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Abstract. A knowledge-based program is a high-level description of the behaviour of agents in
terms of knowledge that an agent must have before (s)he may perform an action. The definition
of the semantics of knowledge-based programs is problematic, since it involves a vicious circle;
the knowledge of an agent is defined in terms of the possible behaviours of the program, while
the possible behaviours are determined by the actions which depend on knowledge. We consider a
large class of knowledge-based programs, and define their semantics via an approximation approach
generalizing the well-known fixpoint construction.

1. Introduction

A knowledge-based program (KBP) is a program with explicit tests for knowledge. A multi-agent setting
is assumed: the KBP consists of subprograms associated with each of the agents involved, describing
under what conditions the agent should take certain actions. The conditions are epistemic formulae,
expressing, e.g., that the agent knows certain facts or regards certain facts as possible. Although KBPs
are, in general, not directly implementable, this high-level approach may yield better insight into complex
situations like multi-agent protocols.

However, the semantics of KBPs is problematic, due to a vicious circle. On the one hand, the tests
in a KBP may contain epistemic operators, and the semantics of these epistemic operators is defined in
terms of the traces (possible behaviours) of the KBP. On the other hand, the collection of traces of the
KBP depends on the semantics of the tests. How to deal with this cyclic dependency? In this paper, we
present and work out a method to do this for a large class of KBPs.

This work is inspired by the seminal book [6] by Fagin and others. They define the semantics of a
KBP via an implementation by a standard program (i.e. without epistemic formulae in the tests), such
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that the runs (i.e. traces) of the standard program correspond to the runs of the KBP; the runs of the
standard program are used to evaluate the tests for knowledge, and the semantics of the KBP is defined
via a fixpoint construction. However, not all KBPs admit such implementations: restrictions on KBPs
are given that guarantee a well-defined implementation, but these only apply to a synchronous systems
where all agents execute actions in lock-step. These restrictions hamper the application of their approach,
since it limits formal reasoning to a subset, excluding e.g. asynchronous KBPs.

In the approach presented in this paper, we assign semantics to all KBPs under consideration. We
are particularly interested in the semantics of KBPs in an asynchronous setting, where the agents do not
synchronize with a common clock. To this end, an abstract setup of the theory of asynchronous KBPs is
given together with the definition of the semantics to assign to such programs. Our choice of semantics
is justified by means of a number of examples. These examples show how the semantics correspond with
our intuition.

1.1. Overview

In section 2 we discuss related work and sketch our contribution. The formal framework is developed in
section 3. We define a language of KBPs, assign an interpretation to this language and propose how to
assign semantics to all knowledge-based programs. Our choice of semantics is justified in 4 via a number
of examples. Some conclusions and directions for future research are discussed in section 5.

2. Several approaches to knowledge-based programming

The first papers on knowledge in distributed systems appear in the ’80s: Chandy and Misra [3] describe
how processes gain and lose knowledge, Katz and Taubenfeld [13] define various notions of knowledge,
depending on the state of information a process has. However, the programs in these papers are not KBPs
in our sense, since they do not contain explicit tests for knowledge.

In an attempt to reason formally about KBPs and to gain more insight in KB-programming, Sanders
defines in [16] knowledge of a process using predicate transformers, and points out that safety and live-
ness properties of KBPs need not be preserved when the initial conditions are strengthened. Yet, Halpern
and Zuck successfully use in [9] the knowledge-based approach to derive and prove the correctness of
a family of protocols for the sequence transmission problem. Their motivation for using a knowledge-
based approach is that correctness proofs should also offer an understanding to the reader why a protocol
is correct. Stulp and Verbrugge in [17] show that real-life protocols can be analysed using a knowledge-
based approach by presenting a KBP for the TCP-protocol.

Moses and Kislev introduce in [15] the notion of knowledge-oriented programs, i.e. KBPs with
high-level actions that change the epistemic state of the agents. An example: the action notify��� ��
which ensures that agent � will eventually know �. Formal semantics are not given, however. This
kind of programs is also investigated more formally from the perspective of dynamic epistemic logic,
e.g. by Baltag [2] and Van Ditmarsch [4]. The implementation of knowledge-oriented programs is not
considered.

The book “Reasoning about Knowledge” [6], by Fagin et al., contains an overview of the work done
on KB-programming by the authors and others. A general framework for KBPs is given, and the se-
mantics of a KBP is defined via a standard (i.e. knowledge-free) program that implements the KBP. This
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knowledge-free program can be decomposed into a protocol for each agent that maps local states to ac-
tions. In [6, 7], sufficient conditions for the existence of a well-defined implementation of a KBP are
given; there conditions only apply to synchronous systems, however. In [7] the complexity of determin-
ing whether a KBP has a well-defined implementation in a given finite state context is characterized. In
[18], the complexity of checking whether a protocol implements a KBP in a given finite state context is
studied.

Van der Meyden in [14] describes an axiomatization of a logic of knowledge and time for a class
of synchronous and asynchronous systems and studies the model checking problem for this setting.
However, the gap between writing down a KBP and determining its model remains. Engelhardt, van der
Meyden and Moses develop in [5] a refinement calculus for KBPs. Their framework assumes that agents
and environment act synchronously.

