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The traditional use of ergodic theory in the foundations of equilibrium

statistical mechanics is that it provides a link between thermodynamic
observables and microcanonical probabilities. First of all, the ergodic
theorem demonstrates the equality of microcanonical phase averages and
infinite time averages (albeit for a special class of systems, and up to a

measure zero set of exceptions). Secondly, one argues that actual
measurements of thermodynamic quantities yield time averaged quantities,
since measurements take a long time. The combination of these two points

is held to be an explanation why calculating microcanonical phase averages
is a successful algorithm for predicting the values of thermodynamic
observables. It is also well known that this account is problematic.

This survey intends to show that ergodic theory nevertheless may have
important roles to play, and it explores three other uses of ergodic theory.
Particular attention is paid, firstly, to the relevance of specific interpreta-
tions of probability, and secondly, to the way in which the concern with

systems in thermal equilibrium is translated into probabilistic language.
With respect to the latter point, it is argued that equilibrium should not be
represented as a stationary probability distribution as is standardly done;

instead, a weaker definition is presented. r 2001 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

This paper investigates the role that ergodic theory can play in the foundations
of equilibrium statistical mechanics. Historically, the mathematical theory of
ergodic theory developed in the early twentieth century in close connection
with foundational issues in statistical mechanics. Its original role was to
establish a connection between ensemble functions (phase averages) and
properties of individual systems (time averages). Whether it gives a valid
justification for the use of ensembles in statistical physics is however much
disputed.
In this paper I will discuss three ergodic approaches that differ from the

standard ergodic approach. Two of them are meant as support of specific
interpretations of probability in statistical mechanics, namely of the time
average interpretation, and the personalist interpretation, respectively. Both
are advocated by Von Plato and Guttmann (Von Plato, 1988, 1989; Guttmann,
1999). The third approach, originally put forward by Malament and Zabell and
elaborated by Vranas, is aimed at the same goal as the standard ergodic
approach, namely to explain the success of the phase averaging method, but
uses a different line of argument (Malament and Zabell, 1980; Vranas, 1998).
All three approaches concern the foundations of equilibrium theory, and thus
have nothing to do with the issue of irreversibility, which is yet another area
where ergodic theory may have a role.
A second aim of this paper is to investigate the relevance of the

interpretation of probability to the above-mentioned ergodic approaches. It
is natural to associate ergodic theory with objective interpretations of
probability. This is because with the use of ergodic theory a connection can
be established between probability measures on the one hand, and objective
features of real world systems on the other. However, ergodic theory can be
useful also with other interpretations of probability, as is shown by the use of
the ergodic decomposition theorem as support for the personalist interpreta-
tion of probability.
The interpretation of probability and the ergodic approaches are clearly

connected in the sense that ergodic theory has been invoked as putative
support for two distinct interpretations of probability: the time average
interpretation, and the personalist interpretation. Another sense in which the
interpretation of probability is relevant is, I will argue, that the plausibility of
certain assumptions that are made in the mentioned ergodic approaches
depends on the interpretation of probability.
In order to illustrate both the diversity of foundational roles of ergodic

theory and the importance of the interpretation of probability, I will single out
one particular assumption about the probability distribution that plays a role
in all three ergodic approaches, namely stationarity. A probability distribution
is stationary if it is constant at all fixed points in phase space. This is usually
taken to reflect the fact that the system described by the probability
distribution is in equilibrium. However, as I will argue, stationarity of the
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ensemble is not the right way to account for the system being in equilibrium.
I will present another, weaker condition on the probability distribution as
representing thermal equilibrium, and will investigate what effect this
modification has on the three ergodic approaches.
This paper is structured as follows. In Section 2, I will review the traditional

role of ergodic theory in the foundations of statistical mechanics and the
reasons why it is problematic. In Section 3, I will discuss the three alternative
uses of ergodic theory in the foundations of equilibrium statistical mechanics.
In Section 4, I will highlight the notion of stationarity, and argue for a
weakened account of equilibrium.

