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Abstract

In this paper, MCL (modification and creation logic) is presented,
a variant of quantified dynamic logic (QDL) with enhanced expres-
sivity. In MCL, functions and predicates can be modified by actions
f := Az.t and p := Az.p, respectively, and new objects can be cre-
ated by the action Create. This contrasts with QDL, where only
the value assignments of variables can be modified. Models of MCL
are collections of worlds which are locally models of first-order logic.
There is an axiomatisation which is sound and complete.

MCL is inspired on QDL and several other reasoning systems
about the effect of actions, such as the specification language COLD,
Gurevich’s Abstract State Machines (formerly known as Evolving
Algebras) and Dynamic Database Logic.

1 Introduction

The purpose of this paper is to present the logic MCL (modification and cre-
ation logic) in the context of other dynamic logics and related formalisms.
It is intended for any reader who is interested in the logical description of
dynamic aspects in natural language, programming languages or theories
of action. I will therefore concentrate on the main features and properties
of MCL, not on proof details (they are intended to appear elsewhere).

Like QDL, MCL is a multimodal extension of first-order logic, where
the modal operator [a] is parametrised with action expressions a. The key
feature of MCL is its rich action language, which allows for the definition
of actions that act on arbitrary (first-order) structures, not only on simple
memory structures like variable assignments (mappings from variables to
values). This makes MCL well suited for use in contexts with rich struc-
tures. See Fensel et al. 1998, where MCL provides the unifying semantical
framework for specification of reasoning in knowledge-based systems.

The rest of this section is an introduction to the main features of MCL,
starting with the syntax definition:
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terms tz= x| 1T | f(t)]|new

formulac == (t=1) [p(t) [0 A@ || Ve |la]p

actions  a:= Create| f:=Az.t|p:=Ar.p
Ollaalatala*| Urza

For simplicity, we wrote unary functions and predicates where arbitrary
arity is intended, and we shall do so in the sequel. So MCL also has, for
example, term g(t,t'), formula ¢(s,t), and the actions ¢ := Azxjz223.¢) and
a :=t. The last action assigns the value of ¢ to nullary function a. Usually,
nullary functions are called constants, but that term is not very appropriate
in this context, and we call a a programming variable, in contrast with the
logical variables z,y, ... used for quantification. We shall assume that the
signature of MCL contains a quaternary function for definition by cases,
written in mixfix notation:

Aryzw.if x =y then z else w

The basis of MCL is first order logic with partial functions, so terms may
fail to refer to a defined value. (1 is such a term; see 3.1 for more about
this.) Beside terms and formulae, we have actions in MCL. They refer
to a broad category: not only specific actions (like ‘put the block on the
table’), but also more general descriptions (or, if you want, specifications)
of actions: they may involve sequential composition (‘put the chair on the
table and then the block on the chair’), choice (‘put the block on the table
or on the chair’), and they may be impossible to perform (‘put the block
on the ceiling’). Every action a gives rise to the modal operator [a] and
its dual (a), with the intended meaning

[a]p: whenever « is performed successfully, ¢ holds;
(a)y: it is possible to do a in such a way that ¢ holds.

So, in MCL we can reason about the effect of actions after (successful)
termination. Observe that there are no other ways in MCL to construct
formulae from actions, so other aspects of actions are swept under the
carpet, such as effects of unsuccessful attempts and effects during the per-
formance of an action (these aspects are treated in process theories and
temporal logic). As a consequence, all impossible actions and all nonter-
minating actions are identified in MCL, since they have no effect. Another
consequence is that actions without effect are not an alternative in cases
of choice: so ‘put the block on the table or on the ceiling’ gets the same
meaning as ‘put the block on the table’.

What is to be changed by the actions? Answer: the universe, and
the signature elements (predicates and functions). We have the following
atomic actions

Create: add a fresh element to the universe
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f = Az.t: let function symbol f refer to Ax.t
p := Az.p: let predicate symbol p refer to Az.p.

In order to manipulate the newly added element after Create, MCL has the
atomic term new, with the following dynamic interpretation: after Create,
new refers to the fresh element just added to the universe. So we then
can handle the new element, giving it the name a by a := new, a specific
property p by p := Az.(px V = new), or sending it to some other value b
via function f by f := Az.if £ = new then b else fz.

The atomic actions in MCL have the following properties:

e they are local, i.e. they only change a specified part of the state;
e they are deterministic, i.e. they can be performed in at most one way;
e they are terminating, i.e. they can be performed in at least one way.

Making actions local is the natural way to deal with the frame problem
(first formulated in McCarthy and Hayes 1969): What changes when there
is change, and what remains unchanged? Determinism and termination
lead to predictability of atomic actions, which is an attractive property
when constructing complex actions (or programs) since it localises all im-
predictability in the choice operators +,* and U. We indicate briefly how
these properties of the atomic actions are realised, referring to Section 3
for a full treatment.

Modification. For modifications f := Az.t, locality is straightforward:
only the interpretation of the signature element that is modified (f in the
example) may change, the universe and the interpretation of the other sig-
nature elements remain the same. Modifications can be read as explicit
definitions, which are deterministic by their very nature. What about ter-
mination? One may attempt a counterexample like p := Az.—p(z), but this
is completely unproblematic, for the new extension of p is the complement
of the old extension of p. Compare this with the assignment a := a + 1,
which is a perfectly normal action (assuming that a is a number) and only
looks weird if := is misread as =.

