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ABSTRACT  
To model the dynamics of cognitive processes, often the Dynamical Systems Theory (DST) is advocated. However, 
for higher cognitive processes such as reasoning and certain forms of natural language processing the techniques 
adopted within DST are not very adequate. This paper shows how an analysis of the dynamics of reasoning 
processes can be made using techniques different from those of DST. The approach makes use of temporal traces 
consisting of sequences of reasoning states over time to describe reasoning processes. It is shown for the example 
reasoning pattern “reasoning by assumption”, how relevant dynamic properties can be identified and expressed 
using a temporal trace language. Example traces have been acquired in two ways. First, empirical traces have been 
generated based on think-aloud protocols of a subject solving a number of cases of a reasoning puzzle. Second, a 
simulation model has been developed and executed for the same cases of the reasoning puzzle. For all these traces, 
the dynamic properties can and have been analysed automatically, using a software environment that has been 
developed. Thus the feasibility of the approach was shown. 
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1. Introduction 

Within Cognitive Science in recent years the 
dynamical perspective on cognitive phenomena has 
been emphasized and received much attention. In 
most literature focussing on the dynamics of 
cognition, the Dynamical Systems Theory (DST) is 
taken as a point of departure; e.g. (Kelso, 1995; Port 
and Gelder, 1995). This theory assumes that, in 
contrast to the use of symbolic representations, 
modelling dynamics of cognitive phenomena can be 
done more effectively by using representations based 
on real numbers and mathematical techniques from 
calculus; it offers mathematical simulation and 
analysis techniques from the area of difference and 
differential equations. The many convincing examples 
that have been used to illustrate the usefulness of this 
perspective often address lower level cognitive 
processes such as sensory or motor processing. Indeed 
one of the advantages of the Dynamical Systems 
Theory is that it is able to model the temporal aspects 
of events taking place on a continous time scale, such 
as, for example, recognition time, response time, and 
time involved in motor patterns and locomotion. 

 Also some examples of higher level cognitive 
processes have been addressed using DST; for 
example the dynamic models for decision making 
developed in, e.g., (Busemeyer and Townsend, 1993). 
Especially the continuous adaptive aspects of the 
decision making are covered nicely in this approach. 
Areas for which the quantitative approach based on 
DST is assumed to have less to offer are the dynamics 
of higher level processes that are considered to have 
mainly a qualitative character, such as certain 
capabilities of language processing and reasoning. 
This evaluation is based on three assumptions:  (1) if 
dynamics of cognitive processes is to be modelled, 
then DST is the appropriate approach, and (2) DST is 
based on the combination of two principles or 
commitments, the first one of which is a 
methodological or philosophical commitment, and the 
other one is a commitment to a certain package of 
techniques to be used: (a) modelling cognitive 
phenomena requires modelling their dynamics, and 
(b) modelling dynamics of cognitive phenomena  
requires mathematical techniques based on difference 
and differential equations, and (3) phenomena where 
qualitative aspects are considered dominant cannot be 
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adequately modelled using difference or differential 
equations. 
 In this paper the position is taken that, in contrast 
to assumption (1) above, due to its commitment to 
quantitative representations and techniques, DST is 
not always the most adequate possibility to model 
dynamics of cognitive phenomena. In the last two 
decades, within the areas of Computer Science and 
Artificial Intelligence alternative techniques have 
been developed to model the dynamics of phenomena 
using qualitative means. Examples are process 
algebra; dynamic and temporal logic; event, situation 
and fluent calculus; e.g., (Eck, et al. 2001; Holdobler 
and Tielscher, 1990; Kowalski and Sergot, 1986; 
McCarthy and Hayes, 1969). Just as difference or 
differential equations, these alternative techniques 
allow to express temporal relations, i.e., relations 
between a state of a process at one point in time, and 
states at other points in time. In contrast, the form in 
which these temporal relations are expressed can 
cover symbolic and non-quantitative aspects as well. 
To illustrate the usefulness of such an approach for 
higher level cognitive phenomena, the dynamics of a 
practical reasoning pattern is addressed: reasoning by 
assumption. For this reasoning pattern both analysis 
of human reasoning protocols and agent-based 
simulation of reasoning patterns have been performed.  
 The language used to express dynamic properties 
is formal but not based on calculus. It allows for 
precise specification of these dynamic properties, 
covering both qualitative and quantitative aspects of 
states and temporal relations. Moreover, software 
tools can and actually have been developed to (1) 
support specification of dynamic properties, and (2) 
automatically check specified dynamic properties 
against example traces to find out whether they hold. 
This provides a useful supporting software 
environment to evaluate empirical data on the 
dynamics of cognitive processes. In the paper it is 
shown how dynamic properties of think-aloud 
protocols of reasoning patterns can be checked 
automatically using this software environment. 
 In Section 2 the dynamic perspective on reasoning 
is discussed in some more detail, and focussed on the 
pattern ‘reasoning by assumption’. Section 3 
addresses some more details of the language used. 
Section 4 presents a number of the dynamic properties 
that have been identified for patterns of reasoning by 
assumption. Section 5 discusses empirical validation. 
Here it is shown how existing think-aloud protocols 
involving reasoning by assumption can be formalised 
to reasoning traces. For these reasoning traces a 
number of the dynamic properties have been 
(automatically) checked. In Section 6 a similar 
analysis of the reasoning traces generated by a 
simulation model is presented. In Section 7 the results 
are compared and discussed. 

2. A Model for the Dynamics of Reasoning  

In history, formalisation of the cognitive capability to 
perform reasoning has been addressed from different 
areas and angles: Philosophy, Logic, Cognitive 
Science, Artificial Intelligence. Within Philosophy 
and Logic much emphasis has been put on the results 
(conclusions) of a reasoning process, abstracting from 
the process by which such a result is found: when is a 
statement a valid conclusion, given a certain set of 
premises. Within Artificial Intelligence, much 
emphasis has been put on effective inference 
procedures to automate reasoning processes. The 
dynamics of such inference procedures usually is 
described in a procedural, algorithmic manner; 
dynamics are not described and analysed in a 
conceptual, declarative manner. Within Cognitive 
Science, reasoning is often addressed from within one 
of the two dominant streams: the syntactic approach 
(based on inference rules applied to syntactic 
expressions, as common in the logic-based approach, 
e.g., (Braine and O’Brien, 1998; Rips, 1994)), or the 
semantic approach (based on construction of mental 
models); e.g., (Johnson-Laird, 1983; Johnson-Laird 
and Byrne, 1991; Yang and Johnson-Laird, 2000; 
Yang and Bringsjord, 2001; Schroyens, Schaeken, 
and d’Ydewalle, 2001). Especially this second 
approach provides a wider scope than the scope 
usually taken within logic. Formalisation and formal 
analysis of the dynamics within these approaches has 
not been developed in depth yet. 
 To understand a specific reasoning process, 
especially for practical reasoning in humans, the 
dynamics are important. In particular, for reasoning 
processes in natural contexts, which are usually not 
restricted to simple deduction, also dynamic aspects 
play an important role and have to be taken into 
account, such as dynamically posing goals for the 
reasoning, or making (additional) assumptions during 
the reasoning, thus using a dynamic set of premises 
within the reasoning process. Decisions made during 
the process, for example, on which reasoning goal to 
pursue, or which assumptions to make, are an inherent 
part of such a reasoning process. Such reasoning 
processes or their outcomes cannot be understood, 
justified or explained to others without taking into 
account these dynamic aspects. 
 The approach to the semantical formalisation of 
the dynamics of reasoning presented in Section 2 is 
based on the concepts reasoning state, transitions 
between reasoning states, and reasoning traces: traces 
of reasoning states. To specify dynamic properties of 
a reasoning process, in Section 3 a language is 
introduced in which it is possible to express properties 
of reasoning traces. 
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2.1 Reasoning state 

