). Since d. is prerequisite-free and S-applicable, W kg, W U ¢(D.).
Hence, W kg, .

To prove the converse implication, observe that since all defaults in @ are
prerequisite-free,

{e: W kqs o} = Cn(W U c(@s))-

Hence, it is enough to show that
W tps WUc(Qs).

Clearly, for every ¢ € W, W Fp, . Consider then ¢ € ¢(Qg). It follows that
there is a quasi-proof € such that d. is S-applicable and ¢(d.) = . Consequently,

all defaults occurring in € are S-applicable. Thus, for every default d € D,
W Fps c(d).

Since ¢ = A ¢(De),

w I_Ds Y.

Example 3.2 Let us look at the IDT (D,W) defined in Example 2.12. Ewvery
default d. defined in the proof of Theorem 3.1 is uniquely determined by the set D,
of defaults used in €. This means that for (D, W), which consists of five defaults,
at most 25 = 32 defaults d. can be defined. It turns out that the IDT defined in
this way actually contains 24 defaults (the other subsets of the defaults in D can
not be combined into a proof ). Rather than listing all 24, we will give a number of
them. First of all, the defaults with prerequisite in W are proofs, so for instance
% and =2 are in Q. The second, third and fifth defaults in D give rise to the

-q

{—os, -t}

—rA-gA—-u’

following default: But there are also defaults that contradict their own

13



{qvru,~t}

Py N— These defaults are present in Q, but they are

justification, such as:

harmless given the other defaults in Q.

Proposition 2.9 implies that for every infinitary default theory (D, W), its family
of extensions ext(D,W) is a belief frame (cf. parts (1) and (3)). To answer the
question whether the converse is true as well, by Theorem 3.1 we can concentrate
on prerequisite-free IDT’s. It turns out that every belief frame is representable by

a (prerequisite-free) IDT.

Theorem 3.3 Let B be a family of belief sets. Then the following statements are

equivalent:

(i) B is a belief frame,

(i3) B is representable by a prerequisite-free IDT.

Proof: It suffices to prove that any belief frame is representable by a prerequisite-
free IDT. To this end, let us consider a belief frame B. If B = () then take any
(Reiter) default theory without extensions. If B = {T'}, then define D = (). Clearly,
ext(D,T) = B.

Hence, assume that B contains at least two theories. Since no theory in B
is a proper subtheory of another, it follows that all theories contained in B are
consistent.

For every S,T € B such that S # T, define ¢ to be any formula belonging to

S\ T. For every T € B, define

DT:{ 3{ﬂ905,T35¢€B, S#T} ¢€T}_

Finally, define

p=|J D"
TeB

We will show that ezt(D, 0) = B.

14



Consider T € B. Then Dr = {14 € T}. Hence, CnP7 () = T and T is an
extension of (D, ().

Conversely, let T be an extension of (D,0). We have just proved that B C
ext(D, D). Consequently, (D, ) has at least two extensions. It follows that Cn(0)
is not an extension of (D,{) (the theory Cn(®) is a subset of every extension of
(D,W)). In particular, T # Cn(0). Consequently, the set D is not empty.

Consider a set S € B. Observe that all defaults in D have the same set of
justifications. Consequently, either all of them are generating for 7" or none. It
follows that T is the union of a nonempty (since Dy # @) family of theories in B.
If T is the union of at least two theories, than Dy = @), a contradiction. Hence,

T =235, forsome S € B. Thatis, T € B. a

Example 3.4 We already know that our example belief frame B is representable,
and we know it is representable by a prerequisite-free IDT. In order to illustrate the
construction process of the proof of Theorem 3.3, we will perform this for B. Note,
first of all, that in the definition of DT, we need not add defaults for every ¢ € T,
but that it is sufficient to do this for a set of generators of T (T is generated by
a set of formulas if it is the propositional closure of this set). Furthermore, when
a formula s, is a negation, we will eliminate the double negation in the default.

We will now construct the sets DT :

1. Ty: first we must choose the formulas s 1,. Take o1, 7, = ~U, Y13, 7, = T,

and g, 1, = -, then DTt = {Hurk Huwr} duriy
Note that these defaults have the same set of justifications, so instead of taking
3 defaults, we can also form one by taking the conjunction of the consequents.

We will do this for the remaining theories.

