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6.3 Poincaré’s La Science et l’Hypothèse . . . . . . . . . . . . . . . . 203
6.3.1 Brouwer’s comment on Poincaré . . . . . . . . . . . . . . 205
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Preface

Almost a century after L.E.J. Brouwer took his doctoral degree at the University
of Amsterdam, the dissertation which he defended on that occasion is still of in-
terest to us, both from a historical and from a philosophical-mathematical point
of view. A recent republication of the dissertation,1 as well as the publication
of two biographies of Brouwer2 bear witness to this general interest.

Despite the fact that Brouwer’s intuitionistic mathematics does not play a
leading part in the mainstream of the mathematical practice of today, the con-
structivistic founding, based on the ur-intuition alone, of his ‘old’ intuitionism
from before, say, 1919 is still widely discussed and commented on. There cer-
tainly were constructive foundations of mathematics long before Brouwer,3 but
unique for Brouwer is the ur-intuition of successive and well-separated events,
connected by a ‘flowing’, as the most fundamental basis possible for every math-
ematical construction.

Another unique feature of Brouwer’s mature intuitionism from after 1917
(in which the ur-intuition remains the ultimate foundation) is, as the reader
may know, formed by the ‘two acts’.4 We will see that the two acts are already
present in the dissertation, albeit in a more or less latent form and not yet ex-
plicitly denoted as ‘acts’.

Let us put first that there is not one main subject in Brouwer’s dissertation,
which has to be discussed; there is a number of topics in it, which ask for
a reinterpretation, for a correction of a misinterpretation or even for a first
interpretation; it concerns topics which are sometimes thoroughly discussed and
sometimes merely touched upon by Brouwer. Just to mention a few: the exact
construction of the integers and of the rationals, departing from the ur-intuition;
another one is Brouwer’s solution to the continuum problem or, a third one,
the ‘denumerably infinite unfinished’ cardinality. A justified reinterpretation
is often made possible by the recent discovery of a number of notebooks by
Brouwer’s hand, written during the time of preparation of his dissertation. The

1[Dalen 2001].
2One in Dutch, [Dalen, D. van 2001] and one scientific biography in English, of which the

first volume has been published, [Dalen, D. van 1999].
3[Beth 1967], page 149, where for example Plotinus, Nicolaus Cusanus and Hobbes are

mentioned.
4See page 57.

xi
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result of a reinterpretation more than once leads to the conclusion that the topic
concerned is another example of mathematics as a free creation of the human
mind, solely based on the ur-intuition of the two-ity continuous and discrete,
which is the heart and the essence of Brouwer’s summary on the last page of
his dissertation. A second central item of this summarizing conclusion will be
the very limited role that is granted to logic in the construction of mathematics;
logic just plays its modest part in the language that describes this construction.

In our dissertation we will investigate the subjects concerning the most ba-
sic foundational matters from Brouwer’s doctoral thesis, On the foundations
of mathematics, which will lead to his intuitionistic mathematics of ten years
later. This limited selection explains the omission of mathematical-technical
matters like the thoroughly discussed group-theoretical foundation of the arith-
metical operations on the measurable continuum, whereas the foundation and
construction of the measurable continuum itself forms an important part of our
dissertation. Also parts which we regard as today’s common and commonly
shared knowledge are very briefly discussed, just mentioned, or even completely
omitted.

We realize that the last two phrases might give rise to some confusion about
which dissertation we are sometimes referring to, and this brings us to the follow-
ing introductory remark: since this work is a dissertation about a dissertation,
a sharp distinction has to be made between this or our dissertation and Brou-
wer’s dissertation. We will stick to this terminology unless the context makes
it unambiguously clear which one we are talking about. In practice this will
come down to the following: when, for instance, a reference is made to ‘chapter
3’ without further specification, or to ‘our chapter 3’, the third chapter of this
dissertation is meant; in case we have the third chapter of Brouwer’s dissertation
is mind, this will be explicitly stated.

As said, the aim of this dissertation is to present a (re)interpretation of those
topics in Brouwer’s dissertation, which are of foundational interest for his future
development. This concerns mainly the following subjects:

– The ur-intuition and the construction of the ω-scale, departing
from that intuition,

– the status of ‘signs’,

– the construction of the η-scale,

– the scale of integers,

– the everywhere dense η-scale,

– the Bolzano-Weierstrass theorem,

– covering an everywhere dense scale with a continuum.

– the possible point sets, in particular the third construction rule for
sets,

– the continuum problem and Brouwer’s solution,
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– Brouwer’s view on (theoretical) physics and on natural sciences in
general. We realize that this is outside the realm of pure foundational
mathematics, but in view of the importance that Brouwer himself
attached to this subject, we feel that we cannot get around it; it is
too directly linked with his general view on mankind and on human
society.

– objectivity and apriority,

– the role of logic in the construction of the mathematical building,

– the hypothetical judgement and its constructivistic interpretation,

– the possible cardinalities, in particular the ‘denumerably infinite
unfinished’ cardinality,

– the denumerably unfinished cardinality of the set of mathematical
theorems versus Gödel’s first incompleteness theorem,

– the actual infinite and related problems like e.g. those of ’known/un-
known’ and ‘finished/unfinished’ of the (parts of) a mathematical
construction.

For that purpose the arrangement of the chapters is as follows:
In the first chapter a general and concise survey of set theory will be pre-

sented, as known among mathematicians in the year 1907, the year of Brou-
wer’s academic promotion. In this survey there will be an emphasis on the work
of Cantor, with additional remarks on (for us relevant) parts of the work of
Dedekind, Poincaré, Zermelo, Schoenflies and Bernstein.