2. The Standard Ergodic Approach

2.1. Standard role of ergodic theory in the foundations of statistical mechanics

The traditional use of ergodic theory in the foundations of equilibrium
statistical mechanics is to make a connection between the ensembles used in
statistical mechanics and properties of single systems. More specifically,
ergodic theory is invoked to solve the ergodic problem, which is to demonstrate
the equality of infinite time averages and phase averages, i.e. expectation values
with respect to the microcanonical measure on phase space. A related goal is to
explain the success of microcanonical phase averages, for which a solution of
the ergodic problem would form the first step. The second step is then to argue
that time averages are equal to the results of a macroscopic measurement. This
is usually done by pointing to the fact that measurements take an amount of
time which is long compared to microscopic relaxation times. The argument is
then that a single measurement yields an average of the phase function over
this time. These two steps taken together imply that the results of macroscopic
measurements are equal to microcanonical phase averages.
Originally, the ergodic problem was attacked by means of the so-called

ergodic hypothesis, which states that a system that is left to itself will pass
through all the phase points compatible with its total energy. Then, since a
point in phase space cannot lie on more than one phase trajectory, all systems
with the same value of the total energy will follow the same path, which fills the
phase space completely. At a specific moment in time different systems may be
in different points on this path, but averages over infinite times are equal. Thus,
if the ergodic hypothesis is satisfied, time averages will be the same for all
systems with the same total energy, and this solves the ergodic problem.
Unfortunately it is generally impossible to satisfy the hypothesis. One-to-one
and continuous transformations leave the number of dimensions invariant,
from which it follows that a one-dimensional curve cannot fill the whole energy
surface, except in the trivial case when the latter is one-dimensional itself.
Although a single phase trajectory cannot visit every point on the energy

surface, it might come arbitrarily close to every point. For this behaviour the
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term ‘quasi-ergodicity’ was coined by the Ehrenfests (Ehrenfest and Ehrenfest-
Afanassjewa, 1912). However, it has never been proved that quasi-ergodicity is
sufficient to solve the ergodic problem. Modern ergodic theory has developed
along a different route, which is framed in a measure-theoretical setting.
Its objects of study are the so-called measure preserving dynamical systems

(m.p.d.s.) /G;B;m;TtS: In the applications to statistical mechanics the
elements of a m.p.d.s. are identified as follows. G is the phase space, or the
accessible part of it which is usually an energy surface. A point x ¼ ð~ppN ; ~qqNÞ in
G represents the positions and momenta of all the N particles in the system. B
is the standard Borel s-algebra. m is the normalised Lebesgue-measure
restricted to G; if G is an energy hypersurface, this is the microcanonical
measure. Finally, Tt is the Hamiltonian evolution, parametrised by the time t:
It follows from Liouville’s theorem that these choices indeed lead to a
dynamical system which preserves measure.
The answer to the ergodic problem as given by modern ergodic theory is

contained in Birkhoff ’s ergodic theorem, and one of its corollaries. The ergodic
theorem demonstrates the existence of infinite time averages for almost all
initial conditions; the corollary demonstrates that the values of infinite time
averages are equal to phase averages in the standard measure, if a dynamical
condition called ‘metrical transitivity’ (also simply called ‘ergodicity’) is
satisfied, again for almost all initial conditions.
The next step in the argument is the claim that measurement results yield

infinite time averages of phase functions, because measurements take a long
time compared to the relevant microscopic relaxation times. Then, combining
this with the corollary of Birkhoff ’s ergodic theorem, the standard ergodic
approach demonstrates that for metrically transitive systems, measurement
results are almost always equal to microcanonical averages. This is the
explanation it provides for the success of the averaging method.

2.2. Problems with the standard ergodic approach

Several problems surround the standard ergodic approach (see for example
Earman and R!eedei, 1996; Sklar, 1973, 1993; Jaynes, 1967). Below I will
mention four of them. The last one (connected to the way equilibrium is
represented) I believe has not been raised before.