2. Ty: Let P11, T2 = t, P13, T, = t, OTy, 75 = 7T, and deﬁne DT> = { Aot} }

PASA—U

15



. _ _ _ T3 _ (_H{=osu}
3. T3: Let ory,13 =S, o1u,13 = S, 13,13 = W, and define D> = {27050

{—s, ot} }

4. Ty: Let o1y 1, = 8, Ty, 1, = S, 15,1, = t, and define DT+ = {p/\—\T/\—!q/\—!u
If we define D = DTt U D™ U DT U DT%, then it can be checked that indeed

ext(D, ) = B.

Theorem 3.3 and the results in (Marek et al., 1997) imply that infinitary default
logic is a more powerful knowledge representation formalism than that of default
logic. In other words, allowing infinite justification sets leads to a more expressive

representation formalism.

Corollary 3.5 There are belief frames representable by an IDT but not repre-

sentable by a standard default theory.

We will give an example. Let {po, p1,- - .} be a set of propositional atoms. Define
T; = Cn({p:}), 1 =0,1,..., and B = {T;:i = 0,1,...}. It is clear that B consists
of non-including theories, and is therefore representable by an IDT. If we define
W=0and D = {% | # > 0}, then it can be easily verified that ezt(D, W) =
B. It was shown, however, in (Marek et al., 1997) (Theorem 3.5), that B is not
representable by a (Reiter) default theory.

As another corollary, we obtain the result already proved in (Marek et al., 1997).

Proposition 3.6 Let B be a finite belief frame. Then B is representable by a (Re-

iter) default theory (possibly with an infinite set of defaults).

This is actually a special case of a more general criterion for representability by
(Reiter) default theories. Let us call a family of theories B finitely distinguishable
if for all T € B there exists a finite set FD(T) such that FD(T)NT = @ and

VSeB:S#T = FD(T)NS # (). We have the following result.

Proposition 3.7 Every finitely distinguishable belief frame is representable by a

Reiter default theory.

16



Proof: In the proof of Theorem 3.3, we can always choose the formulas ¢g r from
FD(T), a finite set. Then the sets DT contain only defaults with finite justification

sets, so that the IDT defined in the proof is in fact a Reiter default theory. O

It is easy to see that a finite belief frame is finitely distinguishable. Hence,

Proposition 3.7 applies to finite belief frames.
4 Representability of Reasoning Frames by IDTs

In the previous section we proved that any antichain of theories (belief frame) can
be represented by a prerequisite-free IDL-theory. In this section we will look not
only at the outcomes of a reasoning process (the belief frame), but also at the
process in which these outcomes are constructed. Note that by using prerequisites
that logically depend on consequents of other defaults, it is possible to express
constraints on the order in which states occur in a trace. Using this observation, we
will study the question whether infinitary default logic can be used as a specification
language for collections of traces — reasoning frames. In the main result of this

section we will show that every reasoning frame is representable by an IDT.

Theorem 4.1 Let T be a collection of reasoning traces. Then the following state-

ments are equivalent:
(i) T is a reasoning frame,

(i) T is representable by an IDT.

Proof: If there is an IDT A such that 7 = ¢r(A), then T is a reasoning frame by
Proposition 2.10. To prove the converse implication, we proceed as follows. If T
is empty, we can take A to be any default theory without extensions. So suppose
that 7 # (). Take any trace T' € T, and define W = T,. As T is a reasoning frame,

we have that W = S, for all traces S € T.

17



Consider a trace T € 7. Then T is increasing, and may become constant from

a certain index on. We define this index k1 by

b — min{i:T; = T;11} if there exists an ¢ with T; = T;44
71 = otherwise

Now for 0 < ¢ < kr, define ¢; 7 to be any formula in T; \ T;_1, and define 9o 1
as any formula in Tp. These formulae will serve as prerequisites for defaults that
will “fire” in order to form T;4.

For the justifications of rules, we will use the same construction as used in the
proof of Theorem 3.3. For any S € T such that S # T, define ¢ 7 to be any formula
belonging to S\ T°°. Since T is a reasoning frame and S # T, S® ¢ T*°. Hence,

s, can indeed be found. Now define

pT — {",bi,T:{—'goS,T:S €T, S#T}
X

:XETi—}—l\Ti; 0§7,<k‘T}
Finally, define
p=J D"
TeT
We will show that tr(D, W) ="T.
Consider T' € T. First observe that, by definition, To = W = Cn(W). Further-
more, the set of defaults in D which are applicable for T is exactly D”. It follows

that

{c(d):d € D,p(d) € T;,d is T*°-applicable} = {x: x € Tit1 \ To}-
As Ty C T;, we have that
Tiy1 = Cn(T; U {c(d):d € D,p(d) € T;,d is T*—applicable}).