In the subsequent chapters the content of Brouwer’s dissertation will be
discussed in regard to the following subjects:
Chapter 2: The ur-intuition of mathematics,
Chapter 3: The continuum,
Chapter 4: The possible point sets,
Chapter 5: The continuum problem and Brouwer’s solution to it,
Chapter 6: Mathematics and Experience,
Chapter 7: The role of logic,
Chapter 8: The summary and the theses.
In an appendix Brouwer’s own bibliography is presented, as pieced together
from his dissertation and from the notebooks.

For the relevant research we have mainly used the republication (1981) of
Brouwer’s dissertation,5 which edition also includes the Brouwer-Korteweg cor-
respondence, the Rejected Parts, two reviews of the dissertation by Mannoury,
the Addenda and Corrigenda6 (1917) and the 1908-paper The unreliability of
the logical principles.7 As an additional source of information we were also able

5[Brouwer 1981].
6Addenda en corrigenda over de grondslagen der wiskunde, [Brouwer 1917a].
7De onbetrouwbaarheid der logische principes, [Brouwer 1908a].
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to use, thanks to the mentioned recent new edition of Brouwer’s dissertation,8

the corrections by Brouwer’s hand, made in his own copy of the dissertation in
view of a reissue of it, in or shortly after 1917. For the English version of the
dissertation, On the foundations of mathematics, we have mostly adopted the
translation as this was published in the Collected works.9 When quoting from
the dissertation, we always refer to the original page numbers, which are added
in the margin of both the Dutch and the English editions.

As a reference to Brouwer’s published work we have adopted the codification
from A bibliography of L.E.J. Brouwer.10

To gain a better insight into Brouwer’s ideas on the several topics that will be
discussed, but also into the process of development leading to his views, we
have, apart from the dissertation itself, the following sources at our diposal:

1st. Brouwer’s nine notebooks.
About six months before the date of taking his doctoral degree Brouwer

composed a synopsis of what seemed to be a rather random collection of notes
about different mathematical and philosophical topics. This synopsis was known
for a long time and, judging by its content and reference system, it had to refer
to a set of notebooks, unknown until some five years ago.11

The notebooks, nine in number, which turned up later, matched perfectly the
content and the references of the synopsis. A transcription of these notebooks is
now completed, annotations are in preparation, and the whole will be published
later.

The dating of the notebooks can be made within reasonable margins. On
the first page of the first notebook a reference in the margin is made to the Hei-
delberger Congress, which took place in 1904. The proceedings of this congress
were published in 1905, hence this year most likely marks the beginning of the
notes.

On page 28 of the ninth and last notebook we find a reference to the Revue de
Métaphysique et de Morale of the year 1906, which gives us a reliable indication
of the end of the notes.

However, at the end of this last notebook, on page 32, Brouwer mentioned the
second volume of Die Entwickelung der Lehre von den Punktmannigfaltigkeiten
by A. Schoenflies, which was published in 1908. And on the last page (page 33)

8[Dalen 2001].
9L.E.J. Brouwer. Collected works, [Brouwer 1975].

10[Dalen, D. van 1997].
11Most likely the synopsis is not a first draft for his dissertation. A little more than a

month after the letter in which he announced the composition of the synopsis (7 September
1906), Brouwer wrote another letter (16 October 1906) to his thesis supervisor Korteweg,
which contained the planned arrangement of the chapters for his dissertation on the basis
of the notebooks and its synopsis. The first draft for this chapter arrangement shows some
similarity with the final result in the dissertation and no similarity whatsoever with the chapter
arrangement of the synopsis. Moreover, the synopsis does not contain fundamentally new
insights, it just presents in a systematic way concise and summarizing remarks from pages of
the notebooks, thereby referring to the relevant notebook pages.
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there is a reference to two papers from Brouwer’s own hand, On the structure of
perfect point sets,12, published in 1910, and Zur Analysis Situs, written in May
1909 and published in the Mathematische Annalen, also in 1910.13

Apparently Brouwer continued to make some notes for at least one year
after the defence of his dissertation, which took place on 19 February 1907.
Most likely the last blank pages of the last notebook were made useful, since on
earlier pages not a single trace can be found of any note, definitely dating from
later than the date of the defence.

As remarked already, Brouwer started composing the mentioned synopsis
some six months before the public defence of his dissertation; this ‘period of six
months’ can be concluded from the letter of 7 september 1906 from Brouwer to
Korteweg:

For some time I am now in Blaricum, where I can spend more effi-
ciently all my time on my work. I stopped reading others and I am
busy arranging my notes into chapters.

I am feeling so much the stronger in my conviction, now that I
perceive that I still hold as my view the notes of about two years
ago, after all the reading since. Except that I now can support them
better with the help of mathematical developments, than at that
time.14

The justified conclusion seems to be that the notebooks were mainly written
during the years 1905 and 1906, with some additional notes on the last two
pages of the last notebook from the years 1907, 1908 and 1909.

The content of the notebooks consists of short notes, varying in length from
one line to one page, discussing and commenting on a large variety of topics, like
the foundations of mathematics, the foundations of (projective) geometry, phi-
losophy, mysticism (often with pessimistic overtones),15 but there are also long
discussions on the continuum and on sets, which are the subjects of our main
concern. Brouwer also made elaborate notes on potential theory; the results
of those notes were published separately in the Verslagen van de Koninklijke
Nederlandse Akademie van Wetenschappen.16

12Over de Structuur der Perfecte Puntverzamelingen; [Brouwer 1910b] and [Brouwer 1910a],
published in the Verslagen van de Koninklijke Nederlandse Akademie van Wetenschappen and
in the Proceedings of the same Academy, of 1910.

13[Brouwer 1910c].
14included in [Brouwer 1981] and [Dalen 2001]: Sinds enige tijd ben ik in Blaricum, waar

ik beter al mijn tijd aan mijn werk kan geven. Met het lezen van anderen ben ik opgehouden,
en ben nu bezig mijn aantekeningen te ordenen en onder hoofdstukken te brengen.

