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Abstract

The author establishes a connection between Revision Theory of Truth and Infinite Time Turing Machines as devel-
oped by Hamkins and Kidder.
The ideas from this paper have incited Welch to solve the limit rule problem of revision theory.

Keywords: Revision theory of truth, infinite time Turing machines, definability.

1 Introduction

First-order definitions and even inductive definitions using the second-order induction
scheme are neither sufficient for scientific discourse in general nor for the technical appli-
cations using computers to check properties which seem to be simple from a heuristic stand-
point.! Many natural-language notions use some degree of circularity or impredicativity in
their definitions. One of these notions is the notion of truth, if you consider TRUE to be a
predicate of sentences (i.e., natural numbers via Godelization): If your language contains
a truth predicate you will necessarily run into sentences asserting truth of sentences, so to
determine their truth values you have to already know the extension of the truth predicate.
Consequently, building on the theory of inductive definitions and the work of Martin,
Woodruff and Kripke,? Herzberger developed a theory called ‘Naive Semantics’ that went
beyond inductive definitions.? This theory was further refined by Gupta and Belnap in [7],
[3], and [8], where they call the system ‘Revision Theory of Truth’ and develop their seman-
tic systems S* and S# that allow an analysis of definitions that would be logically illicit in
classical definability theory. In fact, the aim of this enterprise is even more aspiring:

‘The key to the proper resolution of the problem of truth and paradox lies, in our view,
in the theory of definitions. [8, p. 113].

Their focus on the question of truth leads to a certain disrespect towards the definability as-
pect of their work, although the definability aspect is a natural feature of the theory (being a
generalization of inductive definability with its extensive literature on definability and com-
plexity questions). In this paper we shall stress the question ‘Which sets of natural numbers
can be defined using a Gupta—Belnap definition?’ (as opposed to the question ‘Which sen-
tences are true in a Gupta—Belnap semantic system?’).

ISee, e.g. the Ehrenfeucht—Fraissé proof that the notion of connectedness for finite graphs is not first-order
definable, cf. [6, §1].

2[16] and [15].

3[11] and [12], especially [11, p. 485 and 489] where the reader can find pictures of what was to become the
Revision Sequences of [8] and Definition 2.3.
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Roughly speaking (we shall make this more precise in subsection 2.2) a property P of
natural numbers is said to be revision theoretically definable if there is a formula ® (possibly
containing a symbol for P) such that a natural number n has the property P if and only if n
is in every reasonable approximation for the extension of ®, where ‘reasonable’ means that
the approximation h reoccurs in a transfinite sequence of iterated applications of & starting
from h.

We will show that the Gupta—Belnap revision sequences are deeply connected with the
Infinite Time Turing Machines defined by Hamkins and Kidder. # This fact is intuitively plau-
sible: with Turing machines consisting of a finite program (corresponding to the formula ®
in the description of revision theoretic definability) being applied iteratively, their general-
ization to transfinite computation sequences of ordinal length looks just like the ‘transfinite
sequence of iterated applications of ®’ in Revision Theory. We will add some substance to
this intuition in Section 4.

This connection and the fact that there is a nice structure theory of Infinite Time Turing
Computability give rise to possible applications:

The profound analysis of the lengths of Infinite Time Turing Computation gives hopes that
the lengths of (the relevant part of) revision sequences can also be understood.

Even more so, Welch’s theorem that Infinite Time Turing machine architecture is somewhat
robust with respect to changing the limit rule (Theorem 3.7) seems to point into the direction
of the limit rule problem of Revision Theory: there has been a discussion> whether changing
the limit rule for revision sequences might change the semantic content of the definability
notions in a relevant manner.

When sections 1 to 5 of this paper were prepared (Spring 1999), the author already sus-
pected that a refinement of the methods of Section 4 might lead to a solution of the limit rule
problem. When the paper was presented as a talk at the workshop “Nicht-klassische For-
men der Logik” at the XVIII Deutscher Kongreffiir Philosophie in Konstanz (October 1999),
the problem had been solved by Philip Welch. The newest results are briefly mentioned in
Section 6.

For the paper to be understandable to readers from both Revision Theory and Computabil-
ity Theory we try to give a rather long introduction to both areas omitting almost all proofs.