A reasoning state formalises an intermediate state of a 
reasoning process. It may include information on 
different aspects of the reasoning process, such as 
content information or control information. Within a 
syntactical inference approach, a reasoning state 
includes the set of statements derived (or truth values 
of these statements) at a certain point in time. Within 
a semantical approach based on mental models, a 
reasoning state may includes a particular mental 
model constructed at some point in time, or a set of 
mental models representing the considered 
possibilities. However, also additional (meta-
)information can be included in a reasoning state, 
such as control information indicating what is the 
focus or goal of the reasoning, or information on 
which statements have been assumed during the 
reasoning. Moreover, to be able to cover interaction 
between reasoning and the external world, also part of 
the state of the external world is included in a 
reasoning state. This can be used, for example, to 
model the presentation of a reasoning puzzle to a 
subject, or to model the subject’ s observations in the 
world. The set of all reasoning states is denoted by 
RS. 

2.2 Transition of reasoning states 

A transition of reasoning states, i.e., an element  < S, 
S’ > of  RS x RS, defines a step from one reasoning 
state to another reasoning state; this formalises one 
reasoning step. A reasoning transition relation is a set 
of these transitions, or a relation on RS x RS. Such a 
relation can be used to specify the allowed transitions 
within a specific type of reasoning. Within a 
syntactical approach, inference rules such as modus 
ponens typically define transitions between reasoning 
states. For example, if two statements  
  p , p → q  
are included in a reasoning state, then by a modus 
ponens transition, a reasoning state can be created 
where, in addition, also  
  q  
is included. Within a semantical approach a 
construction step of a mental model, after a previous 
mental model, defines a transition between reasoning 
states. For example, if knowledge ‘if p then q’  is 
available, represented in a mental state  
  [p], q  
and in addition not-q is presented, then a transition 
may occur to a reasoning state consisting of a set of 
mental models 
  p, q ; ~p, ~q; ~p, q 
 which represents the set of posibilities considered; a 
next transion may selection of the possibility that fits 
not-q, leading to the reasoning state 
  ~p, ~q 

2.3 Reasoning trace 

Reasoning dynamics or reasoning behaviour is the 
result of successive transitions from one reasoning 
state to another. By applying transitions in succession, 
a time-indexed sequence of reasoning states (γt)t∈T is 
constructed, where T is the time frame used (e.g., the 
natural numbers). A reasoning trace, created in this 
way,  is a sequence of reasoning states over time, i.e., 
an element of RST. Traces are sequences of reasoning 
states such that each pair of successive reasoning 
states in this trace forms an allowed transition, as has 
been defined under transitions. A trace formalises one 
specific line of reasoning. A set of reasoning traces is 
a declarative description of the semantics of the 
behaviour of a reasoning process; each reasoning 
trace can be seen as one of the alternatives for the 
behaviour.  

2.4 Reasoning by assumption 

The specific reasoning pattern used in this paper to 
illustrate the approach is ‘reasoning by assumption’ . 
This type of reasoning often occurs in practical 
reasoning; for example, in 
 
• Diagnostic reasoning based on causal knowledge  
• Everyday reasoning 
• Reasoning based on natural deduction 

An example of diagnostic reasoning by assumption in 
the context of a car that won’ t start is:  
 
‘Suppose the battery is empty, then the lights won’t 
work. But if I try, the lights turn out to work. 
Therefore the battery is not empty.’   
 
Note that on the basis of the assumption that the 
battery is empty, and causal knowledge that without a 
functioning battery the lights will not burn, a 
prediction is made on an observable world fact, 
namely that the lights will not burn. After this an 
observation is initiated which has a result (lights do 
burn) that contradicts the prediction. Based on this 
outcome the assumption is evaluated and, as a result, 
rejected. 
 An example of an everyday process of reasoning 
by assumption is: 
 
‘Suppose I do not take my umbrella with me. Then, if 
it starts raining at 5 pm, I will get wet, which I don’t 
want. Therefore I better take my umbrella with me’. 
 
Again, based on the assumption some prediction is 
made, this time using probabilistic knowledge that it 
may rain at 5 pm.  The prediction is in conflict with 
the desire not to get wet. The assumption is evaluated 
and rejected. 
 Examples of reasoning by assumption in natural 
deduction are: 
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Reductio ad absurdum or method of indirect proof  
After assuming A, I have derived a contradiction. 
Therefore I can derive not A. 
 
Implication introduction 
After assuming A, I have derived B. Therefore I can 
derive that A implies B. 
 
Reasoning by cases 
After assuming A, I have derived C. Also after 
assuming B, I derived C. Therefore I can derive C 
from A or B. 

Notice that as a common pattern in all of the examples 
presented, it seems that first a reasoning state is 
entered in which some fact is assumed. Next (possibly 
after some intermediate steps) a reasoning state is 
entered where consequences of this assumption have 
been predicted. Moreover, in some cases observations 
can be performed obtaining additional information 
about the world to be included in a next reasoning 
state. Finally, a reasoning state is entered in which an 
evaluation has taken place, for example, resulting in 
rejection of the assumption; possibly in the next state 
the assumption actually is retracted, and further 
conclusions are added. 
 This first analysis already shows some 
peculiarities of this type of reasoning. Within a 
reasoning state not (only) content information is 
included, but within the reasoning a major role is 
played by different types of (meta-)information on the 
status of other information; this meta-information 
goes beyond direct content information. For example, 
the following types of meta-information can be 
included in a reasoning state: 
 
• which assumption has been made 
• which predictions have been made based on an 

assumption 
• which information is observation information 
• which evaluation has been made 
 
The examples also show that the reasoning transitions 
that take place are of different types; for example: 
 
• from a reasoning state without an assumption to a 

reasoning state with an assumption 
• from a reasoning state with an assumption to a 

reasoning state with a prediction 
• from a reasoning state with a prediction to a 

reasoning state with an observation result 
• from a reasoning state with an assumption, a 

prediction, and an observation result (or other 
comparison information) to a reasoning state with 
an evaluation of the assumption, e.g., that it is 
rejected 

 
Reasoning traces in the examples suggest a number of 
such reasoning states and transitions. 