Ik voel mij des te sterker in mijn overtuiging, nu ik merk, mijn aantekeningen van ongeveer
twee jaar geleden ook nu nog, na mijn lectuur van de tussentijd, geheel voor mijn rekening te
kunnen nemen. Alleen kan ik ze nu beter met wiskundige ontwikkelingen steunen dan toen.

15To get an idea of Brouwer’s mysticism and his pessimistic outlook on life and on humanity,
see [Brouwer 1905]; it is also translated in English, see [Stigt 1996].

16The Proceedings of the Royal Dutch Academy of Sciences. In fact the Dutch version was
published in the KNAW Verslagen and the English translation in the KNAW Proceedings.
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To the modern reader it appears to be difficult to transform this totality
of seemingly loose remarks, thought experiments and comments into a system-
atic overview of the developments in Brouwer’s mathematical and philosophical
thinking that we are about to investigate.

Especially in the last three notebooks Brouwer was very much concerned
with the continuum, the admissible sets and their possible cardinalities. Whereas
in the first three or four notebooks only a small number of paragraphs was de-
voted to sets and the continuum, from the second half of the sixth notebook
onwards page-long discussions follow on these topics; apparently these pages
must have been written during the year 1906.

Also we find in the notebooks many rudimentary ideas and thought experi-
ments that return only in much later developments of his mathematical thinking.

We adopt Brouwer’s convention to indicate the page references to the note-
books: III–7 refers to page 7 of the third notebook. This system of codification
is Brouwer’s own, as he used it in the synopsis of his notebooks. In this synopsis
Brouwer composed from the seemingly random and chaotic abundance of com-
ments and remarks a more systematic whole, by collecting the different subjects
into chapters.

Finally we make the following comment on the notebooks: Brouwer fre-
quently quoted from the writings of others (Cantor, Poincaré, Russell, Couturat
and many others). It is striking that in many cases, in fact more often than not,
the quotes are not exactly verbatim, despite the fact that Brouwer put them
between quotation marks. He often composed the quotes himself by selecting
parts from longer sentences (without using the modern convention of inserting
‘(...)’ for deleted words or groups of words), or he added new words to make
from part of a sentence a complete one. Brouwer either took that liberty or
quoted by heart. Since in the dissertation the quotes are strictly verbatim, the
ones in the notebooks are most likely just references and mnemonics for later
use in the dissertation.

2nd. The correspondence with his thesis supervisor Korteweg.
During the time of preparation of his dissertation and especially during the

final stage of actually writing it all down, Brouwer was in frequent and close
contact with his thesis supervisor Korteweg, via personal visits as well as via
letters.17 As a result of criticism from the side of Korteweg, several parts of
Brouwer’s draft text did not find their way into his dissertation. These ‘rejected
parts’ have been preserved.

The earliest known correspondence dates back to a letter of 15 February
1906, concerning the extension of Brouwer’s study grant. The more substantive
part begins with a letter of 7 September 1906, through which a reasonable dat-
ing of the period of writing down the content of the synopsis could be made;
the relevant quotation was given above.

17Included in [Brouwer 1981] and in [Dalen 2001].
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3rd. The Rejected Parts of the manuscript.
These consist of the parts of Brouwer’s draft for his dissertation which, as

remarked above, were rejected as a result of Korteweg’s criticism.18

4th. Preserved notes concerning the public defence of the dissertation, i.e. Man-
noury’s and Barrau’s opposition, and Brouwer’s reply to it.19

An academic ‘promotion’, i.e. the ceremony of taking one’s doctoral degree,
consists of a public defence of the dissertation against objections raised by the
examining professors, but in the old days in Amsterdam the examination was
opened with the opposition from the floor, that is, opponents from the audience
were allowed to attack the dissertation and the theses. That the opponents con-
cerned and the content of their opposition did not come as a complete surprise
to the candidate, can be concluded from the Korteweg correspondence.20

Also the following lecture and paper by Brouwer, as well as a letter to De
Vries, a review and an inaugural lecture, although they were given, held, sent,
or read after obtaining his doctoral degree, are relevant to a proper understand-
ing and interpretation of the subjects, especially when viewed as a transitional
stage on his way to intuitionistic mathematics:

5th. The Rome lecture Die mögliche Mächtigkeiten, held at the International
Congress of Mathematicians in Rome,1908.21

6th. The unreliability of the logical principles,22 published in the Tijdschrift
voor Wijsbegeerte.23

7th. Brouwer’s letter to J. de Vries, professor in mathematics at Utrecht Uni-
versity, 1907.24

8th. Mannoury’s review of the dissertation and Brouwer’s reply.25

9th Intuitionism and Formalism,
Brouwer’s inaugural adress on the occasion of his professorship at the Uni-

versity of Amsterdam, 1912.26

18Included in [Brouwer 1981] and in [Dalen 2001].
19Found as loose sheets in the last notebook. The Mannoury-part is included in

[Brouwer 1981] and in [Dalen 2001].
20For a detailed description of the ceremony, see [Dalen, D. van 1999], page 118, 119.
21Atti IV Congr. Intern. Mat. Roma III, page 569 – 571. Also included in [Brouwer 1975],

page 102 – 104.
22De onbetrouwbaarheid der logische principes. See [Brouwer 1908a]. Also included in

[Brouwer 1981] and in [Dalen 2001]; English translation in [Brouwer 1975], page 107 – 111.
23Dutch Journal of Philosophy.
24Included in [Dalen 2001].
25See [Brouwer 1981] and [Dalen 2001]. In fact, Mannoury wrote two reviews; Brouwer

replied to the one which was published in the Nieuw Archief voor Wiskunde.
26See [Brouwer 1981] and [Dalen 2001]; for English translation see [Brouwer 1975].
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Occasionally some additional short quotes will be drawn from other writings,
not mentioned in the given list and usually from a much later date.