The main part of the paper is the construction of the Turing machine M ¢ , in Section 4 in
which we tried to suppress most of the tedious details of storing and copying information.

2 The Gupta—Belnap systems

2.1 Revision sequences

The Revision Theory of Truth as laid out in [8] is very general as it allows definitions of
the extensions of arbitrary predicates over arbitrary models (of arbitrary languages), and uses
arbitrary many-valued logics. To simplify notation (and to stress the similarity to Turing
machines which are normally used to compute subsets of the natural numbers), we shall
restrict ourselves to the most basic case throughout this paper; the ground model will be N,
the set of natural numbers, our predicate & will be unary, and the logic will be classical two-
valued logic. Thus the extension we want to define will be a subset of N. As usual in set

4Cf. [9].
SCf. [4] and [22].
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theory, we call these objects ‘real numbers’, although they are not exactly real numbers in the
sense of real analysis (but rather elements of the Cantor space).

We fix a base language £, and let £* be the language £ augmented by the additional unary
predicate symbol & whose extension we want to define.

Gupta—Belnap definitions can be seen as a generalization of inductive definitions; in an
inductive definition® we construct a monotone operator M : R — R derived from a formula
in the augmented language £* and define the extension of & to be the least fixed point of M
(starting with the empty extension) which must exist since M/ was monotone.

In the Gupta—Belnap approach we discard the assumption of monotonicity and have to
replace it by a closer analysis of the starting extensions.

As in the inductive case, let ®(vg) be a formula of £*. Then we shall say that a function
0 : R — R is the revision operation determined by & if

k€ds(z) <= (N z) = ®[k]

for all real numbers 2. (Again, note that elements of R are identified with subsets of N.)

For revision operations  : R — R we use the obvious notation for the iterated application
of §. In the following we will consider sequences of real numbers § = (s ;@ € 1) where
n is either a limit ordinal or the class of all ordinals.” These sequences are interpreted as
approximations to our final interpretation of the predicate 2.

DEFINITION 2.1

Let §'be a sequence of real numbers of length 1 ( might be the class of all ordinals), and let
d be a natural number. We shall say that ‘d € &’ is §-stably true if there is a 3 such that for
all @ > 3 we have d € s,.

Likewise, we shall say that ‘d € &’ is §-stably false if there is a 3 such that for all & > 3 we
have d ¢ s,.

DEFINITION 2.2
Let § be a sequence of reals. Then a real A is said to be 5-coherent (in symbols: Coh(h, 3))
if for all natural numbers d the following hold:

1. If ‘d € &’ is §-stably true, then d € h.
2.1f ‘d € &’ is §-stably false, then d ¢ h.

DEFINITION 2.3
Let 5 be a sequence of reals and ® a formula of £*. We shall call 5’a ®-revision sequence if

1. For all ordinals a, we have o1 = 0o (54)-
2. For every limit ordinal A, we have that s is §]A-coherent.

In light of the question of the limit rule (discussed later), a revision sequence of the de-
fined kind might be called an unrestricted revision sequence. To prepare for the limit rule
problem, we introduce restricted revision sequences.

Following [4, p. 400], we shall call a function - assigning to a sequence of reals § of limit
length \ a real () that is §~coherent a bootstrapping policy. If " is a class of bootstrapping
policies, then we shall say that §'is a (®, I'}-revision sequence if it’s a ®-revision sequence
and there is a v € T such that for each limit ordinal A we have s = y(5TA).

5Ct. [17].

70f course, revision sequences of successor length can be easily extended to revision sequences of limit length,
so these are the only ones we have to think about.
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The most interesting cases are the class I', of all bootstrapping policies (being a ®-
revision sequence and being a (®, I )-revision sequence are the same), and the one-element
classes where we have one particular limit rule applied in all limit stages.

At this point we single out the class I'g := {7} where 7 is the liminf rule (i.e., exactly the
stably true formulae hold in the limit stage). The limit rule g is the minimal bootstrapping
policy in the sense that all others let more formulae be true in the limit. 'y will play a decisive
role in the construction of Section 4.8

DEFINITION 2.4
Let ® be a formula of £*.