 To explore the usefulness of the presented model 
for reasoning dynamics, in Section 5 a simple version 
of a reasoning puzzle is used: the wise persons puzzle. 
This puzzle as considered here requires two wise 
persons (A and B) and two hats. Each wise person is 
wearing a hat, of which the colour is unknown. Both 
wise persons know that: 
• Hats can be white or black 
• There is at least one white hat 
• They can observe the colour of each other’ s hat 
• If, after reasoning, a person knows the colour of 

its own hat (s)he will tell the other that colour. 
• If, after reasoning, a person does not know the 

colour of its own hat (s)he will tell so to the other. 
• Communications are limited to comments 

regarding the colour of the person’ s own hat 
• They both reason fully logically 

If, for example, both persons have a white hat and 
wise person A is asked whether he knows the colour 
of his hat, then A must answer that he does not know. 
On the basis of this knowledge, wise person B can 
then reason that his/her own hat is white. A solution 
of this reasoning puzzle is obtained if wise person B 
dynamically introduces and rejects assumptions about 
the colour of his/her own hat. For example, in the case 
that B sees that A has a white hat, and B hears that A 
says (s)he does not know the colour, B can have the 
following reasoning trace: 
 
0.   observation results: A’ s hat is white; A says (s)he 

does not know the colour 
1.   assumption that B’ s own hat is black 
2.   prediction that A knows (s)he has white 
3. evaluation that the prediction contradicts the 

observation result; the assumption is to be rejected 
4.  no assumption anymore that B’ s own hat is black 
5.   assumption that B’ s own hat is white 

3. A Temporal Trace Language to Express 
Dynamic Properties 

To specify properties on the dynamics of a reasoning 
process, the temporal trace language TTL used in 
(Herlea et al., 1999; Jonker and Treur, 1998) is 
adopted. This is a language in the family of languages 
to which also situation calculus (McCarthy and 
Hayes, 1969), event calculus (Kowalski and Sergot, 
1986), and fluent calculus (Hölldobler and Tielscher, 
1990) belong. 
 An ontology is a specification (in order-sorted 
logic) of a vocabulary, i.e., a signature. For the 
example reasoning pattern ‘reasoning by assumption’  
the state ontology includes binary relations such as 
assumed, predicted, rejected, observation_result, 
holds_in_world on sorts INFO_ELEMENT x SIGN. The sort 
INFO_ELEMENT includes specific domain statements 
such as hat_colour(white, self), conclusion(my_hat_is_white, 
other), conclusion(don’t_know_my_colour, other). The sort 
SIGN consists of the elements pos and neg. Using this 
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state ontology, for example the following state 
properties can be expressed:  
 

holds_in_world(hat_colour(white, self), pos) 
assumed(hat_colour(white, self), neg)  

 prediction_for(conclusion(my_hat_is_white, other), pos,  
   hat_colour(white, self), pos)  
 rejected(hat_colour(white, self), pos)    
  
A (reasoning) state for ontology Ont is characterised 
by the properties expressed in Ont which are true. This 
is formalised by an assignment of truth values {true, 
false} to the set of ground atoms At(Ont). A part of the 
description of an example reasoning state S is the 
following: 
 
holds_in_world(hat_colour(white, self), pos) : true 
assumed(hat_colour(white, self), neg)   : true 
prediction_for(conclusion(my_hat_is_white, other), pos,  
   hat_colour(white, self), pos)  : true 
observation_result(conclusion(don’t_know_my_colour, other),  
      pos)  : true 
rejected(hat_colour(white, self), neg)  : false 
 
An alternative, but equivalent notation for such a 
reasoning state leaves out all value assignments true, 
and indicates the value assignments false by a ~ 
symbol in front of the property (notation): 
 
holds_in_world(hat_colour(white, self), pos) 
assumed(hat_colour(white, self), neg)   
prediction_for(conclusion(my_hat_is_white, other), pos,  
   hat_colour(white, self), pos)  
observation_result(conclusion(don’t_know_my_colour, other),  
      pos)  
~ rejected(hat_colour(white, self), neg)   

 
The set of all possible states for ontology Ont is 
denoted by STATES(Ont). By RS the sort of all 
reasoning states of the agent is denoted. As indicated 
earlier, world states are considered substates of 
reasoning states, and iws is a unary predicate on RS 
that defines that the world state within a reasoning 
state belongs to the set of intended world states. In the 
wiseperson example this specification iws(S) is defined 
by 
 
iws(S) : 
not [ S |== holds_in_world(hat_colour(white, self), neg) ∧ 
S |== holds_in_world(hat_colour(white, other), neg) ] 
 
which expresses that the situation with two black hats 
is to be excluded. So, for example, the world state  
 
 holds_in_world(hast_colour(white, self), pos)  
 holds_in_world(hast_colour(white, other), neg)  
 
is one of the intended world states, whereas  
 
 holds_in_world(hat_colour(white, self), neg) 
 holds_in_world(hat_colour(white, other), neg)  
 
indicates a not intended world state (the forbidden 
black-black situation). 

 The standard satisfaction relation |== between 
states and state properties is used: S |== p means that 
state property p holds in state S. For example, in the 
reasoning state S above it holds  
 

S |== assumed(hat_colour(white, self), neg). 

 
To describe dynamics, explicit reference is made to 
time in a formal manner. A fixed time frame T is 
assumed which is linearly ordered. Depending on the 
application, it may be dense (e.g., the real numbers), 
or discrete (e.g., the set of integers or natural numbers 
or a finite initial segment of the natural numbers), or 
any other form, as long as it has a linear ordering.  A  
trace  γ  over an ontology  Ont  and time frame T  (e.g., 
the natural numbers) is a mapping  
 
  γ : T → STATES(Ont),  
 
i.e., a time-indexed sequence of reasoning states  
 
  γt (t ∈ T)  
 
in  STATES(Ont). The set of all traces over ontology 

Ont is denoted by TRACES(Ont), i.e., TRACES(Ont) = 

STATES(Ont)
T. The set TRACES(Ont) is also denoted by 

Γ. Note that to be able to cover observation in the 
external world as well, the (current) world state is part 
of each reasoning state in each trace.  
 States of a trace can be related to state properties 
via the formally defined satisfaction relation |== 
between states and formulae. Comparable to the 
approach in situation calculus, the sorted predicate 
logic temporal trace language TTL  is built on atoms 
referring to traces, time and state properties, such as 
state(γ , t) |== p. This expression denotes that state 
property p is true in the state of trace γ  at time point t. 
Here |== is a predicate symbol in the language (in 
infix notation), comparable to the Holds-predicate in 
situation calculus. Temporal formulae are built using 
the usual logical connectives and quantification (for 
example, over traces, time and state properties). The 
set TFOR(Ont) is the set of all temporal formulae that 
only make use of ontology Ont. We allow additional 
language elements as abbreviations of formulae of the 
temporal trace language. An example of such a 
dynamic property is 
 
∀ γ : Γ ∀ t: T ∀ A : INFO_ELEMENT  ∀ S: SIGN 

 [ state(γ, t) |== rejected(A, S) 

 ⇒ [ ∀ t’: T ≥  t: T  

 state(γ, t’) |== rejected(A, S)  ] 
 
This persistence property expresses that in any 
reasoning trace γ at any point in time t, if an 
assumption A has been rejected, then A remains 
rejected within γ for all t’ ≥t. For more examples of 
dynamic properties, see Section 4. 
 The fact that this language is formal allows for 
precise specification of properties. Moreover, editors 
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can  and actually have been developed to support 
specification of properties. Specified properties can be 
checked automatically againast example traces to find 
out whether they hold.  
 For the domain of the wise persons puzzle some 
world facts can be assumed; others cannot be 
assumed. Furthermore, there are some relations 
between domain predicates, like the knowledge that if 
one agent wears a black hat then the other agent must 
be wearing a white hat. In order to validate the 
behaviour of some reasoning agent (human or 
otherwise) all this information needs to be available. 
Therefore, two additional predicates are introduced: 
pa, and is_relevant_for. The unary predicate pa defines 
the set of possible assumptions that can be made for 
the specific application. The predicate is_relevant_for 
can be used, for example, to express that 
hat_colour(white, other) with truth value true is relevant 
for hat_colour(white, self) with truth value false. To 
describe the dynamics of the reasoning process this 
information is used to express that a certain 
(observable) prediction is relevant for a certain 
assumption. In effect, the predicate defines the set of 
all relevant predictions that regard the observable part 
of the world state. In the case of the wise person 
puzzle, the relational facts that together form these 
sets are defined as follows: 
 
pa(hat_colour(white, self), pos) 
pa(hat_colour(white, self), neg) 
is_relevant_for(conclusion(dont_know_my_colour, other),  
             pos, hat_colour(white, self), pos) 
is_relevant_for(conclusion(my_hat_is_white, other), pos,  
      hat_colour(white, self), neg) 
is_relevant_for(hat_colour(white, other), pos,  
      hat_colour(white, self), neg) 

4. Characterising Dynamic Properties 

In this section a number of the most relevant of the 
dynamic properties that have been identified as 
relevant for patterns of reasoning by assumption are 
presented in both an informal and formal way. Notice 
that specifying these dynamic properties does not 
automaticall includes at forehand a claim that they 
hold or should hold for all reasoning traces. The only 
claim made is that they are relevant or interesting to 
be considered for a specific reasoning trace in the 
sense whether or not they are true. Moreover, the 
properties, although they have been formulated 
universally quantified for all traces, are to be 
considered for instances of traces separately. 