2.1. Our approach

Our approach is related to the general approach given in [6], but there are some differences. The most
importance difference is that all KBPs are assigned semantics in our formalism, whereas [6] only assigns
semantics when a KBP has an implementation. In our view, the principal aim of any semantic framework
for programming languages is that it should assign meanings to all programs that can be expressed in
the language under consideration. Sufficient conditions on a KBP to ensure existence of a well-defined
implementation were given in [6], but only for synchronous systems.

In this paper we abandon the synchrony of the agents by a common clock and adopt an interleaving
semantics. Partly because this choice, a generally applicable fixpoint definition for the semantics is
excluded. The alternative we propose is based on the transfinite sequence of approximations. Cardinality
reasons ensure that this sequence turns into itself. We then proceed along the sequence and stop at the
approximation where the next step would introduce contradictory knowledge. In a certain sense, we thus
define the semantics of the program as the last acceptable approximation.

3. Modelling knowledge-based programs

In this section, we develop our framework in which we can define the knowledge that agents have during
execution.

3.1. Knowledge-based programs

Knowledge-based programs are programs with explicit tests for knowledge. We define a language KBP
of programs in a way similar to PDL (propositional dynamic logic, see e.g. [10]) with the exception
that we disallow the dynamic operator, i.e. PDL ��� � ���. As a consequence, no mutual recursion is
needed to define the language of formulas and the language of programs (An alternative is to include the
dynamic operator, but to forbid its occurrence in tests.)

The language � of epistemic formulas (knowledge expressions) for a set of agents �, given a set ��
of propositional variables, is defined in BNF-notation as

� ��� � � � � �� � �� � �� ����
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where � � ��, � � �. The connectives ��	� 
 , and the constant � are defined as usual in terms
of �, � and �. �� is the knowledge operator for agent �. Possibility, ��, is the dual of ��, that is,
�� � ����.

Next the language � of epistemic programs is defined, given a set �� of primitive action symbols, as

� ��� 	 ��	 � ��
�� � �� � �� ���

where 	 � ��, � � �. A program is either a primitive action 	 , a test �, the composition of two
programs, the choice between two programs or the repetition of a program. Repetition binds first, then
test, followed by composition and choice (in that order). skip is a fixed constant in ��.

In the sequel we restrict ourselves to programs Pg of the form

Pg� � ������ ��	 
 	�� � skip��

where �� � �, 	� � �� and 
 is some finite index set. This is index set is implicit, so the subscript 

will be omitted. We call programs Pg of the above form knowledge-based programs (KBPs).

A KBP thus is a repeated nondeterministic choice over a family of so-called guarded commands. A
guarded command is a primitive action preceded by a test, the guard of that action. We allow guarded
commands of the form�	 
 	� to be replaced by its body 	� . The alternative skip introduces asynchrony.
Such a step is called a stuttering step since the state does not change.

A multi-agent system consists of some agents and an environment. Each agent executes a KBP
and the environment executes a knowledge-free program, i.e. a KBP where the guards do not contain
epistemic operators. The KBPs of the agents and the program of the environment can be combined into
a larger knowledge-based program of the same form as Pg, because of the following rule

Pg� �� Pg� � � Pg� � � � �

More precisely, we abstract away from which agent it is that acts and consider programs of the form Pg
to represent the entire multi-agent system.

Before we can assign semantics to programs we must define how to evaluate a test for knowledge.

3.2. A Kripke model of traces

Knowledge is usually defined w.r.t. a Kripke model 
��
� � �, where � is a nonempty set of worlds,
� � �� 	 ���� is a valuation and 
 � �
����� is an equivalence relation on states for each agent
� � �. Agent � knows that � holds in world � � � if � is satisfied in all worlds � � � for which
��� �� � 
� holds.

For the semantics of KBP, we shall use an extended Kripke model�� � 
��� ���� ��. Here ��

is the collection of finite nonempty sequences (called traces) of states � � � , � � �� is the collection

of possible traces, �� �
�
����� a collection of equivalence relations, and � � �� 	 ���� is a valuation.

The collection of states � is part of a (simpler) Kripke model 
���� �� which we present first. The
relation

�
� captures the knowledge that an agent has in a given state. The usual approach here is to

consider the state � as a global state that consists of several local states, one for each agent; the local
state of an agent is determined by all variables that are accessible for the agent. The relation

�
� is then

defined as: agent � cannot distinguish between two states � and � (notation: �
�
� �) iff �’s local state is
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the same in both � and �. When defined like this,
�
� is an equivalence relation. We shall abstract from

the underlying notion of local state, and only require that the
�
� are equivalence relations.

Now we turn to traces xs � ��. The idea is: agent � knows � in xs iff � holds in all traces ys that
(i) � cannot distinguish from xs, and (ii) considers possible. To formalize (ii), we refer to the collection
� � �� of possible traces, given the program under consideration (as we shall see, this parameter �
will be the source of cyclic dependency in the definition of the semantics of KBP). The formalization of
(i) is based on two principles: perfect recall and asynchronicity. Perfect recall expresses that each agent
is assumed to remember her local history, i.e. to have access to all states in the trace, not only to its last
element. Asynchronicity implies that agents cannot distinguish between traces that differ only because
of possible repetitions of their states. This is made more precise as follows.