For each subject the mentioned sources will be examined on their relevance,
beginning with the dissertation and thereupon, if needed or desired as an elu-
cidation or as an aid to a proper interpretation of the views expressed in the
dissertation, the other sources. It will be evident that particularly the notebooks
will offer us the opportunity to trace any possible development in fundamental
notions, as there are the continuum, sets and their possible cardinalities, but
also developments in future notions like choice sequences and the spread con-
cept. For a proper understanding of these remarks and notes we often have to
refer to much later work by Brouwer’s hand.

A final remark about the translation of the quotes: for the English version
of the quotations from the work of Brouwer we have mainly used, as point of
departure, the translation as it was published in the mentioned Collected Works
(C.W.), edited by A. Heyting. However, we have modified the translation when
that was, in our opinion, considered necessary.

Translations by others (e.g. Mancosu, Dresden) of texts by Brouwer, but
not included in the C.W., will be mentioned separately.27

Original texts in German or French are left untranslated.

27Many English translations of Brouwer’s texts, as far as they were originally written
in Dutch, can be found in [Heijenoort 1967], [Benacerraf and Putnam 1983], [Stigt 1990],
[Mancosu 1998] or [Ewald 1999].



Chapter 1

Sets and the continuum
before 1907

For a fruitful discussion of Brouwer’s early work, a reasonable amount of knowl-
edge of the development of set theory, as this took place during the second half
of the nineteenth century, is required. We must keep in mind that Brouwer
reacted to a new and very current branch of mathematics, which received a lot
of attention during the period beginning just a few decades before Brouwer’s
active life as a mathematician and philosopher.

This first chapter contains background material, needed for a proper under-
standing of the discussion about the foundational parts of Brouwer’s disserta-
tion. The content will be familiar to many readers, since it consists mainly of
basic set theory. For those readers a quick glance will suffice.

After 1870 set theory developed rapidly into a separate branch of mathe-
matics, despite resistance from mathematicians like Kronecker, but also from
philosophers and even from theologians. This new development took place
mainly through the work of Georg Cantor, who, for that reason, must be con-
sidered as the founder of set theory.

Before Cantor, use was made of certain collections possessing certain proper-
ties, like the locus in geometry, but collections like that did not seem to have the
status of a mathematical object with which and on which certain mathematical
operations could be performed. Likewise collections with an infinite number
of elements, although their existence had of course to be admitted, seemed to
possess strange properties to such an extent (like the possibility of a one-one
correspondence between a collection and a part thereof) that they too seemed
to lack the status of mathematical object.1

1see [Galileo 1974], page 40, 41 where one of the participants in the discussion concludes,
because of the possible one-one relation between natural numbers and their squares, that
concepts like ‘equal’, ‘greater’ and ‘smaller’ are not applicable in case of infinite quantities.

1
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To get an insight into the development and in the state of knowledge of set
theory at the time of Brouwer’s public defence of his dissertation, the following
persons and subjects are of importance, and will be discussed:

1.1 Cantor
1.2 Dedekind
1.3 Poincaré
1.4 Zermelo
1.5 Schoenflies
1.6 Bernstein
1.7 The paradoxes

An important predecessor in the development of set theory was Bolzano
(1781–1848), whose main publication on this topic, Paradoxien des Unendlichen,
was published posthumously in 1851.2 Bolzano was attracted by the seemingly
paradoxical nature of the infinite. Without going into the details of Bolzano’s
work, we just mention the fact that he very clearly saw the problems concerning
the infinite, that he asked the proper questions, but did not take the steps and
did not draw the conclusions, that Cantor did twenty five years later.

Because Brouwer made use of Cantor’s results (and disagreed in many re-
spects with these results), it is, for a proper understanding of the references that
Brouwer made, of importance to give a survey of the content of Cantor’s work in
a systematic way. This will be done in the first section of this chapter, despite
the fact that it concerns rather basic set theory with which many readers will
be familiar.

1.1 Cantor (1845–1918)

Cantor started publishing on set theory in 1870, shortly after his Habilitation.
From this time onwards the idea that a set can have a one-to-one relation to a
proper subset of itself is generally accepted as a typical property of infinite sets
(and is certainly no reason to turn away from those sets).3

The word set (German: Menge, French: ensemble) did not appear right
from the beginning in the work of Cantor. In his earliest letters to Dedekind
during the years 1873 and 18744 and in his paper Über eine Eigenschaft des
Inbegriffes aller reellen algebraischen Zahlen, published in 1874, he employed the
mathematically undefined term totality (Inbegriff) e.g. of the natural numbers
or of the rational numbers. In the 1877-correspondence to Dedekind and in the
1878-paper Ein Beitrag zur Mannigfaltigkeitslehre, the term Mannigfaltigkeit
was used to indicate such totalities, but now also set (Menge) appeared, and in

2[Bolzano 1851].
3For Dedekind the possibility of a one-to-one mapping of a set onto a proper subset of itself

became the definition of the infinity of a set, now known under the term Dedekind infinite.
See under section 1.2.

4Cantor communicated his new ideas on sets and cardinalities with Dedekind in a series of
letters after 1873; see [Cantor 1937].
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the eighties of that century this term became the accepted one. We will from
now on use only the term set. In the Beiträge zur Begründung der transfiniten
Mengenlehre5 the following definition of a set is given (§ 1):

Unter einer ‘Menge’ verstehen wir jede Zusammenfassung M von
bestimmten wohlunterschiedenen Objecten m unsrer Anschauung
oder unseres Denkens (welche die ‘Elemente’ vonM genannt werden)
zu einem Ganzen.