The measure zero problem
The ergodic theorem and its corollary hold for almost all points in the

measure theoretic sense of the phrase ‘almost all’. It is tempting to conclude
that since exceptions to those statements get probability measure zero, they can
be neglected in practice. However, this does not follow straightforwardly but
should be argued for. Especially so, since the ergodic theorems are meant to
demonstrate that the microcanonical measure is the appropriate probability
measure in a statistical mechanical treatment of isolated systems in
equilibrium. The statement that having microcanonical measure zero implies
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being negligible in practice is thus part of the goals that the ergodic approach
tries to achieve.
There have been several attempts to solve the measure zero problem (for a

discussion see Sklar, 1993, pp. 182–188). One other interesting, though
unsuccessful, approach is presented in Guttmann (1999), who has tried to
demonstrate the exceptionless equality of phase and time averages by showing
that both phase and time measures are equal to the so-called Haar measure.
However, this approach fails because of its limited applicability; as Guttmann
himself notes, it works only for a two-dimensional phase space, which is not
very surprising because then the good old ergodic hypothesis can be satisfied. A
more promising, but still not unproblematic, approach to solve the measure
zero problem is presented in Malament and Zabell (1980), where absolute
continuity1 is shown to follow from another property, called translation
continuity. The latter property is, Malament and Zabell claim, easier to justify.

The restriction to ergodic systems
It seems typically to be the case that the systems in classical statistical

mechanics are not metrically transitive (Earman and R!eedei, 1996; Vranas,
1998; Wightman, 1985). The important thing to notice is that statistical
mechanics ‘works’ for some systems that are not metrically transitive as well
(one may think of systems with small KAM-tori). Thus, the account by means
of the ergodic theorems is by no means sufficient to capture all physical systems
for which an explanation of the success of the phase averaging method is
needed. But why should we not be happy with a partial result, that is, with an
explanation of the success of the phase averaging method for the special class
of metrically transitive systems? The answer, given by Earman and R!eedei, is
convincing. If there is an explanation for systems that are not metrically
transitive, it seems reasonable to expect it to be a good explanation also for
systems that are metrically transitive. But then the ergodic approach will be by-
passed completely; after all, the equality of phase and time averages holds if
and only if the system is metrically transitive.

Infinite time averages
Much of the criticism of the traditional ergodic approach is directed at the

statement that measurements of macroscopic quantities yield infinite time
averages of the corresponding phase function (see for instance Sklar (1973),
Malament and Zabell (1980) and Jaynes (1967, p. 94)). The argument that is
usually given for this is that measurements take a period of time, which is long
compared to the relevant microscopic time scales (relaxation times). Thus,
during a measurement the system passes through many microscopic states, and
therefore the observed value will be equal to the time average.

1A measure n is said to be absolutely continuous (w.r.t. Lebesgue measure m) iff nðAÞ ¼ 0 implies

mðAÞ ¼ 0 for all measurable sets A: Any argument to the effect that the ‘actual’ probability

distribution is absolutely continuous would thus answer the measure zero problem.
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Several arguments can be given against this line of thought. First and
foremost, it is obvious that not all measurement results may be equated with
infinite time averages, because it is after all possible to observe changes. Indeed,
consecutive measurements on a system will in general yield different results;
otherwise it would be impossible to observe any non-equilibrium process. The
infinite time averages are, however, the same since the measurements are
performed on a single system. Thus the claim that measurements always yield
infinite time averages is simply not correct. Also, even if actual measurements
take some period of time which is long compared to microscopic time scales,
why would it follow that what we measure are averages over time? Finally, the
value of the average over any finite period of time may differ appreciately from
the value of the infinite time average. Thus, as long as one does not have any
information about the rate of convergence, one cannot infer the value of the
infinite time average from any measurement that takes a finite period of time.
This list of objections clearly demonstrates that measurement results cannot
generally be equated with infinite time averages.

Equilibrium
The standard ergodic approach, as I have presented it here, aims to explain

why microcanonical averages are good predictors for observed thermodynamic
quantities. It should be noted, however, that they are only good predictors for
systems which are in thermal equilibrium. This implies that any explanation
should take into account that systems in thermal equilibrium are being
discussed; otherwise, an explanation of the success of the averaging method
would be given also for cases in which this method actually is not successful.
But here, surprisingly, the standard ergodic approach falls short. Nowhere in
the explanation scheme is it assumed explicitly that equilibrium systems are
concerned.

3. A Plurality of Ergodic Approaches

In this section I will discuss three different roles that ergodic theory can play
in the foundations of equilibrium statistical mechanics. The first two are as
putative support for particular interpretations of probabilities, namely the time
average interpretation and the personalist interpretation, respectively. The
third is aimed at exactly the same goal as the traditional ergodic approach,
namely to provide an explanation of the success of the microcanonical phase
averaging method; it differs in the sense that infinite time averages now play no
role at all.