From this we conclude that T € tr(D, W).

For the converse, suppose that T' € tr(D,W). If none of the defaults in D
are T°—applicable, then T; = W for all <. Consider an S € 7. Then, we have
S € tr(D,W). Now, since S D W and extensions form an antichain, S = W.

Hence, S=T and T € T.

18



So suppose there is a T°—applicable default in D. Then there exists a trace
S € T such that all defaults in D° are T>-applicable. We will show by induction
that S; C T;. Indeed, if i = 0, then Sy = W = Tp. For the induction step, observe
that

Tit1 = Cn(T; U {c(d):d € D,p(d) € T;,d is T*—applicable}) D
Cn(S; U{c(d):d € D,p(d) € S;,d € D°})

Since S € tr(D,W) and D¥ is exactly the set of defaults of D which are S>-
applicable, the last term is equal to S;;1.

Now we have that S°° C T°. Moreover, since both S and T are extensions
of (D,W), it follows that S = T°°. But then a default is S®-applicable if and
only if it is T°—applicable, so that S; = T; for all 4, or S = T. We conclude that

TeT. O

Example 4.2 We will give a reasoning frame such that its associated belief frame
is B (different than the one we gave earlier), and construct an IDT that represents

it. The reasoning frame consists of the following traces:

T = (P (ps V), (s, 1))
T (<p>7 (p,S,‘ﬂ,L)...)
T° = ((p), (p,t = —r A=), (p,t, -7, —g)...)

T (<p>a (pa _'T>a (P, -, _‘q>a (pa -, g, _‘u>)

It can again easily be seen that this is a reasoning frame. We define W = Cn({p}).
We will take the g1 the same as in Ezxample 3.4. Then we have to define the for-
mulas ;7. We will not enumerate all of these explicitly, but just give an example.

Consider ¢, ra. This has to be a formula in (T*); \ (T*)o = (p,~7) \ (p), so we

19



could take 11 a4 = —r. We now give the sets of defaults:

: Vit
DTI — {p {uar}75 {U,’r‘}}
sVt sSAt
11t 7‘}
DT2 — p{ )
{ s\ —u }
A0 t— rA-q{—
Pt _ { p:{—s,u} ’ r A g { s,u}}
t— —rA—-q t
DT4 _ {p:{—!s,—!t} —|T‘:{—|S,—lt} ﬁq:{ﬂs,—'t}}
-r ’ —|q ’ U

The reader can check that, setting D = pT'upTupT UDT4, indeed tr(D,W) =

{T',T?,T3 T4}.

As was the case in the construction of an IDL-theory in the previous section, we
again have considerable freedom in choosing the formulae ¢gs 7. A second source of
freedom comes from the choice of the prerequisites in the above construction. Thus,
in general there are many different theories which all specify the same reasoning
frame.

From the construction in the proof it is clear that, analogous to the case of belief
frames, reasoning frames with a finite number of reasoning traces can be represented
by a (Reiter) default theory.

One could ask if finitary representability of the belief frame of a reasoning frame
implies that the reasoning frame itself has a finitary representation. A cardinality
argument shows that this is not the case. Specifically, let us consider the belief
frame B consisting of all complete theories over the set of atoms {p1,p2,...}. This
belief frame has a finitary representation (see (Marek et al., 1997), Corollary 5.5).
It is easy to see that there are more than continuum reasoning frames with belief
frame B. On the other hand, there is only continuum many finitary default theories.

Until now, we have looked at the specification of belief sets and reasoning frames
which represent the reasoning process of an agent from a given set of initial facts.
In the next section we will take a broader perspective and look at the different belief

sets and reasoning frames an agent may have when varying the set of initial facts.
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5 Varying the Initial Facts

In the preceding sections we have seen that infinitary default logic can be used
for the specification of belief frames and reasoning frames. These two notions are
a formalization (at two levels of abstraction) of the reasoning process of an agent
from a fized initial situation. This initial situation is described by (part of) the
intersection of theories in a belief frame, or the common first point in the traces
of a reasoning frame. Thus, a belief frame or reasoning frame gives no information
about the reasoning process of the same agent from different sets of initial facts.
In order to take into account these different initial situations, we consider belief set
operators and reasoning trace operators. (See (Engelfriet et al., 1995; Engelfriet

et al., 1996). See also (Makinson, 1994).)