1. We shall call areal h {®, I')-recurring if h occurs cofinally often in some (®, I')-revision
sequence § of length Ord. The set of (®, I')-recurring reals will be denoted by Rec r(®).

2. Areal his called (@, I')-reflexive if there is some ordinal & > 0 and some (®, I')-revision
sequence § such that sg = s, = h. We shall call the least such « the (@, T')-reflexivity
of h, in symbols reflg p (h).

In the following we state a couple of simple consequences of the basic definitions. Proofs

of these easy facts can be found in [8]:

PROPOSITION 2.5

Let 5 be a sequence of real numbers. Then the following are equivalent:
1. ‘d € &’ is §-stably true,
2. for all h occurring cofinally often in § we have d € h.

PROPOSITION 2.6

For any real h the following are equivalent:
L. his (®, T« )-recurring,
2. his (@, T o )-reflexive.

The use of the Belnap rule I' o, in Proposition 2.6 is important. The conclusion is provably
false for some other rules, including the Herzberger rule I' .’

PROPOSITION 2.7
If h is (@, T')-reflexive then refle r(h) < w.

2.2 The systems S* and S*

Now we define the semantic relation for the Gupta—Belnap systems S # and S*:

N ST ¢ <= Vh € Recr(@)Invp > n((N, 8% (b)) |= ¢),

and
NS ¢ < VheRecr (2)((N,h) = o).

8The rule I'so was the original rule used in [8], and it is called the Belnap rule. Herzberger in [11] used the rule
I'o whence we call it the Herzberger rule. In [11, p. 487], Herzberger compares his liminf rule to Kripke’s limsup
rule of inductive definitions from [15].

918, p. 175].
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We shall say that a real number z is S# -definable (S--definable) if there is a formula of £*
such that for all natural numbers n the following holds:

# .y
nez < NE3pnes

(nez = N|:§)}‘ne:b’).

In the following, we shall omit I in the notationif I' = T" .

Of course, if ¢ is a sentence not containing  (i.e., a sentence of £), then N |= %,r @ if and

only if N |= ¢, 50 {¢; N |z§fr ¢} does contain the true sentences of arithmetic. Thus, by
Godel’s Incompleteness Theorem it can’t be first-order definable.
Kremer and Antonelli in [14], [1] and [2] progressed further along this line and showed
that {¢; N =S¥ ©} is ITi-complete. 1°
From our definability standpoint, the most interesting open question about the complexity
of revision theory is: ‘What reals are S# - (St-)definable?” More precisely, this innocuous
question is a vast array of questions. Not only can we try to compute the set of S # -definable
reals for all sorts of I, but we can ask the question
Under what circumstances (i.e., what conditions do we have to impose on I') is S 1# -
definability equivalent to S #-definability?
This question keeps us very close to the limit rule question: there have been various proposals
for the most natural choice of ', and it is still under discussion for which I the system S # is
most natural.'!

If we fix I' := I', we can (just by counting quantifiers) make the following immediate
observation:
PROPOSITION 2.8
The sets {¢; N =57 ¢}and {¢; N|=§ 1 o} are ITL.
PROOF. Using Proposition 2.7 and Proposition 2.6 we can transform the definition equiva-
lently to the form

Vh((Ba <wi(35€ (R)*T (VB < alspgr = da(sp))

A VA < a(Lim(X) — Coh(sy, 5TN))
A Sp =Sq =h)) )

= (Invp > n((N,d5 (h) = ¢)) )
for S# and

Vh((Ba <wi(35€ (R)*T (VB < alspgr = da(sp))

A VA < a(Lim(X) — Coh(sy, 5TN))
A Sp =Sq =h)) )

- (Nh)Ey)

OFor a weaker result with proof, cf. Proposition 2.8. The Kremer—Antonelli result is not only stronger but
also much more general since they do not restrict their attention to the standard model N. Furthermore, Kremer’s
completeness result extends to a broader class of revision theories he calls plausible revision theories, cf. [14,

p-590sqq]. N \:gfr is a plausible revision theory for arbitary I', hence these relations constitute H}—complete sets.
11
Cf. [4].
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for S*.