When xs � ��, we write ��xs� for the length of the trace, and xs� for the �th element of the trace
(where � � � � ��xs�). The function last returns the last element of a trace, i.e. last�xs� � xs��� where
��xs� � �. Concatenation of traces is denoted by �.

A list ys is a stuttering of xs, notation xs � ys, iff ys is obtained from xs by consecutive repetition
of certain elements of xs. For example, ������� is a stuttering of ����, but ����� is not. Our notation for
stuttering comes from [11].

Agent � considers trace xs indistinguishable from trace ys when stutterings can be added to both
traces to obtain traces xt and yt of equal length such that agent � cannot distinguish individual states
along xt and yt . We formally define the relation

�
� on traces for agent � by

xs
�
� ys � � xt � yt � ����xs � xt � ys � yt � xt

�
� yt�

where
�
� has been lifted to lists over � by means of

xt �
� yt � ��xt� � ��yt� � � ���� � � � ��xt�� xt�

�
� yt �� �

This ends the definition of our model �� � 
��� ���� ��. Before we go on, we show that
�
� is an

equivalence relation. Indeed, it is easy to see that
�
� is reflexive and symmetrical, since

�
� is reflexive

and symmetrical. It is a bit harder to verify that
�
� is also transitive. This follows from transitivity of

�
�,

confluence of the stuttering relation � and the observation that

xs �
� ys � ys � yt � � xt � ����xs � xt � xt �

� yt��

where xs � xt � ys and yt � ��.

3.3. Evaluating epistemic formulae

Now we define the interpretation of formulae and programs of KBP in the model�� . �, the collection
of traces ‘under consideration’, is used to resolve the circularity of mutual dependency between the
definition of the semantics of the knowledge operator and the definition of the collection of possible
traces, given a program and a collection of initial states. For any subset � of ��, the interpretation
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������ of an epistemic formula � is defined as a set of traces, in the following way

������ � ��

������ � �xs � �� � last�xs� � ������

���� � ����� � ������� � ������� �

������� � �� � ������ �

�������� � �xs � �� � � ys � ���xs
�
� ys � ys � ���������

A trace xs satisfies proposition � iff � holds in the last state of xs under valuation �. An agent �
knows that � holds in trace xs iff � holds in all traces ys under consideration that � cannot distinguish
from xs.

The above definitions do not restrict the interpretation of a formula to be a subset of the set of traces
under consideration. That is, ������ need not be a subset of �. This is a deliberate choice to be justified
later by means of the example programs in section 4.

3.4. Interpretation of epistemic programs

Since epistemic programs may contain epistemic tests, the interpretation of an epistemic action is also
defined w.r.t. a set � of traces that are under consideration. The interpretation of an epistemic program
�, given a set � of traces, is a binary relation on traces, that is ������ � �� � ��. Similar to the
interpretation of epistemic formulas, the interpretation of an epistemic program is not restricted to be a
relation on the set of traces under consideration.

We assume that the valuation � is extended to basic action symbols, such that ��	� is a binary relation
on � for an action symbol 	 � ��. In particular, we assume that ��skip� � �� � ���� �� �� � ��.

The interpretation of epistemic programs with respect to � is inductively defined by

��	 ��� � ��xs � xs��� � �last �xs�� �� � ��	��

���	��� � ��xs � xs� � xs � ��������

���� 
 ����� � ������� Æ ������� �

���� � ����� � ������� � ������� �

������� �
�
�����������

�

The interpretation of primitive action symbols is lifted to traces. Two traces xs and ys are related
via action 	 iff ys is equal to xs appended with an outcome of 	 applied to the last element in xs. The
interpretation of an epistemic program can be seen as a (nondeterministic) recipe for transforming traces.
Now skip has the effect that the last (i.e. current) state is repeated once.

3.5. Interpretation of knowledge-based programs

Recall that a KBP is of the form

Pg � ������ ��	 
 	�� � skip��
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So the interpretation ��Pg��� can be rewritten as

��xs���� xs�������� � ����� � xs � �� � �  ��

� � � ����� � ���� � ����xs�������� � ���� � ���� ��� � ���� ����� � ��	�����

That is, ��Pg��� consists of pairs �ys � zs�where zs is an extension of trace ys, such that the new subsequent
states are either the result of stuttering, or of some basic action 	� in Pg whose guard �� holds in the
trace upto that state.

The set of traces generated by Pg, given a set � of traces under consideration, is defined as the set
of all traces that are generated by the program Pg when starting in an initial state � � � ; here � � �

is a nonempty set of initial states, which is identified with a subset of �� in a straightforward way. We
define

� ��Pg ��� � �xs � ����� � � � ��� xs� � ��Pg �����

We want to define the semantics of a program Pg to be some set of traces � such that Pg generates
the set � when � is the set of traces under consideration, i.e. � should satisfy

� ��Pg ��� � �

This is a fixpoint characterization of the semantics of program Pg. The set of all traces of program Pg
could be a fixpoint of the function

� � ���� ��Pg���

where � implicitly depends on ����Pg � �.
If function � is monotonic in the sense that � ��� � � ���� whenever � � ��, the theorem of

Knaster-Tarski implies that � has a unique least and a unique greatest fixpoint. In that case, we could
prefer to define the semantics of Pg as the greatest fixpoint, since that would be the most liberal inter-
pretation of Pg. In general, however, function � is not monotonic and may have no fixpoints at all, or it
may have distinct fixpoints without having a least or greatest one.