To indicate the magnitude of a set M the term power, cardinality or cardinal
number (Mächtigkeit, Cardinalzahl) is used: two sets have the same power or
cardinality if a one-to-one mapping of one set onto the other is possible, under
abstraction from the order and the nature of their elements. This cardinality
with its double abstraction is indicated for a set M by M . Sets satisfying that
mapping condition are then said to be equivalent (gleichmächtig).

Consulted literature for this section about Cantor consists of the following
material:

– Briefwechsel Cantor-Dedekind, edited by E. Noether and J. Cavaillès,
Paris, 1937.

This volume contains the Cantor-Dedekind correspondence between 1872
and 1882; the important 1899-part of this correspondence is contained in Can-
tor’s Gesammelte Abhandlungen.

– Cantor, Gesammelte Abhandlungen, edited by E. Zermelo, Berlin, 1932.
From this volume in particular the following articles:

– Über eine Eigenschaft des Inbegriffes aller reellen algebraischen
Zahlen. (Journal für die reine und angewandte Mathematik6 1874.)

– Ein Beitrag zur Mannigfaltigkeitslehre. (idem, 1878.)

– Über einen Satz aus der Theorie der stetigen Mannigfaltigkeiten.
(Göttinger Nachrichten, 1879.)

– Über unendliche lineare Punktmannigfaltigkeiten. (Mathematische
Annalen, 1879, ’80, ’82, ’83, ’84; M.A. Volumes 15, 17, 20, 21 and
23 respectively.)

– Über verschiedene Theoreme aus der Theorie der Punktmengen in
einem n-fach ausgedehnten stetigen Raume Gn. (Acta Mathematica,
1885.)

– Über die verschiedenen Standpunkte in bezug auf das aktuelle Un-
endliche. (Zeitschrift für Philosophie und philosophische Kritik bd.
88, 1890.)

5[Cantor 1897], also in [Cantor 1932], page 282 ff.
6Brouwer usually referred to this journal under the name of its editor Crelle, and we will

follow this practice henceforth.
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– Mitteilungen zur Lehre vom Transfiniten. (Zschr. f. Philos. u.
philos. Kritik, 1887.)

– Über eine elementare Frage der Mannigfaltigkeitslehre. (Jahres-
bericht der Deutschen Mathematiker-Vereinigung, Bd.1, 1890–91.)

–Beiträge zur Begründung der transfiniten Mengenlehre. (Mathema-
tische Annalen 1895, ’97, M.A. Volumes 46 and 49 respectively.)

As far as possible, the papers mentioned above will be discussed in a chrono-
logical order, which results not only in an overview of the state of knowledge on
sets in the year 1907, but additionally in a survey of the origin and history of
set theory. We must keep in mind that there was only one complete textbook
on set theory available during the years of Brouwer’s preparation for his thesis.7

Brouwer drew most of his information directly from Cantor’s papers.
In the first sections frequent use will be made of the Cantor-Dedekind cor-

respondence; this in particular gives a good insight in the development of his
ideas. It will be noticed that in the beginning Cantor often made use of terms
and concepts which were only properly defined in a later stage of the develop-
ment.

1.1.1 The discovery of non-equivalent infinite sets

In a letter to Dedekind of 29 November 1873,8 Cantor considered the possibility
of the construction of a one-to-one relation between the natural and the real
numbers. He did not know a definite answer to this problem yet, and asked
Dedekind to think it over. Intuitively the answer should be no, but there was
justified doubt:

Auf den ersten Anblick sagt man sich, nein es ist nicht möglich, denn
(n) besteht aus discreten Theilen, (x) aber bildet ein Continuum;

(...)

Wäre man nicht auch auf den ersten Anblick geneigt zu behaupten,
dass sich (n) nicht eindeutig zuordnen lasse dem Inbegriffe (p

q ) aller
positiven rationalen Zahlen p

q ?

But this last statement is easy to prove, just as the theorem of the equivalence
between the natural numbers and the algebraic numbers.

In a following letter to Dedekind of 7 December 1873, Cantor proved in an
ingenious way that the assumed equivalence between the natural numbers and

7The first general textbook on set theory was Schoenflies’ Bericht über die Mengenlehre,
[Schoenflies 1900a], published in the Jahresbericht der Deutschen Mathmatiker-Vereiniging;
see under section 1.5. In fact there was also Young and Young’s The theory of sets of points
([Young and Chisholm Young 1906]), but probably Brouwer was not familiar with this book;
he never mentioned the name Young, neither in his thesis, nor in his notebooks, although
W.H. Young published in German in the Mathematische Annalen in 1905.

8[Cantor 1937], page 12; all letters between Cantor and Dedekind during the years 1872
– 1882 are published in this volume. The letters written in the nineties of the nineteenth
century can be found in [Cantor 1932].
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the reals leads to a contradiction. The proof was performed with the help of a
method of nested intervals and was published a year later.9 With this proof the
existence of at least two different kinds of infinity was shown for the first time.

1.1.2 On the equivalence of R1 and Rn

On 5 January 1874 Cantor asked to Dedekind in a letter the following question:

Lässt sich eine Fläche (etwa ein Quadrat mit Einschluss der Begren-
zung) eindeutig auf eine Linie (etwa eine gerade Strecke mit Ein-
schluss der Endpunkte) eindeutig beziehen, so dass zu jedem Puncte
der Fläche ein Punct der Linie und umgekehrt zu jedem Puncte der
Linie ein Punct der Fläche gehört?