Creation. For creation, locality is somewhat more subtle. The universe
is extended with a new element, so we have to do something to adapt the
interpretation of the functions and predicates. We choose for the general
rule: new elements behave like undefined. The interpretation of signature
elements, when applied to old elements in the universe, remains unchanged.
As a consequence, Create is deterministic. Termination presupposes that
fresh objects are always available: in the semantics this is realised with a
store of countably many fresh objects. See 3.3 for the details.

There are also actions that do not change anything (hence are deter-
ministic): tests ¢?, succeeding when ¢ holds, failing otherwise. Moreover,
new actions can be built from others with the following action operators:
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a; B do first «, then 3;
a+ B do either a or §;

«@ do « zero or more times;
Uz.a«  do « for some value of z.

Observe that +,* and U have a choice character. Some well-known pro-
gramming constructions can be expressed:

if pthenaelse Bfi = (p7;a)+ (mp?;8)
while ¢ do «a = (o7 a)*; —p?
do « until = (a;—?)*; p?

Observe that these defined operators all preserve determinism, although
they contain choice operators. Some other possibilities are

do a such that ¢:  «a;p?
do «a provided that it terminates: (((a)T)?;a) + (=(a)T)?

The expressiveness of MCL is demonstrated by the following definition of
the natural numbers (modulo isomorphism, provided there is a zero 0 and
a successor function s):

N :=Xz.{a:=0;(a:=s(a)))r=a

As a consequence, Peano arithmetic can be embedded in MCL. More-
over, many inductive definitions can be expressed in MCL, for example the
transitive closure 7" of a binary relation S:

T := Azy.(Q := \xy.L; (Q := Azy.(Szy V Tzy))")Qzy
1.1 Survey of the rest of this paper

After this general introduction, we turn to the ancestors and relatives of
MCL in the next section. Then, in section 3, we present the semantics and
axiomatisation in three stages: first the static part, then modification and
finally creation. Section 4 contains some properties of MCL: completeness,
failure of compactness and interpolation, elimination of Create. Most proofs
are only sketched. In section 5 possible extensions of MCL are discussed,
such as parallel modifications, logic programming and removing objects.
We conclude with some suggestions for further work.

2 Ancestors and Relatives of MCL

MCL is the first nor the only reasoning system about the effect of actions.
In this section, we discuss several ancestors (sources of inspiration for MCL)
and relatives of MCL.

2.1 Quantified Dynamic Logic

Pratt’s dynamic logic (Pratt 1976) is the first modal logic extension of first
order logic intended to model and reason about actions (usually called pro-
grams). Like MCL, it has modal operators [a] and the program operators
?,;,4+ and . Unlike MCL, QDL has only total functions, and its programs
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change the assignment of variables to objects, not the interpretation of
functions and predicates. Atomic actions in QDL are of the form z :=t,
with the effect that z refers to the value of . Moreover, Uz.«x is not avail-
able in QDL (but can be added easily). Harel 1984 is an extensive survey
of propositional dynamic logic PDL and quantified dynamic logic QDL; an
excellent introduction can be found in Goldblatt 1992.

We sketch the semantics and axiomatisation of QDL: much of it applies
to MCL, too. Let M be a model for the first-order part of QDL. In order
to interpret the variables, assignments are used which map variables to
values in the universe U of M. Now M is extended to a model for full QDL
by taking Var — U, the collection of all variable assignments, as its state
space (i.e. collection of possible worlds). The accessibility relations R, on
Var — U are defined inductively by

Ro—t =aet {(4 Alz = [tlazsuy]) | A € VA}

Rap? —def {(AaA) | A ': 50}

Ra;ﬁ —def Roz o Rﬁ

Roip =det BoURg

R+ =def RZ

R,.—; is a total functional relation which changes as assignment on its

value for z. R, is a partial identity function, i.e. a subset of the identity
relation. Furthermore, sequential composition ¢;’ corresponds to relation
composition, nondeterministic choice corresponds to relation union, and
repetition * is modeled by transitive closure

R ={(AA)|A=A"v A4, ... A, ((A,A)) e RA...AN(An,A") € R)}.
The interpretation of modal formulae reads
M, A [a]p =VA'((A,A") € Ry — M, A" E o).
As a consequence, the following principles are valid:
[z :=tlp(z) © o(t)

[Tt < (=)
[o; B < [o][B]p
[+ B < ([alp A [Bly)
[a*]e < (pAfa]la*]p)

We see that actions change variable assignments, and they do so locally
in a controlled way: an action can only change assignments w.r.t. the
variables that are explicitly mentioned. So, whatever may happen when
©? + (z := s;y :=t)* is performed, we know that at most the values of =
and y will be changed, not of any other variable.

Variables play a double role in QDL, being at the same time vehicle for
quantification and for assignment. (These roles correspond to the distinc-
tion made in programming practice between logical variables and program-
ming variables.) Consider Vz[z := z + 1]p(z): the z in z + 1 is bound by
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Vz, the z in p(z) by [z :=...]. An equivalent and less confusing variant is
Valy ==z + 1]p(y).