We will study a sequence of approximations to the set of traces that a program generates. These
approximation sets ���� are defined by transfinite induction in the following way. The first approxima-
tion �� consists of all nonempty finite sequences of states. For any ordinal �, the approximation ����
consists of traces generated by the program when �� is used to evaluate epistemic formulas. When � is
a limit ordinal, the approximation �� is the intersection of unions of approximations that are sufficiently
close to the limit.

The latter choice can be motivated as follows. If the approximation sequence forms a descending
chain by the subset-relation, then for the limit an intersection is needed. On the other hand, if the
sequence forms an ascending chain, then for the limit a union is needed. However, approximations may
also grow and shrink. Therefore, a union of intersections or an intersection of unions are considered.
Both result in an intersection for a descending sequence, and in a union for an ascending sequence. We
choose the intersection of unions, as it is more liberal than a union of intersections, i.e. it includes more
traces. More traces implies less knowledge. We want the agents to knows facts only when there are good
reasons for them.
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��

�	�


��

where � �  � � � ! and  � !

Figure 1. The approximation sequence. � is the least ordinal such that �� � ���� � � ���

Formally we define

�� � ���

���� � � ����� for any ordinal ��

�� � �	�� �	���� �� � for any limit ordinal ��

A cardinality argument implies that the transfinite sequence of approximations turns into itself: there
exist ordinals  � ! with �
 � �	. By well-foundedness, there is a least such  . We now choose
 minimal with the property that �
 � �	 for some ! "  . If � ���� � �� for all �   , then
� ��
� � �
. That is, �
 is a fixpoint and we choose �
 as the semantics for the program. Otherwise
we take the smallest �   such that � ���� !� �� as the semantics for the program. This latter choice is
justified by the argument that it allows as much knowledge as possible without introducing contradictory
knowledge. Formally we define,

sem�Pg� � ��

where

� � 
���� � � � � ��� � ���� � ���� !� ����

 � 
��� � �!�� � ! � �
 � �	��

Since the approximation sequence turns into itself, it has the shape of a figure-six, see figure 1. The
figure is an idealization; the vertical dimension is associated with inclusion. All approximations between
�
 and �� are subsets of previous approximations. �� is the last one for which this holds.

When determining the traces in an approximation it sometimes useful to restrict attention to traces
generated by the knowledge-free, flat program obtained from Pg by omitting all guards:

Pg
 � ������ 	�� � skip��

The set of all traces generated by program Pg
 is denoted by �
. Its definition is straightforward, since
no test needs to be evaluated and so no set of traces under consideration is needed.
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4. Examples

In this section we investigate the consequences of our formalism by means of a number of examples.
The first three examples are quite similar and serve to show that function � is not monotonic, may have
unordered fixpoints, or no fixpoints at all. The fourth example shows that the approximation sequence
may turn infinite. The fifth example demonstrates how message passing can be modelled. The sixth
example is an example of a program with nested knowledge operators, viz. a test for knowledge of the
knowledge that another agent has. This example also illustrates that stability of knowledge predicates
does not guarantee fixpoint semantics. The final example shows what semantics the unexpected hanging
paradox is given in our formalism. For every example the approximation sequence is also given as a
figure.

4.1. Failure of monotonicity

Suppose there are two agents � and � and two boolean variables �, #, initially true. We represent truth
values as the integers 0 and 1, so the state space is � � ��� �� � ��� �� with initial state ��� ��. The
first component of the state is the value of variable �, the second one is the value of #. This induces a
valuation on states.

Variable � is private to agent �, and # is private to agent �. That is, agent � can only see and write �,
agent � can only see and write #. We take the indistinguishability relations on states to be defined by

��� #�
�
� ���� #��" � � ��� ��� #�

�
� ���� #��" # � #��

The agents execute KBPs. Agent � can falsify � by setting � to zero when she knows that # holds.
Agent � can falsify # when she knows that � holds. We take assignments to variables as primitive action
symbols, with corresponding interpretation. The resulting KBP is thus

Pg � ���# 	 
 � �� � � ��� 	 
 # �� � � skip ���

By definition �� � ��. For the next approximation, the traces in �� are used to evaluate epistemic
tests. When �� is considered, agents have only knowledge of the values of their own private variables.
That is, if � � �� then ����#��� � � and �������� � �. Both agents are unable to act. Therefore,
�� � � ���� � ��� ��+. So, traces in �� are repetitions of the initial state.

All traces in �� satisfy both � and #. Therefore, if � � �� then ����#��� � �������� � ��. This
implies that the agents can independently set their private variable to zero. Therefore, �� � � ����
consists of traces generated by the knowledge-free program

� � �� � � # �� � � skip ���

Alternatively, we can say that �� consists of traces that match the regular expression

��� ��+ � ��� ��+��� ��+��� ��* � ��� ��+��� ��+��� ��*�

When the agents can independently set their private variable to zero, they have no knowledge on
the value of the other agent’s variable. That is, if � � �� then ����#��� � �������� � �. Therefore
�� � � ���� � ��� ��+, and so �� � ��.
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��

��

��

�� ���

Figure 2. Example 4.1: approximation sequence and the fixpoints � � and ���

The approximation sequence repeats itself. It seems reasonable to take �� as the correct meaning of
the program. This is in accordance with the definition in section 3.5.