4.1 Global dynamic properties 

Global properties address the overall reasoning 
behaviour of the agent, not the step by step reasoning 
process of the agent.  
 
 
 

GP1 Termination of the reasoning 
This property ensures that the reasoning will not go 
indefinitely.  
Formally: 
 
∀ γ : Γ ∃ t: T ∀ t’: T  t’ ≥  t  ⇒ state(γ , t) = state(γ , t’) 

 
In the current formulation, property GP1 demands that 
the whole agent shows no more reasoning activity. It 
is possible formulate GP1 in a more precise manner 
by limiting the inactivity to those parts of the agent 
involved in the assumption reasoning process.  
Based on this property the following abbreviation is 
defined for use in other properties: 
 
termination(γ, t) ≡   ∀ t’: T t’ ≥  t  ⇒ state(γ, t) = state(γ, t’) 

 
GP2  Correctness of rejection 
Everything that has been rejected does not hold in the 
world situation. 
 
∀ γ : Γ ∀ t: T state(γ, t) |== rejected(A: INFO_ELEMENT, S)  

  ⇒ state(γ, t) |== not holds_in_world(A, S) 
 

GP3  Completeness of rejection 
After termination, all assumptions that have not been 
rejected  hold in the world situation 
 
∀ γ : Γ ∀ t: T ∀ A: INFO_ELEMENT ∀ S : SIGN 

 termination(γ, t)  

 ∧ state(γ, t) |== assumed(A: INFO_ELEMENT, S)  

 ∧  state(γ, t) |=/= rejected(A: INFO_ELEMENT, S)  

  ⇒  state(γ, t) |== holds_in_world(A, S) 

 
GP4  Garanteed outcome 
This property expresses that a terminated reasoning 
process with a world state in the set of intended world 
states has as an outcome at least  one evaluated 
assumption that was not rejected. 
 
∀ γ : Γ ∀ t : T ∀ A : INFO_ELEMENT  ∀ S : SIGN 

 [ termination(γ, t)   ∧   iws(state(γ, t)) ] 

 ⇒ [ ∃ A: INFO_ELEMENT, ∃ S: SIGN  

   state(γ, t) |== assumed(A, S) 

   ∧    state(γ, t) |=/= rejected(A, S) ] 
 
GP5  Persistence 
Two types of persistence properties can be defined: 
unconditional or conditional. The first, unconditional 
type expresses that once a state property holds in a 
reasoning state, this property will hold for all future 
reasoning state. In this unconditional form relevant 
persistence properties can be expressed for state 
properties based on  
 holds_in_world   (static world assumption)  
 observation_result   (persistent observations)  
 rejected      (once rejected remains rejected) 
Formally, these unconditional persistence properties 
are expressed as follows. 
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Unconditional persistence properties 
∀ γ : Γ ∀ t: T ∀ A : INFO_ELEMENT  ∀ S: SIGN 

 [ state(γ, t) |== holds_in_world(A, S)   

 ⇒ [ ∀ t’: T ≥  t: T  

  state(γ, t’) |== holds_in_world(A, S)  ] 

∀ γ : Γ ∀ t: T ∀ A : INFO_ELEMENT  ∀ S: SIGN 

 [ state(γ, t) |== rejected(A, S) 

 ⇒ [ ∀ t’: T ≥  t: T  

 state(γ, t’) |== rejected(A, S)  ] 
∀ γ : Γ ∀ t: T ∀ A: INFO_ELEMENT  ∀ S: SIGN 

 state(γ, t) |== observation_result(A, S)  

 ⇒ [ ∀ t’: T ≥  t: T  

  state(γ, t’) |== observation_result(A, S)] 

 
Conditional persistence properties can be specified for 
assumptions (persistent as long as they are not 
rejected), and possibly for predictions (persistent as 
long as the related assumption is not rejected). 
Formally, these properties are expressed as follows: 
 
Conditional persistence properties 
∀ γ : Γ ∀ t, t’, t” : T ∀ A: INFO_ELEMENT  ∀ S: SIGN 

 t ≤ t’’ ∧  state(γ, t) |== assumed(A, S)  

 ∧ ∀t’ [ t ≤ t’ ≤ t”  ⇒  state(γ, t) |=/= rejected(A, S)] 

 ⇒ state(γ, t’) |== observation_result(A, S) 

∀ γ : Γ ∀ t, t’, t” : T  

∀ A1, A2: INFO_ELEMENT  ∀ S1, S2: SIGN 

 t ≤ t’’ ∧  state(γ, t) |== prediction_for(A1, S1, A2, S2)  

 ∧ ∀t’ [ t ≤ t’ ≤ t”  ⇒  state(γ, t) |=/= rejected(A, S)] 

 ⇒ state(γ, t’) |== prediction_for(A1, S1, A2, S2)  

 
GP6  Nonintended situations 
If a world situation is nonintended (e.g., the situation 
with the two black hats), then property GP4 will not 
give any guarantee. However, it may be possible that 
the reasoning trace fulfills the property that in such as 
case all assumptions have been considered and 
rejected, ie., 
 If  the reasoning has terminated 
and the world situation is not an intended world 

situation, 
then  all possible assumptions have rejected. 
Formally: 
 
∀ γ : Γ ∀ t: T  

 termination(γ, t)   ∧ not  iws(state(γ , t)) 

 ⇒ [ ∀ A: INFO_ELEMENT, ∀ S: SIGN  

         pa(A, S)   ⇒   state(γ, t) |== rejected(A, S) ] 

4.2 Local dynamic properties 

Global properties describe the overall reasoning 
behaviour of the agent, in this case applied to solve 
the wise persons puzzle, but they are not detailed 
enough to track the dynamics of the reasoning 
process, say step by step. Local properties each 
describe a part of the reasoning process.  
 
 
 

LP1  Observation result correctness 
The first property expresses that observations that are 
obtained from the world, indeed hold in the world. 
 