A closer look at Vz and [z := ...] reveals that it is possible to reconcile
their apparently diverse meanings, viz. by reading Vz as [z :=7] (and,
dually, 3z as (x :=7)), where the question mark ? refers to an arbitrary
object. More formally, we have

Ry—2={(s,s[x—>u]) | s€ S,ueclU}

which immediately yields [z :=?]¢ <> Yzp and (z :=7)¢ <> Jxp. This
idea (as old as dynamic logic itself, see Pratt 1976) reduces quantification
to modality: see van Benthem 1996, Ch.9 for a deconstruction of first-
order logic along these lines, yielding a plethora of (sometimes decidable)
subsystems.

We close this subsection with the observation that QDL can be em-
bedded straightforwardly in MCL by systematically replacing variables x
involved in assignment by nullary functions a: so [z := f(y)]p(z,y) be-
comes [a := f(y)]p(a,y), for example. (There are some subtle details, how-
ever: consider Vz[(z := f(z))*]p(x), which translates to Vz[a := z;(a :=

f(a))*]p(a).)
2.2 Two Software Specification Formalisms: COLD and ASM

Software specification, a subdiscipline of Software Engineering, intends
to provide high-level, abstract descriptions of the intrinsic properties of
software systems to be developed. Algebraic specification is one of the
paradigms for attaining the required level of abstraction, which has as a
distinctive feature that it concentrates on a purely functional description of
input-output behaviour, abstracting away from the notion of state. It is a
fruitful area of research and development (see Wirsing 1990), but the gap
between sound but abstract theory and the more traditional state-based
practice remains to be considered as a hindrance.

In the ’80s, several attempts were proposed to bridge this gap by extend-
ing the algebraic paradigm with a notion of state and state change. Two
of these attempts, under the acronyms COLD (Common Object-oriented
Language for Design) and ASM (Abstract State Machines, formerly known
as Evolving Algebra), will be presented here.

COLD was developed at Philips Research, mainly by Hans Jonkers (see
Feijs et al. 1987b, Feijs et al. 1987a, Feijs and Jonkers 1992). ASM is pro-
posed and developed by Yuri Gurevich (see Gurevich 1988, Gurevich 1991,
Gurevich 1995), and widely applied and extended by Egon Borger and
others (see Borger and Huggins 1998 for an extensive bibliography). The
central idea behind both is the generalisation of the machine models in
automata theory. An automaton (or machine) is an abstract entity with a
number of possible states and transitions from states to states (and often
some notion of input and output). The Turing machine is the oldest and
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most famous example, where the state consists of the internal state of the
machine and the sequence of symbols on its tape. There are also simpler
machines (finite automata, for example, with only a finite number of states)
and more complex machines (register machines, random access machines,
etc., see Hopcroft and Ullman 1979 for a survey).

Now the new idea of COLD and ASM is the following: instead of some
specific structure for the state of a machine (a one-way infinite tape, a col-
lection of registers for numbers, etc.), take an arbitrary structure, described
with logico-algebraical means (sorts, functions, predicates, equations, ax-
ioms), and change that state by changing the sorts, functions and predi-
cates. Primitive state-changing actions in COLD and ASM are: extend a
sort with a fresh object; change a function or predicate for some specific
value of its argument(s). The usual program operators of PDL apply, and
others (parallel composition) have been investigated in the context of ASM.

MCL is a generalisation of other logics based on COLD and ASM. MLCM
(Groenboom and Renardel de Lavalette 1994) was the first such attempt
and can be characterised as MCL without choice quantification of pro-
grams (i.e. the construct Uz.«) and with only pointwise modifications
f(t) := s and p(t) :¢> ¢. An attempt to formalise evolving algebras based
on MLCM is given in Groenboom and Renardel de Lavalette 1995. MLPM
(Fensel and Groenboom 1996) is a variant of MLCM with two kinds of bulk
(i.e. non-pointwise) updates for predicates, viz. p := Az.¢ (as in MCL) and
p := ex.p. The intended meaning of the latter is: p becomes a single-
ton predicate that holds only for one nondeterministically chosen object x
satisfying (. This can be expressed in MCL as follows:

p:=cex.p = Uz.(o7;p:= y.(x = y))

Related work is in Tonino 1997, where a theory of many-sorted evolving
algebras is developed comparable with MLCM), but extended with contrac-
tion updates that remove an object form a sort (see also 5.3).

2.3 Dynamic Database Logic

The contents of a (relational) database can be described straightforwardly
in first-order logic: relations become predicates, attributes become func-
tions. Extending this to database updates leads in Spruit et al. 1995 to
the development of the logics PDDL and DDL, (propositional) database
dynamic logic. In PDDL, the atomic actions are Ip (passive insertion),
Dp (passive deletion), Ip (active insertion) and DFp (active deletion).
Passive actions only affect the truth value of p; active actions, moreover,
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perform the logic program H. With help of the notation introduced in
Section 5, we can formulate this in MCL:

Ip = p=T

Dp = p:=_1

I'p = (p:=T);aH

DHp — (p:=1);aH

Here ay is the least fixpoint of the predicate operator associated with

H. In the predicate logic DDL, the atomic actions are:

&x Ipt where ¢ (insertion) make p true for all instances of ¢
with values of = for which ¢ holds;
&z Dpt where ¢ (deletion) make p false for all instances of ¢

with values of x for which ¢ holds;
&xUpt — t' where ¢ (update) make, for all values of = for which ¢ holds,
p false for the corresponding instance of ¢
and true for the corresponding instance of ¢';
fs:=t (assignment) make f(s) equal to t.