The above approximations also show that � is not monotonic. For example, �� is a subset of
��, however, � ���� is not a subset of � ����. Furthermore, in this example � has the following two
unordered fixpoints:

�� � ��� ��+��� ��*�

��� � ��� ��+��� ��*�

To show that �� is a fixpoint of � , observe that all traces in �� satisfy #, so ����#���� � ��.
Therefore, agent � can set � to zero at any time. Traces matching ��� ��+ or ��� ��+��� ��+ are both
indistinguishable for agent � from traces of the form ��� ��+��� ��+, and therefore do not satisfy ���

under ��. Agent � can not set # to zero in the initial state nor after agent � has reset �, so � ���� � ��.
Analogously, � ����� � ���.

The approximation sequence and the fixpoints �� and ��� are sketched in figure 2. The dashed line
indicates a subset relation, the lower set is a subset of the upper set. Lines with an arrow give the direction
of approximation, i.e. application of � .

4.2. A case with fixpoint semantics

This example has the same setting as the previous example. There are two agents � and �, with private
boolean variables � respectively #. The state space is as before, but now the initial state is ��� ��. An
agent may set her private variable to 1 if she considers it possible that the other agent’s private variable
has already been set. This corresponds to the following program

Pg � ���# 	 
 � �� � � ��� 	 
 # �� � � skip ���

Again we determine a sequence of approximations. �� � ��. When�� is considered, agents have
only knowledge of their private variables. If agent � does not know whether # holds then she considers
both # and �# possible. So, if � � �� then ����#��� � �������� � ��. The agents can independently
of each other set their private variables, so �� � � ���� consists of the traces generated by

� � �� � � # �� � � skip ���

In �� agents always consider it possible that the other has set her variable. Therefore, if � � ��
then ����#��� � �������� � ��, so �� � � ���� � ��, and we have reached a fixpoint. Note that
��� ��+ is also a fixpoint of � . The approximation is sketched in figure 3.
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Figure 3. Example 4.2: approximation sequence that ends in a fixpoint

The semantics of section 3.5 chooses �� as the semantics of the program. Anthropomorphically
speaking, we see that either agent reckons with the possibility that the other agent has set her variable,
even though she can argue that the other agent should not be able to do so as the first one. This is an
unexpected side effect of the asynchrony.

4.3. Absence of fixpoints

Again there are two agents � and � with private boolean variables � and #. Initially � is false and # is
true. Now, agent � can set � when she knows that # holds, and agent � can reset # when she considers it
possible that � has been set. The program is given as

Pg � ���# 	 
 � �� � � ��� 	 
 # �� � � skip ���

As seen in the previous two examples, if � � �� then ����#��� � � and �������� � ��. Only
agent � can act, so �� � � ���� consists of traces of program

� # �� � � skip ���

That is, �� contains traces that match ��� ��
+��� ��*.

For � � ��, the interpretation ����#��� consists of traces that cannot be generated by the program.
For example, a trace xs matching ��� ��+ satisfies��# under ��, since no trace in�� is indistinguishable
for � from xs. Therefore, we determine the set �
 of all traces that can possibly be generated by program
Pg. The program only allows � to change from 0 to 1, and # from 1 to 0. So �
 is the set of all traces of
the program in which the guards are removed, that is the program

� � �� � � # �� � � skip ���

No trace in �
 satisfies ��# under ��. In other words, if � � �� then �
 � ����#��� � �. No trace
in �� satisfies �. Therefore, if � � �� then �������� � �. Both agents can not act, so �� � � ���� �
��� ��+.

All traces in �� satisfy �� and #, so for � � �� we have ����#��� � �� and �������� � �. Only
agent � can act. Therefore, �� � � ���� consists of traces generated by program

� � �� � � skip ���

Since # is not reset, all traces in �� satisfy #, so if � � �� then ����#��� � ��. Observe that there
are traces that satisfy��� under ��, but that are not in�
. However, if� � �� then�
��������� � �
.
Therefore, agent � can set # to zero under ��, so �� � � ���� � �
.
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Figure 4. Example 4.3: a concrete six-shaped diagram as given in figure 1

If � � �� then ����#��� � � and �
 � �������� � �
. Only agent � can act, therefore �� � � ����
is equal to ��. At this point the approximation sequence repeats. The sequence is drawn in figure 4.

In this example the semantics of section 3.5 chooses �� as the semantics of the program, since
�� # �� !# ��. Therefore, the semantics is that the systems stays in its initial state.