∀ γ : Γ ∀ t: T ∀ A: INFO_ELEMENT ∀ S: SIGN 

 state(γ, t) |== observation_result(A, S) 

 ⇒   state(γ, t) |== holds_in_world(A, S) 

 
LP2   Assumption effectiveness 
This property expresses that the reasoning process 
will go on to generate new assumptions as long as not 
all of them have been rejected. This guarantees 
progress in the reasoning process; if no assumption 
has been found that is not rejected, keep trying new 
assumptions for as long as possible. 
If  the world situation is an intended world situation, 
then  as long as there are assumptions that have not 

been rejected  
  and as long as all assumptions that have been 

made have been rejected,  
 the agent will keep generating new assumptions. 
Formally: 
 
∀ γ : Γ ∀ t: T  

 iws(state(γ, t)) 

 ⇒ [  [ ∃ A: INFO_ELEMENT, ∃ S: SIGN  

  pa(A, S)  ∧  state(γ, t) |=/= rejected(A, S) ] 

  ∧  [ ∀ A: INFO_ELEMENT ∀ S: SIGN ∀ t1: T 

  [ t1 ≤  t  ∧  state(γ, t1) |== assumed(A, S) ] 

  ⇒  [ ∃ t2: T  t1 ≤  t2 ≤  t   

     ∧  state(γ, t2) |== rejected(A, S) ] ] 

  ⇒ [ ∃ t’: T ≥  t: T ∃ A: INFO_ELEMENT ∃ S: SIGN 

   state(γ, t’) |== assumed(A, S) 

   ∧  state(γ, t’) |=/= rejected(A, S) ] ] 

 
LP5  Prediction effectiveness 
For each assumption the agent makes all relevant 
predictions about the observable part of the world 
state. 
 
∀ γ : Γ ∀ t: T ∀ A: INFO_ELEMENT ∀ S1: SIGN 

 state(γ, t) |== assumed(A, S1) 

 ⇒ ∀ B: INFO_ELEMENT  

  [ is_relevant_for(B, S2, A, S1) 
  ⇒ ∃ t’: T ≥  t : T ∃ S2: SIGN  

   state(γ, t’) |== prediction_for(B, S2, A, S1)  ] 

 
Property LP5 represents the agents knowledgeability 
to predict the consequences of its assumptions. 
 
LP6  Observation effectiveness 
For each prediction (that regards the observable part 
of the world state), the agent makes the appropriate 
observation. 
 
∀ γ : Γ ∀ t: T ∀ A, B: INFO_ELEMENT ∀ S1, S2 : SIGN 

 [ state(γ, t) |== prediction_for(A, S1, B, S2) 

 ⇒ [ ∃ t’: T ∃ S3: SIGN 

   state(γ, t’) |== observation_result(A, S3)  ] 

 



 8 

Property LP6 ensures that the agent gathers enough 
information to evaluate its assumptions. It is assumed 
that only observable predictions are made. If this 
assumption does not hold, additional conditions with 
assumed and  is_relevant_for are needed in LP6.  
 
LP7   Evaluation effectiveness 
Each assumption for which there is a prediction that 
does not match the corresponding observation result is 
rejected by the agent. 
 
∀ γ : Γ ∀ t: T ∀ A, B : INFO_ELEMENT  ∀ S1, S2, S3: SIGN 

 [ state(γ, t) |== assumed(A, S1) 

  ∧ state(γ, t) |== prediction_for(B, S2, A, S1) ] 

  ∧ state(γ, t) |== observation_result(B, S3)  

  ∧ S2  ≠ S3 ] 

 ⇒ [ ∃ t’: T ≥  t: T  

   state(γ, t’) |== rejected(A, S1)  ] 

 
Properties LP5, LP6, and LP7 together ensure that the 
agent puts enough effort into the reasoning process; it 
has the knowledge (in the form of predictions) and 
and it gathers enough information to evaluate its 
assumptions. 
 
LP8  Rejection grounding 
Each assumption that is rejected has been considered; 
no rejections take place without an underlying 
assumption. 
 
∀ γ : Γ ∀ t: T ∀ A: INFO_ELEMENT ∀ S: SIGN 

 state(γ, t) |== rejected(A, S) 

 ⇒ [ ∃ t’: T <  t: T   state(γ, t’) |== assumed(A, S)  ] 

 
LP9  No assumption repetition  
Only assumptions are made that have not been made 
earlier. 
 
∀ γ : Γ ∀ t1, t2, t3: T ∀ A: INFO_ELEMENT ∀ S: SIGN 

  state(γ , t1) |== assumed(A, S)  ∧ 

  state(γ , t2) |=/= assumed(A, S)  ∧  t1 ≤ t2 ≤ t3    

    ⇒  state(γ , t3) |=/= assumed(A, S)   

 
LP10  Rejection effectiveness 
If an assumption has been made and it does not hold 
in the world state then that assumption will be 
rejected. 
 
∀ γ : Γ ∀ t: T ∀ A: INFO_ELEMENT  

 [ state(γ, t) |== assumed(A, S) 

 ∧ state(γ, t) |== not holds_in_world(A, S) 

 ⇒ [ ∃ t’: T >  t: T  

  state(γ, t’) |== rejected(A: INFO_ELEMENT, S)  ] 

Note that the assumptions themselves usually are not 
observable in the world. 
 
 
 
 
 

LP11  Rejection correctness 
If an assumption has been made and it does hold in 
the world state then that assumption will not be 
rejected. 
 
∀ γ : Γ ∀ t: T ∀ A: INFO_ELEMENT  

 [ state(γ, t) |== assumed(A, S) 

 ∧ state(γ, t) |== holds_in_world(A, S) 

⇒ [∀ t’: T ≥  t: T  

 state(γ, t’) |=/= rejected(A: INFO_ELEMENT, S)  ] 
 

LP12 Assumption uniqueness 
At all times, the agent only makes one assumption at a 
time. 
 
∀ γ : Γ ∀ t: T ∀ A, B: INFO_ELEMENT ∀ S1, S2: SIGN 

 [ state(γ, t) |== assumed(A, S1) 

 ∧ state(γ, t) |== assumed(B, S2) ] 

  ⇒ A = B  ∧  S1 = S2 

5. Human Reasoning Traces for Reasoning 
by Assumption 

It seems plausible, but it is not clear at forehand 
whether the dynamic properties identified above are 
satisfied by traces of reasoning patterns exhibited by 
human reasoners. To verify the psychological validity 
of our dynamics approach and the dynamic properties 
identified, protocols have been analysed of a subject 
(a Ph.D. student) that was asked to solve the wise 
persons puzzle (see Section 2) and to think aloud 
while doing so. The human reasoning protocols for 
this analysis of empirical work were taken from 
(Langevelde and Treur, 1992). The think-aloud 
protocol acquired from this experiment has been 
coded in terms of our language and analysed to see to 
what extent the subject’s reasoning pattern satisfies 
the specified dynamic properties. The subject was 
given the following description: 
 
This puzzle is about two wise men, A and B, each of 
which is wearing a hat. Each hat is either black or 
white but at least one of the hats is white. Each wise 
man can only observe the colour of the other wise 
man’s hat. Both wise men are able to reason logically 
and they know this from each other. 
 
The subject was asked to solve four variants of the 
puzzle. For each variant he was given the colour of 
A’s hat and whether A knows this colour. The cases of 
world situations were presented as indicated in Table 
1, in which the left column indicates observability. 
For each variant of the puzzle the subject was asked to 
reason as if he was B and to determine the colour of 
B’s hat given the colour of A’s hat and A’s knowledge 
about his own hat. The subject was given instructions 
to think aloud and the protocol was recorded on a 
recording device. 
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 BW WB 

Obs. not hat_colour(white, other); 

conclusion(don’t_know_my_colour, other); 

hat_colour(white, other); 

conclusion(my_hat_is_white, other); 

Not  obs. hat_colour(white, self); not hat_colour(white, self); 

 

 

 WW BB 

Obs. hat_colour(white, other); 

not conclusion(my_hat_is_white,  

conclusion(dont_know_my_colour, other); 

not hat_colour(white, other); 

not conclusion(dont_know_ my_colour, other); 

conclusion(my_hat_is_white, other); 

Not  obs. hat_colour(white, self); not hat_colour(white, self); 

 
Table 1 The four cases for the reasoning puzzle 

 
The transcripts are presented in the traces in the 
numbered lines. For the analysis of the protocols each 
fragment is encoded in terms of our language. This 
results in the encodings of the protocol fragments as is 
presented in the traces below in the special font.  
 The traces are labelled “HTxy” where HT denotes 
Human Trace and xy denotes the hat colours of the 
other and the agent (the human in this case) itself. The 
numbers in the right column refer to lines in the 
protocol. In the traces A is presented by "other" and B 
is "self". A statement of the form observation_result(X, 
pos) expresses that it has been observed that X holds. 
Similarly, observation_result(X, neg) expresses that it has 
been observed that X does not hold. Only true 
statements are presented in the traces. In each table in 
the top cell of the right column, the world 
observations are shown. For the obervation results no 
lines in the protocol were available, the human 
reasoning started after that.  
 