Moreover, DDL has the conditional choice construct
+x a where ¢: do «a for one of the values of x for which ¢ holds.
All these constructions can be expressed in MCL:
&z Ipt where ¢ — p:=Ay.(pyVIx(p Ay =1t))
&z Dpt where ¢ = pi=Ay.(py A—Jz(p Ay =1t))
&xUpt — t' where o = p:=Xy.((py A-Jz(pAy=1t))
V3z(p(t) Ao Ny =1t'))
f = Ax.if x = s then ¢ else fz fi
Uz.(¢?; )

fs:=t —
+z a where ¢ —
2.4 Tarskian Variations

In van Benthem and Cepparello 1994, the process of dynamification of log-
ics is considered from the perspective of Tarski’s truth definition

D, [,AE o

stating that formula ¢ holds in model M = (D, I, A) with domain D,
interpretation I and variable assignment A. Now dynamification comes
down to ‘Tarskian variation’, where one or more of the parameters D, I, A
are varied.

Variation of A is studied extensively, leading to a variety of logics: QDL,
DPL (dynamic predicate logic, Groenendijk and Stokhof 1991), UL (update
logic, Veltman 1996) and DEL (dynamic epistemic logic, Gerbrandy 1999,
Gerbrandy and Groeneveld 1997). Unlike the others, DPL and UL have no
category of action expressions, but their formulae have a dynamic meaning
expressing change potential, i.e. the ability to change anaphoric references
or information states, respectively.
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The logic TV formulated in van Benthem and Cepparello 1994 involves
modification of all three parameters D, I, A via the following actions:
nr  (change the value of A at x)
i (change the interpretation I of the signature elements)
0  (change the domain D)
Observe that nz yields local change, while y involves global change; further-
more, all three atomic actions are highly nondeterministic. Compare this
with QDL and MCL, where all atomic actions are local and deterministic.
Local versions of u are straightforward: up, ‘change I at p’. Observe
that [up] has the same meaning as the second-order quantifier Vp. Fur-
thermore, there are the variants ¢ | (‘shrink the domain’), 6 1 (‘extend the
domain’).
TV is interpreted in collections W of worlds w = (Dy, Iy, Ay). The
accessibility relations of the atomic actions nx, up, u,d are the so-called
shift relations =,, =,, =r, =p, respectively, defined by

w=gw : Dy =Dy,ly=1Iy,Au(y) = Aw(y) forally #z
w:pwl t Dy =Dy, Ap = A, Tu(q) = L (q) forall ¢ € ¥ —{p}
w =y w’ . Dw:Dwr,Aw:Awr

w=pw : L,=1ILy,A,=A,

Deterministic change of A is realisable in TV via nz; 2 = t7, provided
that = does not occur in ¢t. But that variable condition is restrictive: some-
times we want to define something new in terms of something old (the
paradigmatic example is z := x + 1). In QDL and MCL this can be
expressed directly, but in the case of TV, we have to do something like
ny;y = x?;nz;x = tly/z]? with y a fresh variable.

3 Semantics and Axiomatisation

We present the semantics and the axioms of MCL in three steps: first
the static part, then the modification part, finally the creation part. We
assume that the signature ¥ of MCL is divided in a static part X and a
dynamic part X4: only the elements of ¥; are allowed in the left hand side
of modification actions.

3.1 The static part

We assume that X, = 0, i.e. all signature elements are static. The static
part of MCL is just first-order logic with partial functions. Its semantics is
given in terms of models M = (U, %, I) consisting of universe U, undefined
object x € U and interpretation I of the elements of ¥ = ¥,. x is used to
interpret partial functions as total functions on U U {*}.

We follow the tradition that quantifiers only range over existing ob-
jects, whereas free variables may also refer to nonexisting objects (see
Scott 1979 and Troelstra and van Dalen 1988, 2.2; in Beeson 1985, both
free and bound variables refer to existing objects only). So Vz(z = x) is
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valid, whereas x = x is not. The convention w.r.t. free variables enables us
to formulate axiom schemata involving arbitrary terms that may be unde-
fined: for if p(z) is valid, then so is ¢(t) for every term ¢. It also allows for
empty domains: Jz(z = z) is not valid (but, of course, [Create]3z(z = z)
is valid, see below). The existence predicate E, defined by

Et .= Jz(z =1t)

is used in the instantiation axiom and the principle of universal gener-
alisation:

Inst (VzpAEx) — @
UG if ' ExtF ¢ and x does not occur free in I', then I' - Vzp

Here (and in the sequel) T" is some collection of formulae.

In this standard setup for the semantics for partial functions, there is
some design freedom in what to do when x acts as an argument. One option
is to work with strict functions, which yield undefined whenever one of their
arguments is undefined, so we have Ef(s,t) — Es AEt. This leads to prolif-
eration of undefinedness: every term containing an undefined subterm will
be undefined. However, there are realistic examples of nonstrict functions:
constant functions, multiplication (z - 0 is always 0), projection (Azy.z),
definition by cases (if ¢ then s else t). We take a permissive stance here
and allow nonstrict functions in the semantics of MCL. So I(f)(x) € U is
allowed.