4.4. An infinite approximation sequence

In this example we show that the approximation sequence may become infinite. There are again two
agents � and �. Agent � has private integer variables � and $, and agents � has private integer variables
# and �. Initially � � # � � and$ � � � �. Agent � may always increment $. If agent � knows that #
is zero she can set � to �. If agent � considers it possible that # between � and $, she can advance � to
$� �. Agent � can do similar actions. If we allow equalities and inequalities to appear in the epistemic
formulas, then KBP is

� $ �� $� �

� � �� �� �

� ���# � �� 	 
 � �� �

� ���� � �� 	 
 # �� �

� ���� � # � $� 	 
 � �� $� �

� ���� � � � �� 	 
 # �� �� �

� skip ���

Again �� � ��. When�� is considered, agent � can increment �, but always to a value larger than
$. Since agent � cannot inspect # she can always consider a trace in �� possible such that � � # � $.
Agent � can not set � to �, because for � � �� we have �����# � ����� � �. Agent � can always
increment $. Similar arguments for agent � show that � cannot set # to �. Therefore, �� � � ����
consists of the traces of program

� $ �� $� � � � �� �� � � � �� $� � � # �� �� � � skip ���

All traces in �� satisfy � !� � !� #. So in �� agent � only considers � � # � $ possible if $  �.
Again � never knows that # � �. Similar arguments hold for �. Therefore, �� � � ���� consists of the
traces of program

� $ �� $� � � � �� �� � � �$  �� 	 
 � �� $� � � ��  �� 	 
 # �� �� � � skip ���



H.W. de Haan, W.H. Hesselink, G.R. Renardel / Knowledge-Based Asynchronous Programming 13

��

��

��

��

����

...

Figure 5. Example 4.4: an infinite sequence of approximations

All traces in �� satisfy � !� ��� �� and # !� ��� ��. In �� agent � only considers � � # � $

possible if $  �, but she never knows that # � �. Continuing the same reasoning as above, we
observe that for all integers �  �, all traces in ���� � � ���� satisfy � !� ��� ��� �� and # !� ��� ��� ��.
Furthermore, it is not hard to observe that ���� � ��. Therefore, the transfinite approximation is
�� � ���� ������ �� � ������. In �� values of � and # are never increased, that is �� consists of
traces of program

� $ �� $� � � � �� �� � � skip ���

All traces in �� satisfy � � � � #, so in �� agent � knows that # � � and can thus set � to �.
However, � can not be incremented further as there are no traces in �� for which � � # � $ holds for
any$. Similarly, # can only be set to �. So ���� consists of traces of program

� $ �� $� � � � �� �� � � � �� � � # �� � � skip ���

In ����, agent � never knows that # � �. However, she may consider it possible that � has incre-
mented # such that � � # � $, so she can set � to$� �. Therefore, ���� � � ������ is equal to ��,
so the approximation sequence repeats itself. The sequence is drawn in figure 5.

In this example the semantics of section 3.5 chooses �� as the semantics of the program. In this
program agents can not make any assumption on the values of private variables of the other agent. The
values of � and # should remain unchanged, while$ and � may increase.

4.5. Message passing

Message passing can be modelled as a variable that can be written by one agent and read by another. In
this example, the agents � and � communicate via the integer variable #. Agent � has a private integer
variable � and agent � has a private integer variable %. All variables are initially 0. The state space
consists of triples ��� #� %�, and we have

��� #� %�
�
� ���� #�� %��" � � �� � # � #��

��� #� %�
�
� ���� #�� %��" # � #� � % � %��
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Agent � may increment � when she considers it possible that � � %. She may increment # when she
knows that # � �. Agent � may increment % when she knows that % � �. The program is

Pg = � �� �� � %� 	 
 � �� �� �
� �# � �� 	 
 # �� # � �
� �� �% � �� 	 
 % �� % � �
� skip �� .

Because agent � can read both � and #, the test # � � is equivalent to���# � ��.
Agent � can infer % � � from % � #, since she can read # and agent � preserves the invariant

# � �. Operationally speaking, agent � uses variable # as a message to agent � to let � know that � has
incremented �.

Intuitively, one could expect the following behaviours from this program. Agent � may increment �,
followed by #. Then �may increment %. Since � knows this, she may increment � after the incrementation
of #; she need not wait for the incrementation of %, which is hidden to her anyhow. We will investigate
whether our formalism justifies this intuition.

In �� � ��, agent � considers it possible that � � %, but � has no knowledge whether % � �.
Therefore the traces in �� � � ���� are the traces generated by the knowledge-free program &�

P1 = � �� � %� 	 
 � �� �� �
� �# � �� 	 
 # �� # � �
� skip �� .

For the next approximations it is useful to only consider traces that can possibly be generated by
program Pg. Therefore, while determining the set of traces that satisfy���% � �� given a set�, attention
can be be restricted to traces in the set�
, which consist of traces generated by the flat, guardless program

� � �� �� � � # �� # � � � % �� % � � � skip ���

For � � ��, we have that ������ � %��� consists of traces � � �, since % remains � in ��. On the
other hand, �
 � �����% � ����� consists of traces of �
 that end with % � #, since # � � is invariant in
��. Therefore, �� � � ���� consists of traces generated by

P2 = � �� � �� 	 
 � �� �� �
� �# � �� 	 
 # �� # � �
� �% � #� 	 
 % �� % � �
� skip �� .