HTbw: Trace of protocol fragment BW 

nr Atom / Protocol with protocol lines 

1 observation_result(hat_colour(white, other), neg)  
/ A is wearing a black hat. 

observation_result(conclusion(dont_know_my_colour, other), pos)  
/ A does not know that he is wearing a black hat. 

2 assumed(hat_colour(white, self), pos) 
/ 19.  If A is wearing a black hat 
  20.  and B sees this   
  21.  then B knows that his hat has to be white 
  22.  because there must be at least one white  
  23.  and then that is the answer 

 
In HTbw the human directly makes the right 
assumption and then checks it against the puzzle 
information and the claims of the other agent. No 
rejections are needed, so the assumption can be kept. 
 
 
 
 
 
 
 
 

HTww: Trace of protocol fragment WW 
 
nr Atom / Protocol with protocol lines 

1 observation_result(hat_colour(white, other), pos)  
/ A is wearing a white hat. 

observation_result(conclusion(dont_know_my_colour, other), pos)  
/ A does not know that he is wearing a white hat. 

2 assumed(hat_colour(white, self), neg)  
/ 1.  A sees either a white hat or a black hat of B. 
  2.  If he sees a black hat of B 

3 prediction_for(conclusion(my_hat_is_white, other), pos,  
                 hat_colour(white, self), neg) 
/  3.  then he knows that he wears a white one 
  4.  and then he also knows what colour he wears 
  5.  that is the white one, 

4 rejected(hat_colour(white, self), neg)  
/ 6.  so in that case he doesn’t answer "I don’t know" 

5 assumed(hat_colour(white, self), pos)  
/ 7.  so A must see a white hat 

6 prediction_for(conclusion(dont_know_my_colour, other), pos,  
                 hat_colour(white, self), pos)  
/ 8.  then he doesn’t know  
  9.  since there can be two white hats involved  
10.  it can be also the case that A wears a black hat  
11.  and B a white hat 
12.  so A doesn’t know what hat he is wearing 

7 assumed(hat_colour(white, self), pos) 

    / 13.  and that means that A, as I mentioned before,  
         must have seen a white hat, 
 14.  so B can conclude, after A’s answer that he is  
         wearing a white hat. 

 
The human in HTww first makes the wrong 
assumption. When he realises that the assumption 
cannot hold, he makes a new assumption. The 
prediction that he makes in row 6 enables him to 
evaluate his assumption in row 7. 
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HTwb: Trace of protocol fragment WB 

nr Atom 

1 observation_result(hat_colour(white, other), pos) 
/ A is wearing a white hat. 

observation_result(conclusion(my_hat_is_white, other), pos) 
/ A knows that he is wearing a white hat. 

2 assumed(hat_colour(white, self), pos)  
/ 2.  If A knows the colour of the hat he is wearing 
  3.  then he must have seen a black one, 
  4.  because if B wears a white one 

3 prediction_for(conclusion(dont_know_my_colour, other), pos,  
                hat_colour(white, self), pos) 
/ 5.  then there can be another white one involved 
  6.  or there can be a black one involved 

4 rejected(hat_colour(white, self), pos) 
/ 7.  so you can exclude this possibility 

5 assumed(hat_colour(white, self), neg) 
/ 8.  we may assume that B is wearing a black hat 

6 prediction_for(conclusion(my_hat_is_white, other), pos,  
                 hat_colour(white, self), neg) 
/ 9.  and that A concludes from this "I am wearing a 
white hat". 

 
In HTwb the human needs to revise his assumptions 
again, and carefully checks his assumptions. 
 

HTbb: Trace of protocol fragment BB 

nr Atom 

1 observation_result(hat_colour(white, other), neg) 
/ A is wearing a black hat. 

observation_result(conclusion(my_hat_is_black, other), pos) 
/ A knows that he is wearing a black hat. 
  If A, A says, "I know the colour of my hat 
  4.  and it is black " 

2 assumed(hat_colour(white, self), neg)  
/ 5.  if A sees a black hat 

3 prediction_for(conclusion(don’t_know_my_colour, other), pos,  
                 hat_colour(white, self), neg) 
/ 6.  then he doesn’t know which hat he is wearing 

4 prediction_for(conclusion(my_hat_is_white, other), pos,  
                 hat_colour(white, self), neg) 
/ 7.  yes, he does know 
  8.  then he is wearing the white one 

5 assumed(hat_colour(white, self), pos)  
/ 9.  if B is wearing a white hat 

6 prediction_for(conclusion(dont_know_my_colour, other), pos, 
                 hat_colour(white, self), pos) 
/10.  then A can wear either a white hat or a black hat 

7 rejected(hat_colour(white, self), pos) 
/ 11. so, in my opinion, A can’t claim he is wearing a 
  black hat. 

 
In HTbb after making the first assumption the human 
is slightly confused because the other concludes 
having a black hat. After error in prediction, the 
human makes the correct prediction for first his 
assumption and then rejects this first assumption. He 
then makes his second assumption, and makes a 
prediction based on that assumption. Again this 

prediction is refuted which leads the subject to state 
that A can’ t claim he has a black hat; he has 
discovered that this world state is not consistent with 
the rules of the puzzle; it is not an intended world 
state. 

6. Simulated Reasoning Traces  

In this section a software model for the reasoning 
method used in this paper is described briefly, before 
the traces created with that software agent are 
presented.  

6.1 Simulation Model 

Reasoning by assumption entails reasoning with and 
about assumptions. Reasoning about assumptions can 
be considered as a form of meta-reasoning. The agent 
reasons about a set of assumptions when deciding for 
them to be assumed for a while (reasoning about 
assumptions). After making assumptions, the agent 
derives which facts are logically implied by this set of 
assumptions (reasoning with assumptions). The 
derived facts may be evaluated; based on this 
evaluation some of the assumptions may be rejected 
and/or a new set of assumptions may be chosen 
(reasoning about assumptions). As an example, if an 
assumption has been chosen, and the facts derived 
from this assumption contradict information obtained 
from a different source (e.g., by observation), then the 
assumption is rejected and the converse assumed.  
 A generic reasoning model1 behind this pattern  of 
reasoning has been designed in the component-based 
design mthod DESIRE for agent systems; cf. (Brazier, 
Jonker, and Treur, 1998).  This formally specified 
design has been automatically translated into a 
software program capable of simulating the reasoning 
process. The reasoning model consists of four basic 
(primitive) components: External World, Observation 
Result Prediction, Assumption Determination, and 
Assumption Evaluation (see Figure 1). The 
component External World contains the world state 
and is used to execute observations. The component 
Observation Result Prediction reasons with 
assumptions; e.g., given the assumption 
assumed(hat_colour(white, self), neg), within this 
component the rule "if not hat_colour(white, self) then 
conclusion(my_hat_is_white, other)" can be used to 
predict that conclusion(my_hat_is_white, other). The two 
components Assumption Determination and 
Assumption Evaluation reason about assumptions 
(they perform the meta-reasoning). Information is 
exchanged between the components where necessary. 
Within DESIRE, the functionality of the different 
components has been specified by knowledge bases in 
the following manner. 