Another design choice concerns the evaluation of equality (and other
predicates) for terms containing partial functions. Several logics exist
that have a third truth value undefined, interpreting equality as a strict
predicate. This opens many options for the definition of the logical
connectives, leading to a proliferation of alternative partial logics. The
first such logics by Lukasiewicz and Post date from the '20s, and were
followed by proposals by Kleene and Bochvar; see the survey papers
Urquhart 1986, Blamey 1986. The alternative is to stay within classical
logic with two truth values, roughly by identifying the undefined truth
value with false: so t = ¢ is true only when ¢ has a defined value, and false
otherwise. This is the approach in Scott 1967, Scott 1979, also adopted in
COLD (see Koymans and Renardel de Lavalette 1989 for the logic under-
lying COLD).

Here we choose to stay close to classical logic and to work with the
traditional truth values, interpreting equality as a nonstrict predicate sat-
isfying

Eq Vzz=2)A(z=y—-y=x)A(z=yAy=2z—>2=2)
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So we sacrificed full reflexivity, but that property is met by weak equality

~-

(s~t):=(EsVEt)>s=t

which is to satisfy the congruence properties:

Congr z~y— fx=fy (for all functions f)
(x ~yApzx) —»py  (for all predicates p)

Finally, there is an axiom for undefined:

Undef —(z=7)

3.2 The modification part

We turn to the modification part, so we forget about Create for the time
being. The fundamental idea is: modification is realised by transition
from some world w = (U,,I) to another world. So, for the semantics
we need a collection W of worlds, and accessibility relations R C W? for
the interpretation of actions. Neither the universe nor the static part of
the interpretation will change under the modifications, so U, x, Is are the
same for all elements of W. As a consequence, we may identify W with a
collection of interpretations Iy of the dynamic signature elements, and we
have models of the form M = (U, x,I;,W). M is called a natural model
when W is the collection of all possible interpretations of X4 in U U {x}.
In the sequel, we mainly work with natural models.

A consequence of having constant universes is the so-called Barcan for-
mula for atomic modifications p (not containing x free):

Barcan Vz[ulp <> [u]Vze

Atomic modifications are to be local, so if p := Az.¢ brings us from I to J
then I, .J should behave the same on ¥4 — {p}, i.e. I =, J (with =, as de-
fined in 2.4). Analogously for f := Az.t. So the following frame conditions
are satisfied:

FrC ¢ & [f:=Aztlp (f not in ¢)
¢ < [p:=Azaple  (pnotin ¢)
The desired behaviour of atomic modifications is captured as follows:
Mod [f:=Xzt](fr=y) ¢ t=y
[p:=Az.plpz & ¢
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for all f,p, all p and all y,¢ with y not free in . Observe that it is not
reasonable to expect

[a:=tla =t,
[p := Az.p|Vz(pz <> )
in case a occurs in ¢t and p in . To see this, take a + 1 for ¢, —p(z) for
p and we get

[a:=a+1la=a+1,
[p := Az.—pz]Ve(pr < —px)

which is very undesired indeed.

3.3 The creation part

Finally we deal with Create and expanding universes. We distinguish be-
tween the static and the dynamic part of the universe. The static part
U U {*} is there ab initio, being the habitat of the interpretations of the
static signature elements. The dynamic part consists of the newly created
elements. They are provided by a store V' = {vy,v2,v3,...}: a Create ac-
tion adds the first fresh store element to the universe. So the dynamic part
of the universe is an initial segment V,, of V', where n corresponds with the
number of applications of Create.

As a consequence, a world w has a universe U, = U U {x} UV}, for
some 1, and an interpretation I of the dynamic signature elements in that
universe. So any world can be represented as w = (n, I3}, and a model is a
tuple (U, x,V,I;,W) where W is a collection of worlds. I is extended to
an interpretation of the static signature in world w by the principle a new
element behaves like undefined, so I;(f)(v,) = I;(f)(x) for all n. A model
is natural when W is maximal, i.e. contains all pairs (n,I;) with n € N
and I; an interpretation of ¥4 into U,.

Now that we have models with expanding universes, what to do with
variable assignments? The local solution of TV, see 2.4 (each world has
its own variable assignment) does not work well here, and we choose for
the global option: assignments map the variables into the global universe
U U {x}UV, and they are relativised to A,, w.r.t. world w by treating not
yet created elements as undefined:

Ap(z) = A(z) if A(z) € Uy
= % if A(z) ¢ U,
The interpretation of new in world (n,I;) is simply v, and Create is
interpreted by
{((n, 1a), (n +1,1) € W? | Ig = I | Un, Yo € Baly(0)(vns1) = I3(0)(%)}

Observe that the last part of this definition indeed reads the new element
behaves like undefined, and that I = I); [ U, implies that v, 41 is not in the
range of I';(f) for any f € X4. This leads to the following axioms C1-5:
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Cl <z =y ¢+ [Create](z =y # new)

C2 px + [Create]pz

C3 [Create]E(new)

C4 [Create](f(z) # new A f(new) ~ f(1))

C5 [Create](p(new) < p(1))
C1-2 say: Create does not affect any predicate, except equality w.r.t. new.
C3 says that, after Create, new refers to an existing object (which differs
from all old objects, by C1). Finally C4-5 say that, after Create, new

does not occur in the range of a function, and behaves like undefined w.r.t.
predicates and functions.