In the letter of 20 June 1874 he returned to this question and gave a proof
that such a relation is possible, and he even proved that for any finite n a one-
to-one relation between a line and an n-dimensional manifold is possible. On
the basis of some remarks from Dedekind,10 a correction by Cantor was given
in his reply of 25 June 1877 to Dedekind and at the end of this letter Cantor
added:

Da sieht man, welch’ wunderbare Kraft in den gewöhnlichen reellen
rationalen und irrationalen Zahlen doch liegt, dass man durch sie im
Stande ist die Elemente einer ρ fach ausgedehnten stetigen Mannig-
faltigkeit eindeutig mit einer einzigen Coordinate zu bestimmen.

It appears that Cantor was surprised by his own results. In his next letter
to Dedekind he stated ‘je le vois, mais je ne le crois pas’.

Cantor was in doubt, because it violated the principle of invariance of di-
mension in one-to-one mappings of one ‘Punktmannigfaltigkeit’ onto an other;
but on 2 July 1877 Dedekind answered him that the invariance of dimension is
only valid for continuous mappings and that authors, when discussing mappings,
always more or less tacitly assume that the mappings concerned are continuous.

Cantor published this proof, with the mentioned remarks by Dedekind in-
corporated, in 1878,11 and he returned to this subject in 187912 with the same
conclusion: discontinuous mappings do not require invariance of dimension.

In the paper of 1878 Cantor introduced the term equivalence of two sets and
showed that in case of an infinite set an equivalence is possible between that
set and a proper subset thereof; he also proved that the system of the natural

9[Cantor 1874]. The in later time frequently employed diagonal method of proof of the un-
countability of a set was only introduced in [Cantor 1891], also to be found in [Cantor 1932],
page 278 ff., in which short article the countability of the algebraic numbers and the un-
coutability of the reals is proved. Both the interval method and the diagonalization method,
are called spoiling arguments in modern logic.

10letter of 22 June 1874 to Cantor, [Cantor 1937], page 27.
11[Cantor 1878], § 1, also included in [Cantor 1932], page 122 ff.
12[Cantor 1879b], see also [Cantor 1932], page 134 ff.
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numbers is the ‘smallest’ possible infinite set, which means that any subset of
the set of the natural numbers is either finite or equivalent to the original set.

1.1.3 On linearly ordered point sets

In the Mathematische Annalen (volumes 15, 17, 20, 21, and 23, appearing be-
tween 1879 and 1884) the first of two series of papers was published, under
the titel Über unendliche lineare Punktmannigfaltigkeiten. In the next sections
up to and including § 1.1.7 a selection from the content of this series will be
presented and occasionally commented on. The beginning of the first article
reads:

In einer, im Crelleschen Journale, Bd. 84, herausgegebenen Abhand-
lung13 (...) habe ich für ein sehr weitreichendes Gebiet von geo-
metrischen und arithmetischen, sowohl kontinuierlichen wie diskon-
tinuierlichen Mannigfaltigkeiten den Nachweis geführt, daß sie ein-
deutig und vollständig einer geraden Strecke oder einem diskon-
tinuierlichen Bestandteile von ihr sich zuordnen lassen.14

Cantor used the term lineare Punktmannigfaltigkeiten, or briefly, lineare
Punktmengen.15 In the Crelle paper (volume 84), to which he referred in the
last quotation, a linearly ordered set is defined as:

Unter einer linearen Mannigfaltigkeit reeller Zahlen wollen wir jede
wohldefinierte Mannigfaltigkeit reeller, voneinander verschiedener,
d.i. ungleicher Zahlen verstehen, so daß eine und dieselbe Zahl in
einer linearen Mannigfaltigkeit nicht öfter als einmal als Element
vorkommt.16

Thus for Cantor not much was lost by restricting himself to the infinite
linearly ordered sets of natural, rational, algebraic, or real numbers.

At the beginning of the first paper of the series which we are discussing now,
the concept derivative of a linearly ordered point set is defined: the derivative
of a point set is the set of all limit points of the original set, where:

A limit point of a set is defined as a point (not necessarily an element of the
set) with the property that every neighbourhood of that point contains at least
one point of the set, different from the limit point itself.

The second derivative is the derivative of the derivative set, etc.
A set is of the first kind (von der ersten Gattung) if there is an nth derivative

that has no derivative itself.17 This is the case if the nth derivative is a set with
finitely many elements in every interval of finite length.

13[Cantor 1878], also in [Cantor 1932], page 119 ff.
14[Cantor 1932], page 139.
15See on page 15 for the more abstract definition of einfach geordnete Menge (simply ordered

set).
16[Cantor 1932]. page 124.
17To be precise: some nth and all subsequent derivatives are empty.
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A set is of the second kind (von der zweiten Gattung) if every derivative of
the set has a derivative.

A set is everywhere dense if every element of the set is a limit point.
A set, which is everywhere dense in an interval, is necessarily of the second

kind; hence a set of the first kind is certainly not everywhere dense.
Additionally the following concepts are defined:
The cardinality (Mächtigkeit) of a set is a measure of its magnitude. Two

sets have different cardinality if one is equivalent to a proper subset of the other,
whereas the converse is not true.

A set is denumerable if it is equivalent to the natural number system. Well-
known examples of denumerable sets are the set of rational numbers and the
set of algebraic numbers, as was proved by Cantor.

An equivalence class18 contains sets which are all equivalent, hence sets of
different classes are by definition not equivalent; The denumerable sets form
together one class and the set of all natural numbers, the set of all rational
numbers, the set of all algebraic numbers or any infinite subset of any of these
three sets, belong to this class, from which it follows that sets of the first kind
(Gattung) and of the second kind can belong to the same class.

Another equivalence class is formed by the following sets: 1) open or closed
continuous intervals, 2) combinations of these intervals, and also

3) Jede Punktmenge, welche aus einem stetigen Intervalle dadurch
hervorgebt, daß man eine endliche oder abzählbar unendliche Man-
nigfaltigkeit von Punkten ω1, ω2, ..., ων , ... daraus entfernt.19

or any set which is equivalent to any of these three.