                                                           
1A complete specification of the model (with 
clickable components) can be found at 
www.cs.vu.nl/~wai/GTM/assumption/assumption_fixed_tc_2
WP_07 
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Figure 1. Architecture of the simulation model 

Assumption Determination 
The component Assumption Determination performs 
metareasoning to derive which assumption to make. It 
uses observation results of the colour of the other 
agent’ s hat, but not of what the other agent knows 
about his own colour. This knowledge base expresses 
a form of heuristic knowledge able to generate 
assumptions for the different situations. It is taken 
into account whether or not an assumption already has 
been considere before (i.e., was an assumption 
earlier), to avoid repetition. 
 

if  observation_result(hat_colour(white, other), pos) 
   and not has_been_considered(hat_colour(white, self), neg) 
then possible_assumption(hat_colour(white, self), neg); 
 
if  observation_result(hat_colour(white, other), neg) 
   and not has_been_considered(hat_colour(white, self), pos) 
then possible_assumption(hat_colour(white, self), pos); 
 
if  observation_result(hat_colour(white, other), pos) 
   and not has_been_considered(hat_colour(white, self), pos) 
   and rejected(hat_colour(white, self), neg) 
then possible_assumption(hat_colour(white, self), pos); 
 
if  not has_been_considered(hat_colour(white, self), neg) 
   and rejected(hat_colour(white, self), pos) 
then possible_assumption(hat_colour(white, self), neg); 
 

Observation Result Prediction 
The component Observation Result Prediction takes 
as assumption and derives from this assumption what 
should be expected as observations in the world. 
Notice that the other agent is plainly considered as 
part of the world. No epistemic considerations are 
made about the other agent; for a different, more 
complex model where this actually has been done, see 
(Brazier and Treur, 1999). Notice that the first rule 
(assuming own hat colour black) specifies that both a 
prediction is made about the (visible) hat colour of the 
other agent and about what the other agent will tell. In 
the other case (assuming own hat colour white) only 
the latter prediction is possible. 
 
if assumed(hat_colour(white, self), neg) 
then predicted_for(hat_colour(white, other), pos,  
  hat_colour(white, self), neg) 
   and predicted_for(conclusion(white, other), pos,  
  hat_colour(white, self), neg); 
 
if assumed(hat_colour(white, self), pos) 
then predicted_for(conclusion(dont_know, other), pos,  
  hat_colour(white, self), pos); 

 
Assumption Evaluation 
The component Assumption Evaluation compares 
predictions and observations, and, where these are 
conflicting, rejects the underlying assumption (see 
second rule below). A second functionality is to 
determine which observations have to be made, 
namely, those for which predictions exist; this is 
specified in the first rule. 
 
if predicted_for(OBS : INFO_ELEMENT, S1: SIGN, 
      HYP: INFO_ELEMENT, S2: SIGN) 
then to_be_observed(OBS : INFO_ELEMENT); 
 
if assumed(HYP: INFO_ELEMENT, S: SIGN) 
   and predicted_for(OBS: INFO_ELEMENT, S1:SIGN,  

    HYP: INFO_ELEMENT, S: SIGN) 
   and observation_result(OBS: INFO_ELEMENT, S2:SIGN) 
   and S1 ≠ S2 
then rejected(HYP: INFO_ELEMENT, S: SIGN) 
   and has_been_considered(HYP: INFO_ELEMENT, S: SIGN); 

6.2 Simulated Traces 

For the software agent described in the previous 
section all world states have been tested and traces of 
the agent logged. The software agent reasons 
according to a preset strategy. It tries to opposite 
assumptions first. If the other wears black, the 
software agent will first assume that it itself wears 
white. If the other wears white, it will assume black 
for its own hat first.  
 

STbw: Trace of Seq in BW 

nr Atom 

1 observation_result(hat_colour(white, other), neg) 

2 assumed(hat_colour(white, self), pos) 

3 prediction_for(conclusion(dont_know_my_colour, other), pos, 
                 hat_colour(white, self), pos) 

4 to_be_observed(conclusion(dont_know_my_colour, other)) 

5 observation_result(conclusion(dont_know_my_colour, other), pos) 

 
In STbw, the first assumption works just fine, its 
evaluation is positive: no rejection is generated. 
Therefore no new assumption needs to be made. 
However, the simulation model could have been made 
in a manner that justification is deepened by trying the 
opposite assumption as well, and evaluating that this 
opposite assumption has to be rejected. 
 

STwb: Trace of Seq in WB 

nr Atom 

1 observation_result(hat_colour(white, other), pos) 

2 assumed(hat_colour(white, self), neg) 

3 prediction_for(hat_colour(white, other), pos, 
                hat_colour(white, self), neg)) 

prediction_for(conclusion(my_hat_is_white, other), pos, 
                  hat_colour(white, self), neg)) 

4 to_be_observed(hat_colour(white, other)) 

to_be_observed(conclusion(my_hat_is_white, other)) 

5 observation_result(conclusion(my_hat_is_white, other), pos) 
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In STwb, again the first assumption works just fine, it 
is evaliuated positively: no rejection generated. 
Therefore no new assumption needs to be made; as in 
the caese above, the simulation model does not look 
for further justification. 
 

STww: Trace of Seq in WW 

nr Atom 

1 observation_result(hat_colour(white, other), pos) 

2 assumed(hat_colour(white, self), neg) 

3 predicted(hat_colour(white, other), pos)  

predicted(conclusion(my_hat_is_white, other), pos) 

4 to_be_observed(conclusion(my_hat_is_white, other))  

to_be_observed(hat_colour(white, other)) 

5 observation_result(conclusion(my_hat_is_white, other), neg) 

6 rejected(hat_colour(white, self), neg) 

7 assumed(hat_colour(white, self), pos) 

8 predicted(conclusion(dont_know_my_colour, other), pos) 

9 to_be_observed(conclusion(dont_know_my_colour, other)) 

10 observation_result(conclusion(dont_know_my_colour, other), pos) 

 

In this case a bit more work is done. In STww, after 
evaluation the first assumption has to be rejected. 
Therefore a new assumption is made and evaluated 
positively: no rejection. 
 

STbb:  Trace of Seq in BB 

nr Atom 

1 observation_result(hat_colour(white, other), neg) 

2 assumed(hat_colour(white, self), pos) 

3 predicted(conclusion(dont_know_my_colour, other), pos) 

4 to_be_observed(conclusion(dont_know_my_colour, other)) 

5 observation_result(conclusion(dont_know_my_colour, other), neg) 

6 rejected(hat_colour(white, self), pos) 

7 assumed(hat_colour(white, self), neg) 

8 predicted(hat_colour(white, other), pos)  

predicted(conclusion(my_hat_is_white, other), pos) 

9 to_be_observed(conclusion(my_hat_is_white, other))  

to_be_observed(hat_colour(white, other)) 

10 observation_result(conclusion(my_hat_is_white, other), pos) 

11 rejected(hat_colour(white, self), neg) 

 
In STbb, the agent diligently tries both assumptions 
and rejects both of them. The simulation model has 
not been modelled to detect the impossibility of this 
situation and just stops reasoning when there were no 
more assumption that it could make. 