As explained in Section 1, we want all atomic actions 7 (i.e. modifica-
tions and creations) to be deterministic and terminating. This is axioma-
tised by

Det  (m)¢ = [n]p
Term (m)T

In natural models, these are valid.

3.4 Interpretation of MCL

For completeness’ sake, we give the interpretation of terms, formulae and
programs in world w = {n,,, I,,) from model M = (U, *,V, I,,W), and M-
assignment A. For brevity, we shall write o, for I,,(c) (if o € X4) or I5(0)
(if o € ).

[[x]]UMA = Ay(z)
[[ﬂ]w,A = x
[new]w,a = wn,

[[ft]]w,A = fw([[t]]w,A)

w, A= (s=1) =aet  [5]w,a = [t]w,a # *

w, A |=pt =def Puw([t]w,a) = true

w,A =g =gef not (w, A }= )

w,AFE QAN =g w,AFE¢and w, A1

w, AEVrp =g forall u € (U, \ {*})(w, Alz = u] |= )

w, A = [a]p =det forall w' € W(wRy aw' = w', A = ¢)
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RCreate7A =def {(w,w') e w? | I, =1, | Uy,,

Vo € E4Ly (0)(ny1) = Ly (o) (%)}
Rf::Ax.t,A =def {(w,wl) ew? | w =y wl’

Vu € Uy (Lw (f) (1) = [t]w,afzu)}
Rp—rapa =det {(w,w') e W? |w =),

Vu € Uy (L (p)(u) & w, Alz = u] |= @)}

R@?,A =def {(waw) | w, A ': (p}

Rap,a =det Ra,a0Rpga

Roip,a =def Ra,aURga

Ro+.a =det I, 4

RUm.mA =def {(w;wl) | exists u € (Uw - {*}) ’lURa,A[zHu]wl}

Observe that the interpretation of actions depends on the variable as-
signment.

3.5 A proof system for MCL

We give a proof system for MCL, based on sequents I' F . The axioms
are: the propositional tautologies, Inst, EQ, Congr, Undef, Barcan,
FrC, Mod, C1-5, Det, Term, furthermore

TAX  [p7 & (¢ = )

AX o5 8e < [o][Ble

+AX  [a+Ble < ([ele A Ble)

"AX o] & (e Ala]lat])

UAX [Uz.a]p < Vz[a]p  (z not free in )

and the repetition axiom
INF {[a"]¢|n € N}F [a*]p

The proof rules of MCL are: UG, necessitation
NEC ifT'F ¢ then [a]T F [a]g

modus ponens, weakening, the infinitary cut rule

CUT ifTlFpforall p € Aand I'AF ¢ then ')

the deduction rule

DED ifT,pF¢thenT k¢ — ¢

and finally the substitution rule

Subst if ['F ¢ then (¢/z)T' F (¢/z)p
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With this last rule, we have to be careful. It is possible to substitute a
term at an occurrence in the scope of an action that changes one or more
signature elements of that term. Consider (a/z)([a := t]pz): it will result
in the formula [a := t]pa, where a has been brought in the scope of the
program a := t. By FrC, we have - pz < [a := b]px; with the unrestricted
substitution rule, we would have F pa + [a := b]pa and also - pa + pb
(via Mod), which does not hold in general. Therefore we restrict the sub-
stitution rule to safe substitutions, where this kind of (usually undesired)
dynamic binding cannot occur. See the Appendix for the formal definition
of safe substitution.

4 Properties of MCL

In this section we present some theorems about MCL and weaker theories.
Most proofs are sketched.

Theorem 1 MCL is a normal multimodal logic, i.e. we have

Flal(e = ¢) = ([a]p = [a]y)
Fo = Flaje

Proof. This follows directly from MP, NEC and DED. a

Theorem 2 The aziomatisation is sound and strongly complete w.r.t. nat-
ural models.

Proof. Soundness, i.e. the property I' F ¢ = T | ¢, can be proved as
usual by induction over the size of a derivation of I' - . For Subst, the
following substitution properties are used (assuming that (¢/x) is a safe
substitution for ¢ and a):

[(t/2)s]w,A = [sluw,ale1t10,4]
w, A= (t/r)p < w,Alz = [tleal E e
WR(t/p)a, AW & WRy Alpes 1] 40

Strong completeness (I' |= ¢ = I' I ) is proved via the construction
of maximal consistent sets of formulae in an extension of the language
with Henkin constants, along the lines of Goldblatt’s proof for the weak
completeness of QDL in Goldblatt 1992, ch. 14. In the resulting model, the
worlds are characterised by deterministic programs (not containing +,* ,U):
an essential property is that every program is equivalent with the (infinite)
sum of all deterministic programs contained in it. O

Theorem 3 MCL is not compact.

Proof. {[a™]p | n € N} I [a*]p, but there is no finite subset of {[a™]p | n €
N} which entails [a*]p. O

Theorem 4 MCL fails to satisfy the interpolation theorem.
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Proof. 1t is a folklore argument that any consistent logic with a finitary
syntax and containing Peano arithmetic refutes interpolation, and it runs
roughly as follows.