3.1. Time averages

The time average interpretation of probability is in many respects similar to
the frequency interpretation. However, repetitions occur in a single system in
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the course of time, rather than across an ensemble of identically prepared
systems. The distinctive feature is thus that the repetitions are determined by a
deterministic process. A proponent of the time average interpretation of
probabilities in statistical mechanics is Von Plato (1988, 1989); see also
Guttmann (1999).
In the time average interpretation the probability to find a system in a certain

set in phase space is by definition equal to the infinite time average of the
indicator function of that set:

Px0ðAÞ ¼ lim
T-N

1

T

Z
N

0

IAðTtx0Þdt: ð1Þ

Thus, the probability of the set A is equal to the fraction of time that the
systems spends in that region, also called the sojourn time. Note that the
probability function is labelled by the initial state of the system, x0: In general
different initial states lead to different paths in phase space, and therefore also
the sojourn times may depend on x0:
There are several problems with the time average interpretation. First, the

fact that repetitions are determined by a deterministic process puts pressure on
the condition that the repetitions should be independent. Secondly, infinite
time averages need not even exist! It may well be that the limit in (1) does not
exist. Thirdly, as noted the probability of a set A depends on the initial state x0;
which is an awkward feature. Fourth, there is no obvious way to extend the
application of this notion of probability to time-dependent phenomena, and
thus to the more general theory of non-equilibrium statistical mechanics.
According to Von Plato ergodic theory points to cases where (some of) the

mentioned problems can be overcome and thus this particular interpretation
can be applied:

the notion of ergodicity gives us a characterization of cases where probability as

time average, and frequentist probability more generally, can be applied (Von
Plato, 1988; italics in the original).

He concludes that frequentist probability can only be applied to ergodic
systems. Thus, the role ergodic theory now plays in the foundations of
statistical mechanics is to provide support for this particular interpretation of
probability. Let us look at the four mentioned problems.
Infinite time averages, if they exist, obey the axioms of Kolmogorov. But do

they also satisfy the demands of frequentist probability? Especially the
condition of independent repetitions is very difficult to satisfy. In fact Von
Mises, the founding father of the frequency interpretation of probability, is
very clear that the time evolution of a single system does not build a Kollektiv,
because one of the axioms of his theory of probability, the condition of random
place selection (Regellosigkeit) is not fulfilled (Von Mises, 1931, p. 519). But
whether the sampling is ‘unbiased’, or whether the trajectory can be seen as a
sequence of independent repetitions of a random event, depends on the
dynamics of the system, and here ergodic theory may be of help. If the

Ergodic Theory and Foundations of Statistical Mechanics 587



dynamics is metrically transitive, we have ‘asymptotically representative
sampling’ (in Von Plato’s words). But only at the top of the ergodic hierarchy,
for Bernoulli systems, do we have independent repetitions.
The second problem is that time averages need not exist. But Birkhoff ’s

ergodic theorem demonstrates the m-almost everywhere existence of infinite
time averages. Thus, the existence of the probabilities as defined above is
ensured for almost all starting points x0; where ‘almost all’ is measured in the
Liouville measure.
The third problem is that time averages generally depend on the initial state.

The first corollary of the ergodic theorem shows, however, that for metrically
transitive systems, time average probabilities are equal to the microcanonical
measure (again with the proviso of exceptions of m-measure zero). This means
that in this case infinite time averages are independent of the initial state x0:
The fourth problem is that the time average interpretation cannot be

generalised to time-dependent phenomena. Now Von Plato is very clear that
one need not pursue a single interpretation of probability in all applications of
probability theory, and I agree with him. But still it would be a strange state
of affairs to be compelled to use different interpretations in the single context of
statistical mechanics. Indeed, how could one make sense of the statistical
mechanical description of non-equilibrium phenomena, for example the
approach to equilibrium?
With respect to this fourth problem ergodic theory can offer no help. In my

view the impossibility of incorporating probabilities as time averages into the
general non-equilibrium theory renders this interpretation untenable.