7. Validation of Dynamic Properties  

All properties introduced in Section 4 were validated 
against the human and software traces of Sections 5 
and 6. First, in Section 7.1 the checking prohramme is 

briefly described. Next, in Section 7.2 some of the 
results of the validation process are discussed. 

7.1 The checking program 

A Prolog program of about 500 lines has been 
developed that takes a dynamic property and a set of 
(empirical or simulated) traces as input, and checks 
whether the dynamic property holds for the traces. As 
an example, the specified observation result 
correctness is represented in this Prolog programme 
as a nested term structure: 
 
forall(T, A, S,  
implies(holds(state(C, T), observation_result(A,S), true), 
holds(state(C, T), holds_in_world(A, S), true)) 
 
Traces are represented by sets of Prolog facts of the 
form 
 

holds(state(m1, t(2)), a, true). 

 
where m1 is the trace name, t(2) time point 2, and a is 
a state formula in the ontology of the component’s 
input. It is indicated that state formula a is true in the 
component’ s input state at time point t2. The Prolog 
programme for temporal formula checking uses 
Prolog rules such as 
 

sat(and(F,G)) :- sat(F), sat(G). 
sat(not(and(F,G))) :- sat(or(not(F), not(G))). 
sat(or(F,G)) :- sat(F). 
sat(or(F,G)) :- sat(G). 
sat(not(or(F,G))) :- sat(and(not(F), not(G))). 

 
that reduce the satisfaction of the temporal formula 
finally to the satisfaction of atomic state formulae at 
certain time points, which can be read from the trace 
representation. 

7.2 Outcomes of Validation 

The outcome of part of this validation process is 
presented in the Table 2 below.  
 

Prop HT 
wb 

HT 
ww 

HT 
bb 

ST 
bw 

ST 
wb 

ST 
ww 

ST 
bb 

GP1 Y Y Y Y Y Y Y 
GP4 Y Y - Y Y Y - 
LP2 Y Y - Y Y Y - 
LP5 N N N Y Y Y Y 
LP6 Y Y Y Y Y Y Y 
LP7 Y Y ? Y Y Y Y 

 
Table 2 Outcome of part of the validation 

 
Studying the results of the validation process gives 
more insight in the reasoning process of the human 
subject and the software simulation. Before discussing 
the results it might be important to know that the 
human was presented with all possible observations 
before he started his reasoning. In contrast, the 
software agent had to initiate all observations 
explicitly somewhere during its reasoning.  
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In general, all reasoning traces, human and 
simulated traces, satisfied almost all of the properties 
presented in Section 4. An example of an exception is 
in the human trace HTbb where the subject makes an 
error. The line of reasoning that could have followed 
this error according to property LP7 is not realised. 
Instead this line of reasoning is blocked: immediately 
the incorrect prediction is retracted (breaking its 
persistence) and replaced by the correct one. Due to 
this error, and its immediate correction, property GP5 
and LP7 are not satisfied in this trace. 

There are a few interesting differences between 
the human traces and the simulated traces. 
• LP5: in the protocols the human reasoner only 

predicts the conclusions of the other party, not the 
hat colour of the other party. It might be that the 
prediction about hat colours is so obvious to the 
human reasoner that predicting that seems 
superfluous. This argument has not been checked. 
The software agent, if possible, also predicted a 
hat colour for the other agent. 

• LP7: in HTbb the human does not explicitly 
reject the first assumption. His last conclusion 
suggests that he actually did reject both the first 
and second assumption. The software agent 
explicitly rejects both assumptions. 

Another difference in their reaction to the impossible 
world situation (both A and B wear black) can be 
found. The human agent seems already a bit confused 
half way its reasoning and makes an error. At the end 
he flatly concludes that A could not have said what A 
has said. The software agent does not get confused, 
but, on the other hand, was not equipped to reflect on 
the impossibility of the situation. It only rejected all 
the assumptions it could make, and then stopped 
reasoning. 

8. Discussion 

The dynamics of practical reasoning processes within 
an agent often depends on decisions about which 
conclusions to try to derive (the goals of the 
reasoning), or which premises to use (the assumptions 
made). An agent usually makes these types of 
decisions during the reasoning process. The 
Dynamical Systems Theory (DST), put forward in 
(Kelso, 1995; Port and Gelder, 1995) is based on 
difference and differential equations the use of which 
depends on the possibility to find quantitative 
relations over time.  
 For a qualitative reasoning process, this constraint 
makes it impossible to use these techniques. 
Nevertheless, it is relevant to analyse the dynamics of 
qualitative reasoning processes as well. This paper 
shows how an analysis of these dynamics can be 
made using techniques different from those of DST. 
The approach put forward makes use of traces 
consisting of sequences of reasoning states over time 
to describe reasoning processes. It is shown for the 
example reasoning pattern ‘reasoning by assumption’ , 

how relevant dynamic properties can be identified and 
expressed using a temporal trace language. Example 
traces have been acquired in two ways. First, 
empirical traces have been generated based on think-
aloud protocols of a subject solving a reasoning 
puzzle.  
 Second, a simulation model has been developed 
and executed for a number of cases. For all these 
traces, the dynamic properties can and have been 
checked automatically, using a software environment. 
Thus the feasibility of the approach was shown.  
 Earlier work addresses the dynamics of defeasible 
reasoning processes based on formalisms from 
nonmonotonic logic; e.g., Reiter, (1980); Marek and 
Truszczynski (1993). In (Engelfriet and Treur, 1995, 
1998; Engelfriet et al., 2001) formalisations of the 
dynamics of default reasoning were contributed; for 
more papers in this direction see also (Meyer and 
Treur, 2001). This work fully concentrates on the 
internal interaction and dynamics of states during a 
nonmonotonic reasoning process; in contrast to the 
current paper, interaction with the external world is 
not addressed. 
 A pattern of reasoning similar to the pattern of 
reasoning by assumption occurs in the Modus Tollens 
case of conditional reasoning, i.e., concluding not-p 
from ‘if p then q’  and not-q. Also in that case, 
different alternatives are explored for p, and a 
falsification takes place. For a more extensive 
description from the viewpoint of conditional 
reasoning, see (Schroyens, Schaeken, and 
d’ Ydewalle, 2001; Rips, 1994). In these approaches 
the meta-level aspects are left more implicit than in 
our approach.  It would be an interesting further step 
to investigate in more depth the relationships. 
 Future research will further address the analysis of 
the dynamics of other types of practical reasoning, 
both from the syntactical and semantical stream, or 
their combination; e.g., (Johnson-Laird, 1983; 
Johnson-Laird and Byrne, 1991; Yang and Johnson-
Laird, 2000; Yang and Bringsjord, 2001; Braine and 
O’ Brien, 1998; Rips, 1994). 
 Within the Artificial Intelligence literature a 
number of belief revision techniques have been 
contributed; e.g., Doyle (1979), De Kleer (1986), 
Dechter and Dechter (1996), which have not been 
exploited to model human belief revision. Within 
Cognitive Science, recently an increased interest is 
shown in human belief revision; e.g., Byrne and 
Walsh (2002), Dieussaert, Schaeken and d’ Ydewalle 
(2002). An extension of the work reported in the 
current paper could address formal modelling and 
analysis of human belief revision in the context of 
reasoning by assumption in more detail. 
 Another area in which the formal modelling and 
analysis approach can be applied is human reasoning 
processes based on multiple representations (e.g., 
arithmetic, geometric). In Jonker and Treur (2002) 
some first steps have been made.  
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