Note that the traces in �� satisfy the invariant � � % � # � � � �.
For � � ��, we have that ������ � %���� consists of traces with � � # � � � �, since % � � holds

in ��. On the other hand, �
 � �����% � ����� consists of the traces of �
 that end with % � # � � � #.
In fact, no trace xs with � � # is indistinguishable for � from any trace in ��, since all traces in ��

satisfy # � �. It follows that �� � � ���� consists of traces generated by

P3 = � �� � # � � � �� 	 
 � �� �� �
� �# � �� 	 
 # �� # � �
� �% � # � � � #� 	 
 % �� % � �
� skip �� .
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Note that, traces in �� satisfy the invariants � � % and � � # � � � � and # � �� % � #.
For � � ��, we have that ������ � %���� consists of traces with � � # � � � #, since in ��, % is

only bounded by # while # � �. On the other hand, �
 � �����% � ����� consists of traces of �
 that end
with % � # � � � #. No trace satisfying � � # is indistinguishable for � from any trace in ��, since
traces in �� satisfy # � �. It follows that �� � � ���� consists of the traces generated by

P4 = � �� � # � � � #� 	 
 � �� �� �
� �# � �� 	 
 # �� # � �
� �% � # � � � #� 	 
 % �� % � �
� skip �� .

Observe that, traces in �� satisfy the invariants � � % and � � # � � and # � �� % � #.
For � � ��, we have that ������ � %���� consists of traces with � � # � � � #, since in ��, % is

only bounded by # while # � �. On the other hand, �
 � �����% � ����� consists of those traces of �

that end with % � # because of the invariant # � � in ��. It follows that �� � � ���� consists of the
traces generated by

P5 = � �� � # � � � #� 	 
 � �� �� �
� �# � �� 	 
 # �� # � �
� �% � #� 	 
 % �� % � �
� skip �� .

Traces in �� satisfy the invariant � � % � # � �.
For� � ��, we have that ������ � %���� consists of the traces with � � # since % is only bounded by

# in �. On the other hand, �
� �����% � ����� consists of those traces of �
 that end with % � # because
all traces in �� satisfy the invariant # � �. It follows that �� � � ���� consists of traces generated by

P6 = � �� � #� 	 
 � �� �� �
� �# � �� 	 
 # �� # � �
� �% � #� 	 
 % �� % � �
� skip �� .

Note that, traces in �� satisfy the invariant � � % � # � � � # � �.
Similarly as before, for � � ��, we have that ������ � %���� consists of traces with � � # since %

is only bounded by # in �. On the other hand, �
 � �����% � ����� consists of those traces of �
 that
end with % � # because of the invariant # � � in ��. It follows, that � ���� � ��, a fixpoint. Moreover,
this fixpoint corresponds with the intuition sketched above, and is chosen according to section 3.5. The
approximation sequence is shown in figure 6.

4.6. Stable predicates

Informally, a predicate is stable iff once the predicate holds it continues to hold. In this example, the
guards in the program are stable. However, as we will show, this is no guarantee for fixpoint semantics.
Furthermore, stability of epistemic formulas depends on the set of traces that are considered. At the
moment it is unclear to us how to formally define stability with respect to KBPs.

In this example, there are three agents, �, � and �. The state space consists of six boolean variables
��� #�� ��� #�� %� ', with initially �� � #� � �� � #� � � and %� ' indeterminate. Agent � can read ��
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Figure 6. Example 4.5: nonmonotonic approximation that leads to a fixpoint.

and read and write #�, agent � can read �� and read and write #�. Agent � can see all variables and write
�� and ��. The indistinguishability relations on states for agents � and � are as follows.

���� #�� ��� #�� %� '�
�
� ����� #��� ���� #��� %�� '��" �� � ��� � #� � #��

���� #�� ��� #�� %� '�
�
� ����� #��� ���� #��� %�� '��" �� � ��� � #� � #��

The relation
�
� is just equality on states.

Variables ��, #�, �� and #� will be used to send messages. Agent � can send a message to � by
altering variable ��, and agent � can send a message to � by altering variable ��. Agent � sends � a
message by altering #�. Likewise, � can send � a message via #�.

Informally, the agents act as follows. Agent � may send � a message when she knows that ' holds.
Agent � may send � a message when she knows that % holds. When agent � knows that either % holds or
that � knows that ' holds, she may send � a message. When agent � knows that either ' holds or that �
knows that % holds, she may send � a message. The knowledge-based program is

Pg = � ��' 	 
 #� �� �
� ��% 	 
 #� �� �
� ���% ���'� 	 
 �� �� �
� ���' ���%� 	 
 �� �� �
� skip �� .

Note that the values of variables % and ' do not change, so ��' and ��' are stable. Also, ���% ���'�
and ���' ���%� are stable.

For � � ��, we have that ����'��� � � and ����%��� � �. On the other hand, since � can read all
variables, �����% ���'���� consists of all traces where % holds at the end. Likewise, �����' ���%����
consists of all traces where ' holds at the end. It follows that�� � � ���� consists of the traces generated
by

P1 � � % 	 
 �� �� � � ' 	 
 �� �� � � skip ���

Note that all traces in �� satisfy the invariants ��� %, and ��� '.
For �� we restrict attention to traces that can be generated by the program, that is we only consider

traces from �
, generated by the flat program

� �� �� � � #� �� � � �� �� � � #� �� � � skip ���
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Figure 7. Example 4.6: Stable guards, not leading to a fixpoint.