To compute the complexity of these formulae, first note that the function 6 ¢ doesn’t add
complexity since it is first-order definable (via ®).
Now both formulae are of the form

vh ((Ja <wi359(a,5,1) - B (1),

where W is arithmetic in its arguments (already assuming that ordinal quantifiers bounded by
a will be natural number quantifiers after coding {«, €) as a real). Note that the satisfaction
relation in (N, h) is A{(h), so the ¥*-part doesn’t add complexity either.

Now we code the countable ordinal by a real and receive

Vh ( (Jy(WO(y) A I7T(a, 5, b)) — \P*(h)) .

Thus the premiss of the implication is 3(IT} A 1) which is X3, and hence the whole
formula is I1}. i

This computation gives an upper bound for the complexity of any given S #-definable real:

COROLLARY 2.9
Every S#w -definable real (and every S§.__ -definable real) is a I11 real.

PROOF. By definition, areal z is Sl#oo -definable if and only if there is a formula ® of £* such
that for all n

nex <= NE3r_ ‘nei.

But by Proposition 2.8, the right-hand side is IT3. [ |

What is to be said about lower bounds? Using an idea of Gupta, Kremer has proved that
every inductively definable real is S#-definable.'? Since inductive definability over N and
being I1} coincide,'? we have a lower bound for the complexity of S #-definability. It was
unknown until very recently '* whether there were more complicated S #-definable sets (see
Section 6).

3 Infinite time Turing machines

The notion of an Infinite Time Turing Machine is a natural generalization of the ordinary
Turing machines that constitute our basic model of computation. Jeffrey Kidder and Joel
Hamkins blended the fields of Recursion Theory (Computability Theory) and Set Theory by
allowing their Turing machines to resume their computations after infinitely many steps and
start at limit steps in a specified limit stage.'”

Although probably technically of no importance, ' the investigation of Infinite Time Tur-
ing Machines is motivated by certain philosophical thought-experiments using the Lorentz

12Cf. [14, p. 590sqq.].

13Cf. [17, p. 20 and p. 24sq.].

l4cft, [21).

3¢t [91.

16«“Thompson lamps, super 7 machines, and Platonist computers are playthings of philosophers; they are able to
survive only in the hothouse atmosphere of philosophy journals. In the end, [Malament—Hogarth] spacetimes and the
supertasks they underwrite may similarly prove to be recreational fictions for general relativists with nothing better
to do. [5, p.40]”
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contraction of spacetime to fit a countable sequence of time intervals into a finite time inter-
val (according to the timeline of a different observer), or, more in the language of general
relativity, to fit the entire future time cone of one observer into the past time cone of a second
observer.

Readers interested in this basic background are referred to the introduction of [9], and the
papers [5] and [13].

In the following, we shall assume that the reader is familiar with the basic theory of ordi-
nary Turing machines. '’

An Infinite Time Turing Machine works like an ordinary Turing machine—it has a finite
program including a specified finite set of states, one of these states is a HALT state telling
the program to stop, and in addition to that, it has an infinite tape for output.

The content of the infinite tape of a Turing machine can be seen as a real number. We shall
identify the tape with this real number at numerous points in the construction of Section 4.
If we have an Infinite Turing Machine Computation of ordinal length a with a tape labeled
z, and 3 < a then we shall denote the snapshot real at time 3 with 2. We can (and shall)
go even further: If we have an Infinite Time Turing Machine with a tape that is split into
countably many infinite components (x ;;4 € I}, then we shall denote with :cf the real that
constitutes the snapshot of tape z; at the time £3.

There is no difference between Infinite Time Turing machines and ordinary Turing ma-
chines in the part of the Infinite Time Turing machines described up to now. The only differ-
ence from ordinary Turing machines is the Infinite Time Turing machine’s LIMIT state, and
the fact that if the computation doesn’t reach the HALT state at any given § < A for a limit
ordinal A, then it will go into the LIMIT state and set all cells according to the limsup rule:
every cell gets the limes superior of the cell values at the stages below A; in other words: if a
cell contains a 1 cofinally often, it has 1 in the limit.

As in the standard case we can define Infinite Time Turing Computability as follows:

DEFINITION 3.1

A real z is Infinite Time Turing Computable if there is an Infinite Time Turing Machine
that produces, starting from the empty input, the real = on the tape at the time it reaches the
HALT state.