3.2. Ergodic decomposition

Another role for ergodic theory is as support for another specific
interpretation of probabilities, namely personalist probabilities. According to
this interpretation, with De Finetti as its main proponent, probabilities
represent personal degrees of belief. An important theorem in support of this
interpretation is De Finetti’s representation theorem, which holds for
exchangeable probabilities. Exchangeability means that PðE1;y;EnÞ ¼
PðEi1 ;y;Ein Þ; i.e. probabilities are invariant under permutations; for instance,
a probability ascription in a coin tossing experiment that depends on the
number of heads and tails in a sequence, but not on their order is exchangeable.
De Finetti shows that exchangeable probabilities can be written as follows:

Theorem 1. (De Finetti’s representation theorem). PðE1;y;EnÞ is exchange-
able for all n iff a probability density fðlÞ exists for which

PðE1;y;EnÞ ¼
Z 1

0

lkð1@lÞn@kfðlÞdl: ð2Þ

Here k is the number of ‘heads’ and n@k the number of ‘tails’ in the sequence
of outcomes E1;y;En:
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Note that the expression on the right hand side would also be arrived at in case
of an objective probability l for a coin to land ‘heads’, independent repetitions
of coin tosses, and a prior probability distribution fðlÞ: The importance of the
theorem lies in the fact that it demonstrates that the same expression can now
be obtained by assuming that one’s personal degrees of belief are exchangeable.
That is, one can act as if objective probabilities existed, and use all results from
probability theory that apply to sequences of independent classically
distributed trials without being committed to a belief in objective, unknown
probabilities.
As pointed out by Von Plato, the ergodic decomposition theorem can do in

dynamical systems theory exactly what De Finetti’s representation theorem
does in the case of repeated chance experiments (Von Plato, 1988).

Theorem 2. (Ergodic decomposition). Let M be the set of all stationary
measures on /G;B;TtS; where B is bounded. Then M is non-empty and
convex, and its extreme elements are ergodic.

It follows from the ergodic decomposition theorem that any stationary
measure can be written as a weighted average of ergodic measures. Thus, with
the use of the first corollary of Birkhoff’s ergodic theorem, it follows that they
are weighted averages of time averages, and thus of objective features of
individual systems. This proves that subjectivists of the De Finetti type, as long
as their personal probability ascription is stationary, can do without objective
probabilities; they can take the view that the latter are ‘artefacts’ that can be
eliminated.

3.3. A uniqueness theorem

The fourth role of ergodic theory in the foundations of statistical mechanics,
like the standard ergodic approach, has as its objective to explain why
microcanonical averages ‘work’ in the sense that they successfully predict the
values of thermodynamic observations (Malament and Zabell, 1980; Vranas,
1998). However, the way in which ergodic theory is used differs from the
standard approach, the most important difference being that the outcomes of
measurements are equated with values of phase functions, not with their
infinite time averages. Also, a way to solve the measure zero problem is
proposed.
In Malament and Zabell’s strategy two approaches come together: on the

one hand certain limit theorems which make use of the large number of
particles thermal systems consist of, and on the other the more traditional
ergodic approach. These two contributions are expressed in two distinct
ingredients in the scheme which Malament and Zabell offer to explain the
success of the microcanonical phase averages. Both ingredients are incapable of
explaining the success of the averaging method on their own, but the
combination constitutes an explanation scheme that is watertight.
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The first claim is the validity of what Malament and Zabell call the
Khinchin–Lanford dispersion theorems (Khinchin, 1949; Lanford, 1973). In
their general form, these limit theorems show that with large microcanonical
probability, phase functions are always close to their microcanonical averages.
What is still lacking, however, is a translation of the phrase ‘large
microcanonical probability’.
The second claim is the statement that the ‘microcanonical measure actually

represents the probability of finding an isolated equilibrium system in a
particular microstate’ (Malament and Zabell, 1980, p. 343). Taken by itself,
this claim is not sufficient for the explanatory purposes either. Although it says
nothing less than that the microcanonical measure is the appropriate
probability measure, it does not explain why observed values are always equal
to phase averages and are not spread around those averages. However,
combining the two claims does result in an explanation of the success of the
microcanonical phase averaging procedure. This is because the combination
leads to the statement that the actual probability that phase functions are
always close to their microcanonical averages is large.
How do Malament and Zabell justify the second claim? This is where ergodic