We will return to this third remarkable possibility when discussing the sets
that Brouwer in 1907 admitted as possible.

1.1.4 Irrational numbers, the continuum, the continuum
hypothesis, reducible and perfect sets

The fifth paper in this series is the most important and also the longest one. It
bears the title Grundlagen einer allgemeinen Mannigfaltigkeitslehre and it was
also separately published in 1883 under the same title. Brouwer made use of
the latter publication, as can be concluded from his quotations which include
the relevant page references.

In § 9 of this paper the real irrational numbers are discussed and an overview
is presented of the method of the Dedekind cuts to define these real numbers.20

18Cantor used here the term class (‘Klasse’), but we will henceforth use the term equivalence
class for this type of class, to prevent confusion with several other class concepts that Cantor
used.

19op. cit. page 142.
20see under Dedekind, section 1.2.
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In § 10 a discussion follows about the continuum concept, beginning with a
short history of this concept, in which it ranges from a religious dogma to a
mathematical-logical concept.

In connection with Brouwer’s continuum concept at the time of taking his
doctoral degree in 1907, the following quotations are of importance:

Zunächst habe ich zu erklären, daß meiner Meinung nach die Her-
anziehung des Zeitbegriffes oder der Zeitanschauung bei Erörterung
des viel ursprünglicheren und allgemeineren Begriffs des Kontinuums
nicht in der Ordnung ist; die Zeit ist meines Erachtens eine Vorstel-
lung, die zu ihrer deutlichen Erklärung den von ihr unabhängigen
Kontinuitätsbegriff zur Voraussetzung hat und sogar mit Zuhilfe-
nahme desselben weder objektiv als eine Substanz, noch subjektiv
als eine notwendige apriorische Anschauungsform aufgefaßt werden
kann, sondern nichts anderes als eine Hilfs– und Beziehungsbegriff
ist, durch welchen die Relation zwischen verschiedenen in der Natur
vorkommenden und von uns wahrgenommenen Bewegungen fest-
gestellt wird. So etwas wie objektive oder absolute Zeit kommt in
der Natur nirgends vor.21

Hence, according to Cantor, the continuum concept is prior to the concept of
time. As for the space concept:

Ebenso ist es meine Überzeugung, daß man mit der sogenannten An-
schauungsform des Raumes gar nichts anfangen kann, um Aufschluß
über das Kontinuum zu gewinnen, da auch der Raum und die in
ihm gedachten Gebilde nur mit Hilfe eines begrifflich bereits fertigen
Kontinuums denjenigen Gehalt erlangen, mit welchem sie Gegen-
stand nicht bloß ästhetischer Betrachtungen oder philosophischen
Scharfsinnes oder ungenauer Vergleiche, sondern nüchtern-exakter
mathematischer Untersuchungen werden können.22

The last two quotations tell us that Cantor’s concept of the continuum nei-
ther depends on time, nor on space. In his own words:

Somit bleibt mir nichts anderes übrig, als mit Hilfe der in § 9 definier-
ten reellen Zahlbegriffe23 einen möglichst allgemeinen rein arith-
metischen Begriff eines Punktkontinuums zu versuchen.24

21op. cit. page 191.
22op. cit. page 192.
23In § 9 Cantor discussed three methods for the definition of irrational numbers, all three

starting from the system of rational numbers: the Weierstrass method by means of infinite
sequences with an upper (or lower) bound, the Dedekind method by means of cuts and (in
Cantor’s terms) a ‘Weierstrass-like’ method with the help of fundamental sequences with all
terms, except a finite number, in pairs less than a certain, arbitrary small, positive number ε
apart. Hence all three methods give a definition of irrational numbers on a purely arithmetical
basis.

24op. cit. page 192.
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Hence Cantor’s continuum is the arithmetical continuum of all real numbers,
defined by means of the method of the Dedekind cuts or by similar arithmetical
methods.25

We will return to this when discussing Brouwer’s completely opposite con-
cept of the continuum and his ideas on the role of time in mathematics.26

The continuum hypothesis is expressed by Cantor in the following way:

Ich habe in Crelles J. Bd 84, S. 242 bewiesen, daß alle Räume
Gn, wie groß auch die sogenannte Dimensionenanzahl n sei, gleiche
Mächtigkeit haben und folglich ebenso mächtig sind wie das Linear-
kontinuum, wie also etwa der Inbegriff aller reellen Zahlen des Inter-
valles (0....1). Es reduziert sich daher die Untersuchung und Feststel-
lung der Mächtigkeit von Gn auf dieselbe Frage, spezialisiert auf das
Intervall (0...1), und ich hoffe, sie schon bald durch einen strengen
Beweis dahin beantworten zu können, daß die gesuchte Mächtigkeit
keine andere ist als diejenige unserer zweiten Zahlenklasse (II).27

The first part of this quotation was discussed in section 1.1.2 and in the
second part Cantor conjectured that, in his terminology, C = ℵ1.

This results, according to Cantor, in the theorem that infinite point sets
either have the cardinality of the first numberclass or that of the second; in
a footnote at the end of the paper two more theorems are added: the set of
all continuous and integrable functions has the cardinality of the second num-
berclass and the set of all real functions, continuous or discontinuous, has the
cardinality of the third class.28

Point sets P , as subsets ofRn, can be divided in, again, two classes, according
to the cardinalities of their first derivative P (1):29

1. P is reducible if P (1) has the cardinality of the first number class. In that
case there is a number α of the first or second number class, such that P (α) is
empty (‘verschwindet’).