This definition immediately leads to Relative Infinite Time Turing Computability (denoted
by <%) and a degree structure as for the ordinary Turing degrees.

At present, the structure theory of Infinite Time Turing degrees is only of marginal impor-
tance to the results of Section 4. But since the main aim of this paper is to open up a possible
area of applications of the field of Infinite Time Computability theory to Revision Theory, it
seems reasonable to give the reader a faint idea about what is known in the former area. Thus
we briefly describe what is known without any proofs.

Hamkins and Lewis'® and (following a visit of Joel Hamkins to Kobe in the year 1998)
Philip Welch provided us with an abundance of structure theoretic results about Infinite Time
Turing Computability and the derived degree structure.

It is easily seen that arithmetic truth is Infinite Time Turing Computable, since you can just

17 As is to be found in any good textbook of Recursion Theory; e.g., [18].
18 [9]
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Infinite Time Turing Decidable

1 1
1
1 A Hl

Hyperarithmetic

Arithmetic

FIGURE 1. The extent of Infinite Time Turing Computation

use w steps to check every possible witness for an existential quantifier. ' The class of Infinite
Time Turing computable reals forms a subclass of the A }-reals as can be seen in Figure 1.

The analysis of the Infinite Time Halting problem is an important component of the struc-
ture theory of Infinite Time Turing Machines: The Infinite Time Halting Problem (i.e., the
set of machines halting given the empty input) is not Infinite Time Turing Computable. The
halting problem and its boldface version (the set of reals coding a machine M and a real =
such that M halts given the input z) yield Infinite Time Turing jump operations z — x ¥ and
x — ¥ of which the following can be shown [9, Theorems 5.1 and 5.6]:

THEOREM 3.2
La<Paz’ <Pa’.
2. Alisclosed under z — zV and z — V.

Hamkins and Lewis?® have looked much closer at the connections between these jump

1919, Theorem 2.1 and Theorem 2.6].
20¢f. [10].
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operations and the Infinite Time degree structure, finding situations both symmetrical and
asymmetrical with respect to classical Turing degree theory.

Infinite Time Turing Machines are connected to a couple of interesting classes of ordinals.
For the following, we fix a coding of countable ordinals as real numbers.

DEFINITION 3.3
Let @ be an ordinal.

1. « is called writable if there is a real z coding « such that z is Infinite Time Turing
Computable,

2. « is called clockable if there is an Infinite Time Turing Machine which reaches its HALT
state after exactly « steps of computation, and

3. a is called eventually writable if there is an Infinite Time Turing Machine and an ordinal
n such that after step n the machine just has a fixed code for « on the tape.

We shall write A, for the supremum of the writable ordinals, Y ., for the supremum
of the clockable ordinals, and Z ., for the supremum of the eventually writable ordinals.
These ordinals reach quite far into the hierarchy of countable ordinals [9, Corollary 8.2 and
Corollary 8.6]:

THEOREM 3.4
A and Z, are admissible ordinals.

Philip Welch [20, Theorem 1.1] was able to prove the following connection between the
length of Infinite Time Turing Computations and the possible outputs and then to actually
compute Z .

THEOREM 3.5
1. Ao = T, and
2. Zoo = min{ {; L¢ has a transitive ¥5-end extension}.

The computation of Theorem 3.5 gives a very interesting result about the actual power of
the Infinite Time Turing Machine architecture [19, Theorem 2.6]. At limit stages the original
Hamkins—Kidder machine used the limsup rule: if a cell contains the value 1 cofinally often,
the limit value is also 1. If we look at machine architectures that use different rules, then
the computational power does not change (provided the different rule is simple enough). To
make this more precise, let us fix the notation: let zfiy be the real containing the snapshot of
the computation of the Infinite Time Turing Machine with the code p on input y at time £.

DEFINITION 3.6
Let I' : (2V)<Ord _ 2N be a function. Then I' is called a suitable ¥, operator if for every
machine using I in the limit stages there is a ¥» formula ¥ (v, v1, v2) such that

Loyl = 2z, (i) = 0 ¢ ¥[i,p,y].