Definition 5.1

1. A belief set operator is a function which assigns to each X C L a collection

of belief sets that include X.

2. A reasoning trace operator is a function which assigns to each X C L a

collection of reasoning traces that start at X.

We would like to specify these operators using (infinitary) default logic, and an
obvious way of doing this is using families of sets of defaults, indexed by sets of

formulae.
Definition 5.2

1. Let B be a belief set operator. The operator B is representable by an indexed

family of sets of defaults (Dx)xc . if for all X C L: B(X) = ext(Dx, X).

2. Let F be a reasoning trace operator. The operator F is representable by
an indexed family of sets of defaults (Dx )y, if for all X C L: F(X) =

t’l‘(Dx,X).

21



Given the results in the previous sections, the following is easy to see:

Proposition 5.3

1. A belief set operator B is representable by an indexed family of sets of (prerequisite-

free) defaults iff B(X) is a belief frame for all X C L.

2. A reasoning trace operator F is representable by an indexed family of sets of

defaults iff F(X) is a reasoning frame for all X C L.

In principle, this is a valid way of specifying belief set operators and reasoning
trace operators. However, it is intuitively not very likely that an agent should
use a (completely) different set of defaults in every situation. Instead, it seems
more plausible that the agent has one set of defaults which (s)he uses regardless of
the initial facts (meaning that Dx = Dy for all X,Y). This leads to a different
representability question: given a belief set operator B, does there exist a set of
(prerequisite-free) defaults D, such that for all X C £ we have B(X) = ext(D, X)
(and similarly for reasoning trace operators). It seems that this is a non-trivial

question; we will leave this for future research.

6 Conclusions

In (Marek et al., 1997) the usefulness of Reiter’s Default Logic for specifying mul-
tiple belief sets of an agent was investigated. It was established that every finite
non-including family of belief sets is representable by a default theory. However, ex-
amples of denumerably infinite non-including families were constructed that are not
representable by a default theory. In the current paper these results are extended
in two directions. Firstly, a new variant of default logic was introduced, Infinitary
Default Logic, that allows to represent every non-including family of belief sets,
independent of its cardinality.

Secondly, not only the representability of families of belief sets as an outcome
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of default reasoning processes was investigated, but also the representability of
default reasoning traces constructing these belief sets. Here a positive answer was
also obtained for infinitary default logic, whereas Reiter’s Default Logic fails for the
non-finite case.

Thus specification of default reasoning is made possible at two levels of abstrac-
tion. For specification at the level of families of belief sets that are the outcomes
of default reasoning processes (abstracting from the reasoning traces constructing
them), prerequisite-free infinitary default theories are adequate means. Using them
no commitment is made to any particular traces to construct the belief sets. For
specification at the level of reasoning traces general infinitary default theories are
adequate means. They specify both the families of belief sets that are the outcomes
and the traces constructing them.

It is interesting to note that from a representation viewpoint, the only role played
by the prerequisites lies in guiding the construction process. Of course, even when
specifying only belief sets, it may be the case that an IDL-theory with prerequisites
exists which is more concise than a prerequisite-free theory. However, this would
also give a specification at a lower level of abstraction since it not only specifies the
outcomes of the reasoning but also the way outcomes are generated. One can then
choose to commit to this particular specification of the traces, but one could also
consider the specification as meant only to specify the outcomes and give a different
specification for the traces. One way of changing the specification for the traces is
by introducing so-called lemma default rules are (see e.g. (Schaub, 1992)). This
causes conclusions to be added earlier in a trace.

A specification language for belief set operators and reasoning trace operators
based on temporal logic was introduced in (Engelfriet and Treur, 1996). An em-
bedding of default logic into this specification language was given there.

Further issues for research include representability of belief set operators and
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reasoning trace operators using default logic (as mentioned in Section 5) and the
general question of representability using finitary default logic (with infinite sets of

defaults).
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