theory comes in. They use another corollary of the ergodic theorem, which says
that for metrically transitive systems the microcanonical measure is the unique
measure which is both stationary and absolutely continuous. They argue that
the ‘actual’ probability measure (which I will denote P@) for an isolated system
in equilibrium should be both stationary and absolutely continuous. Thus, for
metrically transitive systems at least, they come to the conclusion that the
‘actual’ probability measure is equal to the microcanonical measure.
They also prove a theorem which demonstrates the equivalence of absolute

continuity and a property called ‘translation continuity’ (continuity of the
probability distribution under translation of sets in phase space). The
importance of this theorem is that one may now try to justify the translation
continuity of P@ rather than its absolute continuity; this might be done by
appealing either to stability under actual perturbations or to measurement
imprecision (see Van Lith (2001) for an extensive discussion).
The distinction between the ‘actual probability’ P@ and the microcanonical

probability measure m is conceptually important. Malament and Zabell
attribute certain properties to P@; namely stationarity and translation
continuity. They claim that these properties are natural and plausible. The
interpretation of probability comes into play when evaluating whether these
assumptions are indeed plausible. In contrast to P@; the microcanonical
measure m should be viewed as a mathematical entity which is not a priori
associated with the actual probability. The properties of m can be studied with
the tools provided by mathematical physics; especially, the question whether
the dynamical system /G;B;m;TtS is ergodic can be answered in that way.
The separation between the notion of actual probability or chance on the one
hand and the descriptive apparatus in the form of a probability measure on the
other is in my view an illuminating and important contribution to the debate.
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But there are several weaknesses of this approach. First of all, the approach
is limited to metrically transitive systems, so that the criticism by Earman and
R!eedei again applies. Indeed, for systems which have only small regions of non-
ergodicity (e.g. systems with small KAM-tori) the approach does not have
anything to say. But here a modification of Malament and Zabell’s work by
Vranas offers a way out; his approach also applies to systems that are ‘e-
ergodic’, which, roughly, means that small regions of non-ergodicity are
allowed (Vranas, 1998). Secondly, more has to be said about a justification of
both conditions that are imposed on P@ (stationarity, and absolute or
translation continuity).
To conclude, I think this approach is a valuable, but not yet fully developed,

alternative to the standard ergodic approach: it certainly deserves further
study.

4. Stationarity

4.1. Does stationarity represent equilibrium?

As an illustration of the differences between the ergodic approaches outlined
above, and of the importance of the interpretations of probability, let us look
at the notion of stationarity in more detail. It is clear that stationarity plays an
important role in all three ergodic approaches. In Malament and Zabell’s
scheme stationarity is one of the main assumptions. The ergodic decomposition
theorem is a representation theorem for stationary measures. Finally, time
averages are stationary by definition.
In all cases stationarity of the probability distribution is somehow connected

to the system being in equilibrium. Indeed, Malament and Zabell reflect the
usual standpoint when they write:

whatever one’s account of probability, it is fundamental on the Gibbsian view
that equilibrium probabilities are stationary (Malament and Zabell, 1980, p. 345).

But, I submit, there is a problem with the standard Gibbsian account of
equilibrium as a stationary probability distribution, which suggests that this
account should be weakened. Also, as I will argue below, it depends on one’s
interpretation of probability how stringent this problem is. In the following I
will present an alternative account of equilibrium, and investigate the
consequences for the three ergodic approaches discussed above.
The problem is that equating equilibrium with stationarity of the probability

distribution makes it impossible that for an isolated system, a non-equilibrium
state will evolve into an equilibrium state by the equations of motion of
classical mechanics. This is in striking contrast with thermodynamics, because
thermodynamics clearly demands such evolutions. Thus, a statistical mechan-
ical explanation in mechanical terms of such thermal processes as the approach
to equilibrium is blocked.
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A similar point has been raised in Leeds (1989) as a criticism of Malament
and Zabell’s paper. Malament and Zabell conclude from the assumptions they
make about the probability distribution that the probability is uniquely given
by the microcanonical distribution. But then, Leeds argues, it can never have
been different from the microcanonical distribution, since that distribution is
stationary under the equations of motion. But surely the situation prior to
equilibrium may have been such that the microcanonical distribution does not
properly give the probabilities on phase space. Therefore, the distribution that
represents equilibrium cannot be strictly stationary.
Thus, the point is that, with equilibrium represented as a stationary