For� � ��, we have that�
�����'��� consists of traces that end with ��, since the invariant ��� '

holds in ��. Likewise, �
 � ����%��� consists of traces that end with ��, since the invariant ��� % holds
in ��. Because the guard ��' can be replaced by �� under ��, we have that �
 � �����% � ��'����
consists of traces in �
 that end with % � ��. Similarly, �
 � �����' ���%���� consists of traces �
 that
end with ' � ��. Therefore, �� � � ���� consists of traces generated by

P2 = � �� 	 
 #� �� �
� �� 	 
 #� �� �
� �% � ��� 	 
 �� �� �
� �' � ��� 	 
 �� �� �
� skip �� .

Note that the invariants ��� % and ��� ' do not hold for traces in ��.

For � � ��, we have that �
 � ����'��� � � and �
 � ����%��� � �, since the invariants that held in
�� do not hold for the traces in ��. On the other hand, �
 � �����%���'���� consists of the traces in �

that end with %. Similarly, �
 � �����' ���%���� consists of the traces of �
 that end with '. Therefore
�� � � ���� consists of the traces generated by the knowledge-free program P1, so �� � ��. The
approximation sequence is sketched in figure 7. According to section 3.5, �� is chosen as the semantics
of Pg.

4.7. The Unexpected Hanging Paradox

This paradox was first drawn attention to in [12] as the case of the “Class A blackout”. Presently, it is
commonly known as “The Surprise Examination”, or “The Unexpected Hanging”.

In the unexpected hanging paradox, a convicted prisoner is to be executed within seven days, but the
judge tells him that he will not know the day of his execution, even on that day itself. The prisoner might
then reason that he cannot be executed on day six, because when he would still be alive on day six, he
would know that he would be executed that day. By backward induction he might reason that he cannot
be executed without knowing that he will be executed. Yet, on day 2 the prisoner is surprised to meet the
executioner.

Let us formulate this situation as a KBP. The state space consists of three variables: an integer day,
the day of execution exec � ��� ��� �� and a boolean dead. Initially day � �, dead � � and the precise
day exec of execution is unknown to the agent. The agent only knows that exec lies in the range ��� ��� ��.
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Figure 8. Traces of �� � � ���� for exec � ��� ��� ��
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Figure 9. Traces of �� � � ���� for exec � ��� ��� ��

The convicted agent � can observe day and dead, but not exec. The program is

� �day � exec � ����day � exec� � �dead� 	 
 �dead �� � � day �� day� ��

� �day !� exec� 	 
 day �� day� �

� skip ��

where �dead �� � � day �� day � �� is a single action that sets the flag dead and advances to the next
day.

In our model the program has an execution with dead being set when exec � �. If initially exec � �,
the agent will know this at day � �. So at that time, the program is stuck at day six. This seem reasonable
with intuition.

We illustrate the approximations �� and �� in a smaller version of this paradox, where the execution
day lies in the range ��� ��� ��. The traces of the approximations �� and �� are given in figures 8 and 9.
The arrows corresponding to skip are not shown. The dashed ellipses give the uncertainty of the agent,
and are induced by

�
�. The filled bullets are the states where the agent is alive, and the open bullets

are the states where the agent has been executed. In �� � � ����, the agent has no knowledge on the
execution day, so he can be executed on day 3. In �� � � ����, the agent cannot be executed on day 3.
The approximation �� is a fixpoint of � , and is chosen as the semantics of the program.

Technically, our formalism does not allow deadlock, since the alternative skip can always be ex-
ecuted. Moreover, no fairness assumptions are given, e.g. there is no guarantee that time progresses.
Therefore, the agent cannot use backward induction to exclude execution sequences that lead to dead-
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lock, and the paradox is resolved. This is in accordance with the philosophical analysis based on dynamic
epistemic logic given in [8].

5. Conclusions and directions for future research

We have presented a formal framework in which knowledge-based programs can be modelled. In our
framework, the synchrony assumption has been dropped in favor of interleaving semantics. The fixpoint
equation that the semantics of KBP should satisfy, does not always have a solution. Instead of restricting
the semantics definition to the programs that lead to a fixpoint equation with a unique solution, we
worked out a method to assign semantics to all KBPs, by calculating a sequence approximations. If
this sequence ends in a fixpoint, that fixpoint is taken to be the semantics of a KBP. If not, we choose a
specific approximation as the semantics. To justify this choice, a number of examples have been studied.

We fear that our current semantics does not admit very useful proof-rules. There are other choices
for the semantics, such as the re-entry approximation �
 or the first (local) minimum, i.e. the first ap-
proximation �� for which ���� !� ��. It remains to be seen how useful these alternatives are. Moreover,
the relation with the predicate transformer approach of [16] needs to be explored in more detail.

We hope to be able to define a refinement relation between KBPs in our framework. A KBP can then
gradually be refined to a knowledge-free program. This would eliminate the need to explicitely calculate
an approximation sequence.

It may be useful to express the function � from section 3.5 in terms of automatons. The set of traces
under consideration can be defined as finite state automaton that recognizes traces from that set. An
automaton transformer is then associated with our function � . This automaton transformer might be
studied in a different setting.

In the current framework only finite traces are considered, and no fairness assumptions or progress
properties can be expressed. We consider the possibility to extend the framework to include infinite
traces and to handle deadlock and other progress properties.
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