THEOREM 3.7
Let v be a suitable ¥, operator. Then a real is computable by a Hamkins—Kidder machine
(an Infinite Time Turing Machine as described above) if it is computable by a machine using
the limit rule .
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4 Revision sequences modelled by Infinite Time Turing Machines

By now, it should be clear to the reader that there is some connection between Infinite Time
Turing Machines and revision sequences: both concepts move stepwise, taking the informa-
tion given in the previous step and computing the next one with a finite amount of program-
ming; both concepts are about moving on throughout the ordinals and in both cases we can
use the fact that we can run for an infinite amount of time to check arithmetic truth. The
following two quotes highlight this similarity:

A central idea in our approach is to view the function d p s that is supplied by a
circular definition D as a rule of revision. Its application to a hypothetical extension
X results in aset dp s (X) that is a better candidate for the extension of G, according
to the definition, than X. [8, p. 121]

The Infinite Time Turing Machines have something in the nature of a non-monotonic
inductive operator: a set of integers may be input, and at various stages there is a set
of integers present on the output tape. [19]

In this section, we shall assume that we have a (®, I'g)-revision sequence of writable ordi-
nal length «, and construct an Infinite Time Turing Machine that in its course of computation
constructs the revision sequence on its tape. Our Infinite Time Turing Machine will not use
the limsup rule as the standard Hamkins—Kidder machines did, but it will use the liminf rule.
This doesn’t change the computational power of the machine by Theorem 3.7.

For 7 < a we will denote by g,, the stage of the computation of our machine where s,
appears on the tape for the first time. Our machine will be constructed such that for limit
ordinals \ we have gy = UB<>\ 08.

Now we fix a first-order formula ® and a writable ordinal a.. The Infinite Time Turing Ma-
chine we shall construct will have a couple of states that are needed for counting and checking
arithmetic truth (we will try and suppress all this detail in the description of the Turing Ma-
chine architecture), the START, the HALT and the LIMIT state, and three distinguished states
COMPUTE, PRED and NOPRED.

We now describe the action of our machine.

Case 1 : If the machine is in the state START, it splits its tape into six countable parts z g, 1, T2
x3, x4 and 5. It copies the previous content of the tape into x 3, then it initializes xg, x1,
x4 and x5 with an infinite sequence of 0s, and z» with an infinite sequence of 1s.

The machine will fill zy with a code for the ordinal «, 2 will be an array telling the
machine what natural numbers it has already checked, x 3 will be the storage of initial
segments of the new real (i.e., the next real in the revision sequence), and = ; will be the
list of ordinals already handled.

The part 5 will be used by the machine to do its computations and other details like
storing the natural number and the ordinal 3 < « it is working on at the moment. This
is the part of the action of the machine that we will suppress almost completely in our
account. The bits 25(0) and 5 (1) will have a special significance:

x5(0) will be called the SEQUENCE bit, it contains the information whether we are done
writing the next element of § onto z 3.



Case2:

Case 3:

Case 4 :

Case5:
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Ordinal Code X,
Reals already written X,
Numbers already checked X,
Scratch Tape X3
X4
Output:
The Revision Sequence
‘ﬁ yn )X eee
, .\ Computation X5

. Checking Bit
Sequence Bit

FIGURE 2. The Infinite Time Turing Machine M s ,, and its partitioned tape

x5(1) will be called the CHECKING bit, and it contains the information whether we are
finished with checking an arithmetic truth for some fixed natural number.

x4 will be split up into countably many pieces and will contain the whole revision se-
quence in the end. The partitioning of the tape can be seen in Figure 2.

After the initialization, the machine writes the ordinal « (i.e., a code for it) onto the tape
z1. Then it splits up the tape z4 into a countable sequence of tapes (y3; 3 < a).?! The
content of tape x1 tells us the order of the countable sequence of tapes. Then it copies the
content of 3 to every tape yz and goes to the COMPUTE state.

If the machine is in the COMPUTE state, it browses through z 1 in the order given by the
code g to find the (in the order of ) least 3 such that z1 (3) = 0.

If this 3 has a predecessor (, the machine moves to the PRED state.

If this 3 has no predecessor, it moves to the NOPRED state.

If the machine is in the NOPRED state, it just sets 21 (3) := 1 and starts the COMPUTE
state case all over again.