probability distribution, no transition from non-equilibrium to equilibrium is
possible governed by the Hamiltonian equations of motion. But now the
interpretation of probability becomes relevant. On a subjective interpretation
of probability (either personalist, or ‘inter-subjective’ as for instance in Jaynes’s
Maximum Entropy formalism) probabilities represent degrees of belief, or they
characterise the available information about the system. Therefore, probabil-
ities evolve not only under the influence of the equations of motion, but also
when new information comes in, or when a person changes his beliefs. This
means that the fact that transitions from non-stationary to stationary
distributions are not allowed by the dynamics is especially a problem for
objective interpretations of probability.
As a solution to this problem (a solution which, for the reason just given,

applies especially to the frequency interpretation of probability), I propose the
following definition (see also Van Lith, 1999, 2001):

Definition 1. (e-Equilibrium). Let a class of functions O UF be given, and let
e ¼ feFg be fixed. Then a system is in e-equilibrium during the time interval t
iff 8FAO ( cF 8tAt j/FSPt@cF jpeF :

In words: during the time interval t the expectation values of functions in the
class O are time-independent, or may fluctuate in time at most within some
small, fixed intervals eF : Irrespective of the exact choice of the class O and of
the eF ; dynamical evolution from a non-equilibrium state to an equilibrium
state is now possible, as long as the eF are non-zero.

4.2. The role of stationarity in the ergodic approaches

Let us now turn to the question of how the observation that non-stationary
distributions cannot evolve into stationary distributions affects the three
ergodic approaches. In other words, the question is whether the three
approaches can be reconciled with the thermodynamic fact that transitions
between non-equilibrium and equilibrium states do occur in nature.
The time average interpretation of probabilities does not possess the means

to discriminate between equilibrium and non-equilibrium. Probabilities are
stationary by definition. This follows straightforwardly from their definition as
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expressed in relation (1). Thus, no embedding of equilibrium theory in the
general framework of non-equilibrium statistical mechanics is possible in which
this interpretation is pursued consistently. Transitions from a non-equilibrium
state to an equilibrium state cannot be accounted for in this manner. This
renders the interpretation untenable, in my view.
The ergodic decomposition theorem, which supports the personalistic

interpretation of probability, is a representation theorem valid for stationary
probability measures. Guttmann discusses four possible options the subjectivist
has with which to justify stationarity. However, these options, as Guttmann
shows, all fail (Guttmann, 1999). This is because to a subjectivist only
coherence requirements are compelling, but stationarity cannot be enforced on
grounds of coherence. But the same can be said of exchangeability in De
Finetti’s original theorem and yet the representation theorem is seen as very
important in that context.
Beliefs can change from person to person, and there are no coherence

requirements that fix a particular characterisation of equilibrium, such as
stationarity. This is yet another reason why proponents of the personalist
interpretation need not be bothered at all by the fact that the Hamiltonian
equations of motion do not allow for transitions from non-stationary to
stationary probability distributions.
In Malament and Zabell’s ergodic approach the fact that the measure is

strictly stationary in time is crucial. This is because they offer a uniqueness
theorem; if measures that are approximately stationary were allowed, the
microcanonical measure would lose its special status, and the explanatory
scheme would lose its force. Thus, the observation that equilibrium should be
represented by a probability distribution that is only approximately stationary
is a severe problem for this approach.
Here again the modification made by Vranas offers help. Although his

theorems are derived using strict stationarity, he writes in a footnote that this
can be weakened to a notion he coins ‘forward e-stationarity’ (Vranas, 1998,
p. 702, footnote 12). This, roughly, means that for each measurable set A the
probability PðAÞ is now allowed to fluctuate within small bounds, analogously
to e-equilibrium as defined above. Strict stationarity would demand constant
probabilities. Also with this notion transitions are possible from a state which
is not forward e-stationary to a state which is.
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