Beth’s theorem (stating that every implicitly definable predicate has
an explicit definition) is a consequence of interpolation, so it suffices to
give an implicitly defiable predicate which has no explicit definition. MCL
contains Peano Arithmetic (see the remark at the end of Section 1), so
the syntax of MCL can be encoded in MCL, and we can give an implicit
definition of a truth predicate. But, according to Tarski’s theorem, an
explicit truth definition cannot exist (for it leads to contradiction via a
diagonal argument). See also Renardel de Lavalette 1989, 6.4. ]

The culprit in the last two theorems is the repetition construct *: we
conjecture that compactness, and interpolation hold for MCL minus *. This
is evidently the case when Create is omitted, too, since the resulting logic
is a definitional extension of first-order logic, as we shall see below.

Now we turn to subtheories. Let MCL™¢ be MCL without Create, with 1
added to the static signature and new, E added to the dynamic signature.
Models of MCL™¢ are of the form (U,I,W), where U is the universe, I
the interpretation of the static signature elements and W a collection of
interpretations of the dynamic signature; in natural models, W contains all
dynamic interpretations over U. The axiomatisation of MCL~¢ is like that
of MCL, but with the usual axioms and rules for equality and quantification
(i.e. not referring to E and ~). So MCL™¢ extends first-order logic.

Theorem 5 MCL can be embedded in MCL™¢.

Proof. The idea is to emulate MCL in MCL™¢. For this purpose, we add the
unary functions s and [ to the static and the dynamic signature, respec-
tively. s is to act as a kind of successor function on the part of the universe
that plays the role of the store, and [ is used to imitate the localisation A,
of assignment A in world w. The required properties of 1, E, new, s, [ can
be expressed in one MCL~¢-formula #. As an example we give the part of
6 which enforces that {z | sz # x} can play the role of the store:

Vzy(sz = sy — ¢ = y) A s(new) # new A
[(new := s(new))*](s(new) #1 A—=Es(new))
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Terms, actions and programs from MCL are interpreted in MCL™¢ via
the mapping ~°¢. Its nontrivial defining clauses are

x— ¢ = lz

(s=t)7¢ = Es °AEtT°As¢=t°¢
(Vzp)~¢ = Va(Ex — ¢p7°)

([dp)™ = [aJe™°

Create™® = new := s(new);

E:=Az.Ez Vz = new;
[ := Az.if £ = new then zx else [z
(Uz.a)~¢ = Uz.(Ez?;a7°)

So all variables in the interpretation occur in the scope of [ or E. The
interpretation of Create reads: let new refer to the ‘next’ element in the
store, extend E with that element and adapt the localisation function .

The transformation M ~¢, w™¢ of MCL-model M and world w is straight-
forward, and we have, for all M, all w in M and all :

M~ w " kEf
MwEp & M Cw e

Finally we claim
FFe&e 0k °.

The = part is proved with induction over the derivation of I' F . The
< part is proved via contraposition. Assume I' I/ ¢, then (by completeness
of MCL) there is a model M with a world w such that M,w =T and M, w |=
. So thereisamodel M~ ¢ with M~ ¢,w T cand M~ w™ ¢ | np~°
and also M ¢, w=¢ = 6. So (by soundness of MCL™¢) T'=¢, 0 I/ p—°. O

Theorem 6 MCL can be embedded in L, , first-order predicate logic with
countably infinite conjunctions.

Proof. By the previous theorem, it suffices to give an embedding ¥ :
MCL™¢ — L,. The embedding uses function substitution (Az.t/f) and
predicate substitution (Az.p/p). The essential defining clauses for these
substitutions are

Azt/f)fs = ((Az.t/f)s/z)t
(Az.p/p)ps = (s/7)p
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Now the definition of Y. The nontrivial defining clauses are those for
formulae [a]ep:

([f = Aztl0)" = ((Azt/f)e)"
([p:=Azd]p)T = ((Azy/p)p)T
([¥7))" = 7 =o'
([ Bl) " = ([o]([B])")T
([a + Blp)" = (lao)" A ([Ble)7
([a])" = " A([edp)" A([a;alp)T
([Uz.ap)” = Va(la]p)"
So applying Y removes all programs with the help of substitution. Prov-
ing the correctness of the interpretation is straightforward. O

Theorem 7 MCL without Create and * is a definitional extension of first-
order predicate logic.

Proof. This is is an easy consequence of the proof of the previous theorem,
by observing that ¢V is finite whenever * does not occur in . O

5 Extensions
5.1 Parallel modifications

When several atomic modification programs affect different signature ele-
ments, they can be performed in parallel. E.g., for two function modifica-
tions f := Az.s, g := Ay.t this can be written as f := Az.s,g := A\y.t. (In
the context of evolving algebras, this construct is called the join.) It has
the following semantics (writing « for f := Az.s, g := Ay.t):

Ra,a = {(waw[f = Au € Uw'[[s]]w@[z»—m]][g = Au € Uw'[[t]]w7a[y>—>u]]) | w e W}
satisfying (z not free in s,¢ and f, g & sig(A4))
[dlfr=zcs5=2
[algy =z t=2
A+ oA
Vz[a]B + [a](VzB)

See Groenboom and Renardel de Lavalette 1995 for more about this
parallel construct.