If the machine is in the PRED state, the machine sets the CHECKING bit to 1, the SE-
QUENCE bit to 0, initializes 3 with an infinite sequence of Os and starts checking ¢ with
input y. at the natural number 0.

If the machine is in the LIMIT state, its head moves to the SEQUENCE bit. If this bit
contains a 1, the machine writes the content of x 3 to all y,, such that 2, (n) = 0, afterwards

21From this point onwards, we shall confuse a and the ordering of N isomorphic to « given by ap. To be exact,

we should speak of ‘(yn;n € N) ordered by yn < ym if and only if 7z, (n) < mgo(m) where 7, is the bijection
between N and o coded by xp” instead of “(y3; 8 < «)’. But we don’t.
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START Split up the tape |

| Copy the input to x3 & Initialize I

z1(B) =1 ‘ Go to the first 3 in 1 with z1(8) = 0 |

|
B=C+1
3 limit
Write 3 to every y,; with z1(n) =0 | PRED NOPRED

| Go to the next natural number I

1'5(1 =0

z5(0) = 1 72
LIMIT —=5(0) = 0> Look at the CHECKING bit|

.___%(1):1___.

FIGURE 3. Flow Diagram for M ¢

sets z1 () := 1 and moves into the state COMPUTE.

If the SEQUENCE bit contains a 0, the head moves on to the CHECKING bit. If the
CHECKING bit is 1, the machine continues with its checking job. If the CHECKING bit is
0, the machine writes 1 into the SEQUENCE bit, runs along x » until it meets the first 1 in
Zo. At that point it overwrites the SEQUENCE bit with 0 and the CHECKING bit with 1,
and starts the checking of @ at the next natural number (with the same input).

As soon as the machine determines whether @ holds at that natural number, the machine
writes the outcome of the check into z 3 and sets the appropriate bit of x5 and the CHECK-
ING bit to 0.

This completes the definition of our Infinite Time Turing Machine. We shall denote it by
Mg . The working schematics of the machine can be seen in the flow diagram, Figure 3.

Note that the construction is somewhat flexible (remember that we are standing on the
shoulders of Theorem 3.7). If ' = {v} is a singleton with a sufficiently simply definable -y
and §'is a (@, I")-revision sequence, we could be a little bit more careful in our construction
and receive a machine that computes 5.

THEOREM 4.1
Let a be a writable ordinal, ® be any given formula of £*, and § = (sg; 3 < «) a sequence
of reals. Then the following are equivalent:

1. §'is a (@, T')-revision sequence, and
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2. Mg, eventually computes 5 on the x4 tape, given s as the input.

PROOF. We describe what the machine does to see that it does exactly what it’s supposed to
do.

We feed s to the machine in the START state. The machine creates six copies of its tape,
writing sp on 3 and erasing all information from the other copies.

The machine then writes the ordinal o onto x (which is possible since a was writable).
Then it copies the content of x3 (which is the original input s¢) to every component of y,, of
Ty4.

In the COMPUTE state, it finds that we have () = 0 for all ordinals 7, thus 0 is the least
such ordinal. But 0 has no predecessor, so the machine moves to the NOPRED state, writes
1 to x1(0) and goes back into the COMPUTE state. Now the least iy such that 21 (n) = 0is 1
which is the successor of 0.

The machine takes yq as the input and starts checking whether ®(yq, 0) is true. If it meets
a limit stage during this check, the CHECKING bit is 1, so it resumes its checking until it
manages to determine whether ®(yo,0) holds. If ®(yo,0) holds, then the machine sets
x3(0) := 1, otherwise it writes 0. Afterwards the machine defines x5 (0) to be 0, in order
to say that it has checked the number 0. Now the CHECKING bit is set to 0, and the machine
can move on: it runs along x», meets the first 1 at the first cell and starts to check ®(yo, 1)
(after reinitializing the CHECKING bit to 1).

After the machine has checked all natural numbers with the same input, it finds itself in
the LIMIT state. At this moment, the SEQUENCE bit is still 0, but every cell on x5 is filled
with a 0. So when the head runs along x if never encounters a 1 and thus never changes
the SEQUENCE bit; by the liminf rule, the SEQUENCE bit contains a 1 in the next limit
step and hence the machine writes the just computed real (the content of z 3, which is by
construction d¢ (so) = s1) into every y, with 7 > 0 (note that 0 is still the only ordinal such
that 21 (0) = 1). Then it sets z1 (1) := 1 and moves in the COMPUTE state. Now 2 is the
least ordinal 7 such that z:1 () = 0. As the predecessor of 2 is 1, the computation is started
all over again with y; as the input.

This describes in fact how that machine computes all successor steps of the revision se-
quence 5.

What about the limit stages in the sequence §?

Let \ be a limit ordinal and ¢ := Un<>\ On-

Then o is a limit, since (0,); 7 < A) is a strictly increasing sequence of limit length. But if
we look at g in the course of computation up to g, y » contains every element of 5TA. So the
following holds for all natural numbers n:

I < oVE> ((y5(n) = 1) <= I <AVE>((n € s¢).

Thus by the liminf rule and by the fact that sy = 79 (5TA), we have y§ = s\. In fact, this
is true for all y{ with x > A.

Now below p the machine has run through the COMPUTE case cofinally often. Thus, the
SEQUENCE bit has been reset to 0 cofinally often and by the liminf rule this means that it is
0 at p.

The CHECKING bit is also 0 since the machine has successfully checked a given natural
number cofinally often below p.

With the same argument, = at the stage p is constantly 0 (every natural number has been
checked cofinally often), so the machine runs along x » and in the step o + w, the SEQUENCE
bit is at 1.
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Consequently, the machine moves to the COMPUTE state, realizes that X is the least ordinal
such that 21 (A) = 0. Since X does not have a predecessor, it writes 21 (A\) = 1 and moves on
to compute yx11.

5 The limit rule and other applications

Using the correspondence between revision sequences and Infinite Time Turing Machines we
head towards possible applications (and point out possible complications and obstacles).

We have mentioned the limit problem of Revision Theory a couple of times before:
‘If we let I vary, what happens to the notion of S # -definability?%?

The apparent freedom of choosing the limit rule for Infinite Time Turing Machines should
give us some way of tackling the limit problem for Revision Theory. In order to use that, we
would have to get a uniform version of Theorem 4.1: suppose that h is S [--definable. Then
for every natural number n such that n ¢ h, we have a revision sequence s™ witnessing this
(i.e., n ¢ sf and s§ recurs in s™). One of the problems in applying Theorem 4.1 is that
we don’t know anything about the lengths of the witnessing sequences s™, and our theorem
works only for sequences of writable ordinal length.

This problem naturally leads us into a second possible field of applications:

The fact that we have a good understanding what ordinals are writable and where the
boundaries of writability lie, poses several interesting related questions about Revision The-
ory:

What can we say about the length of relevant parts of revision sequences? (i.e., how
large can reflg r(h) become?)

A useful solution of this question would also give us the needed uniform version of Theo-
rem4.1.

In solving the limit rule problem, there are some additional (somewhat deeper) problems
with unrestricted revision sequences (i.e., if the class I' is large), though, since the mere ex-
istence of a revision sequence doesn’t say anything about the complexity of choices from I’
made on the way to reflg r(so).

A third area of possible applications concerns the extent of revision theoretic definability.
It might be possible to use the stratification of A} by the relation <59 to get results for the
complexity of revision theoretically definable reals.

Concluding, there is a clear connection between Revision Theory and Infinite Time Turing
machines, and it seems very promising, but there is still a lot of technical work to be done to
get to a point where we can exploit this connection.

22[4, p.403]: “What category a proposition is going to belong to depends on the kinds of bootstrapping policies
admitted.’
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6 Aftermath

In the months between the preparation of the first version and the submission of the final
version of this article, Philip Welch has used the methods of this paper in his [21] to solve the
questions mentioned in Section 5.

THEOREM 6.1 (Welch)
Every II} real is S# -definable and S7:-definable for a class of I including I'g and I' .

Theorem 6.1 together with Corollary 2.9 gives an exact computation of the class of S 1#00 -
definable reals. They are exactly the II3 reals.

THEOREM 6.2 (Welch)

For arithmetic formulae ®, simple classes I" of bootstrapping policies and any (®, I')-reflexive
real number h, we have reflg r(h) < Yoo (h), where T o (h) is the supremum of the ordinals
clockable relative to h.
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