5.2 Logic programming via least fixpoints of predicate operators

The meaning of a logic program H can be defined as the least fixpoint of a
continuous predicate operator associated with H, and this can be expressed
in MCL as follows. If Ap.\z.A defines a continuous predicate operator, then
its least fixpoint fix(Ap.Az.A4) is definable in MCL as follows:

fix(A\pAz.A)z < ((p:= Az.L); (p := A\v.A)*)px
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Now, if the logic program H defines one unary predicate, and has the
form
p(tl) — A1
p(tg) — A2

where A; and/or A2 may contain p, then the meaning of H is the least
fixpoint of the continuous predicate operator

)\pACU((Cﬂ = tl A Al) \ (ZIZ = t2 A AQ)),

hence is expressible in MCL.
If H defines more than one predicate, and has the form

p(tl) — A1
q(t2) <~ A

where A;, A> may contain p,q, then its meaning is obtained via the
program

ol ==Xz Llg:=X x.l);(p:=dr.(x=t; AAy),q:= Ax.(z =ty A Ay))*
by taking (o )pz, (af)qy for the meaning of H.
5.3 Removing objects

Let us now consider the possibility of removing objects with the action
Remove(t). Its intuitive semantics reads: identify [¢] with the undefined
object x. To make this work, the notion of model must be generalised to
allow for worlds with local universes of the form (U UV,) — X where X
is some finite set. We expect that this can be done in such a way that
Remove is both deterministic and terminating. Other expected properties
of Remove are:

x =y # z + [Remove(z)]z =y
[Remove(t)]p(z) — p(x)
Vz([Remove(t)|Ex <> = # t)

5.4 Adding and removing many objects

Create and Remove handle one object at a time. With the repetition con-
struct *, it is possible to create or remove finitely many objects, viz. with
the actions Create™ and (Uz.Remove(z))*. (Observe that Remove(t)* does
not work: it has the same effect as Remove(t).)

If we want more, we can introduce the actions Add and Remove, cor-
responding with § 7 and § | from 2.4. With Add, it is useful to have the
unary predicate New available, which holds for all newly added objects: so
we , for example, Vz([Add]-New(z)).

But other variants are also imaginable: Addinf(adding an infinite num-
ber of objects to the universe) and Remove(Az.p) (removing all objects
satisfying ). Observe that, slightly paradoxically, we do not have

[Remove(Az.p)|Vz—p(x)
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to see this, take ¢ := =Jy.Rzy and consider a world with universe {a, b}
where R is interpreted by {(a,b)}; then the extension of ¢ is {b}, so after
Remove(Az.p) we are left with a world with universe {a} where R is empty,
so ¢ holds for a.

6 Concluding Remarks

In this paper, we extended first-order logic — the workhorse for the appli-
cation of logic in computer science, linguistics and artificial intelligence —
with features intended for the description, analysis and unification of the
numerous dynamic phenomena that occur in these disciplines: modifica-
tion (of references, situations, contexts, memory states, database contents,
information states, etc.) and creation (of pointers, records, referents, as-
sumptions, hypotheses, information items, concepts, etc.). This resulted in
the orthogonally designed logic MCL with a sound and complete axiomati-
sation.

Furthermore, we made a beginning with the unification of logics dealing
with dynamics by indicating how QDL and DDL can be embedded in MCL.
It will be interesting to try to do the same with DPL and DELFor DPL, it
will be useful to add to MCL expressions a < 3 with the intended meaning;:
all a-alternatives are J-alternatives. Embedding DEL in MCL will be more
involved and may require recursively defined actions.

Another direction of research is extension of the action language. Some
suggestions: action operators for parallel composition and removal of ob-
jects, effects during actions, attemptive actions, actions with so-called mod-
ification rights (indicating globally what may be changed by an action and
what not, as in COLD).

We end with some more technical problems: prove compactness and
interpolation for MCL without repetition, and determine the proof-theoretic
strength of MCL (see Harel 1984, 3.2 for related work on QDL).
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Appendix: definition of safe substitutions

Here we define the class of safe substitutions, announced in subsection 3.5.
The idea is: a substitution is safe when it does not bring signature ele-
ments in the scope of actions that may modify them. For this purpose, we
introduce the mappings fvar, sig", change and mod. fvar(y) is the collection
of free variables occurring in ¢, idem for fvar(a). sig™(¢) is the collection
of extended signature elements (i.e. elements of ¥ U {new}) occurring in
t. change(a), an auxiliary mapping for the definition of mod, contains the
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extended signature elements that are (possibly) changed by «. It is defined

by
change(Create)
change(f := \z.t)
change(p := Az.p)
change(y?)
change(q; 3)
change(a + 3)
change(a™)

change(Uz.«)

{new}
{r}
{r}

0

change(a) U change(f)
change(a) U change(f)
change(a)
change(«)

mod(x, ) is the collection of extended signature elements that may un-
dergo modification at some free occurrence of z in ¢; similar for mod(z, a).

mod(z, a + 3)
mod(z, a*)

mod(z, Uz.)
mod(z, Uy.a)

0

0

mod(z, ¢)

mod(z, ) U mod(z, )

0

mod(z, ¢)

mod(z, a) U mod(z, ¢) U change(a)
mod(z, &) U mod(z, )

U change(a)

Now we define safe substitution by

(t/x) is safe for every term;
(t/z) is safe for formula ¢ whenever sig* (t) N mod(z, @) = 0;
(t/z) is safe for program a whenever sig* (t) N mod(z, ) = 0.

ifyZzx
if z € fvar(y)

if = & fvar(p)

if x € fvar(p)
if z & fvar(f)

if z € fvar(a)
if x ¢ fvar(a)

ifyZz