P is perfect if P (γ) = P for every γ.
2. If P (1) has the cardinality of the second number class (i.e. ‘nicht abzählbar’),
then it can be uniquely expressed as P (1) = R + S, with R reducible and S
perfect. (This is a slightly modified form of the Cantor-Bendixson theorem,
which states the just given theorem for every point set, i.e. for every closed set
on the real line, or, for every closed set with a denumerable basis).30

Other topological concepts like connected point sets31 are introduced in this
paragraph. In a footnote to this paragraph Cantor presented a surprising ex-

25see also 1.1.8, the linear continuum.
26see chapter 2 and 3 of this dissertation.
27op. cit. page 192.
28Number classes were also defined in this section, but for a more proper definition, see

under section 1.1.5.
29Op. cit. page 193.
30See [Dalen, D. van, H.C. Doets, H.C.M. de Swart 1975], page 291.
31See under 1.1.6.
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ample of a particular kind of set, now known as the Cantor set: a perfect point
set which is in no interval everywhere dense.32

1.1.5 Generation principles (Erzeugungsprinzipien) and the
Limitation principle (Hemmungsprinzip) for finite
and transfinite numbers

In § 11 of the Grundlagen the generation principles for ordinals are defined. The
series of natural numbers 1, 2, 3, ..., n, ... originates from the repeated expression,
either spoken or in writing, of equal units and combining the result into a unity.
A natural number n is the expression for a certain finite number of those units,
as well as for the union into a totality (set) of the expressed units.

The first generation principle is the addition of one unit to the already
constructed number:

Es beruht somit die Bildung der endlichen ganzen realen Zahlen auf
dem Prinzip der Hinzufügung einer Einheit zu einer vorhandenen
schon gebildeten Zahl; ich nenne dieses Moment, welches, wie wir
gleich sehen werden, auch bei der Erzeugung der höheren ganzen
Zahlen eine wesentliche Rolle spielt, das erste Erzeugungsprinzip.33

The second generation principle guarantees the existence of a number, which
follows immediately after all finite natural numbers. Although there is of course
no largest finite natural number, Cantor stated:

(...) hat es doch andrerseits nichts Anstössiges, sich eine neue Zahl,
wir wollen sie ω nennen, zu denken, welche der Ausdruck dafür sein
soll, daß der ganze Inbegriff (I) in seiner natürlichen Sukzession dem
Gesetze nach gegeben sei.

(...)

Es ist sogar erlaubt, sich die neugeschaffene Zahl ω als Grenze zu
denken, welcher die Zahlen ν zustreben, wenn darunter nichts an-
deres verstanden wird, daß ω die erste ganze Zahl sein soll, welche
auf alle Zahlen ν folgt, d.h. größer zu nennen ist als jede der Zahlen
ν.34

ω is the first number following all finite natural numbers and it is also the
first number not belonging to number class I. After having obtained ω by means
of the second principle we can again employ the first principle to construct the
continuation of the number series ω+1, ω+2, ...., ω+ν, ... until, again, with the
help of the second principle, we reach ω + ω = ω2 (in modern notation; Cantor
himself wrote it as 2ω).

32See page 95 for a more detailed description.
33op. cit. page 195.
34op. cit. page 195.
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Die logische Funktion, welche uns die beiden Zahlen ω und 2ω gelie-
fert hat, ist offenbar verschieden von dem ersten Erzeugungsprinzip,
ich nenne sie das zweite Erzeugungsprinzip.35

Then again with the first principle and alternating with the second ω2 +
1, ω2 + 2, ..., ω2 + ν, ... up to ωω = ω2.

Continuing in this way, using both principles in turn, one gets ω2λ+ωµ+ν,
with λ, µ and ν natural numbers, and, as a general form, the normal form of
the numbers of the second number class:

ωµν0 + ωµ−1ν1 + ...+ ωνµ−1 + νµ

with νi a natural number for all i. And ultimately, with the second principle,
we reach ωω; but then we still can continue, by means of the first two principles
only, with ωω + 1 and so on.

Restriction to those two principles gives us the impression of an unlim-
ited totality without any chance of some form of completion. For that reason
Cantor introduced a third principle, the limitation principle (Hemmungs– oder
Beschränkungsprinzip), which enabled him to define the second number class
as a completed totality:

Bemerken wir nun aber, daß alle bisher erhaltenen Zahlen und die
zunächst auf sie folgenden eine gewisse Bedingung erfüllen, so er-
weist sich diese Bedingung, wenn sie als Forderung an alle zunächst
zu bildenden Zahlen gestellt wird, als ein neues, zu jenen beiden
hinzutretendes drittes Prinzip, welches von mir Hemmungs– oder
Beschränkungsprinzip genannt wird und das, wie ich zeigen werde,
bewirkt, daß die mit seiner Hinzuziehung definierte zweite Zahlen-
klasse (II) nicht nur eine höhere Mächtigkeit erhält als (I), sondern
sogar genau die nächst höhere, also zweite Mächtigkeit.
(...)
Wir definieren daher die zweite Zahlenklasse (II) als den Inbegriff
aller mit Hilfe der beiden Erzeugungsprinzipe bildbaren, in bestimmter
Sukzession fortschreitenden Zahlen α

ω, ω + 1, ..., ν0ωµ + ν1ω
µ−1 + ...+ νµ−1ω + νµ, ..., ω

ω, ..., α...,

welche der Bedingung unterworfen sind, daß alle der Zahl α vor-
aufgehenden Zahlen, von 1 an, eine Menge von der Mächtigkeit der
Zahlenklasse (I) bilden.36

All transfinite numbers of the second number class are equivalent to the
set of all natural numbers, hence they have the same cardinality as ω and are
denumerably infinite, but in § 12 it is proved that the second number class as a
totality has a cardinality which exceeds that of the natural number system. In
§ 13 Cantor proved that the second number class is, qua cardinality, the direct
successor of the first number class.

35op. cit. page 196.
36op. cit. page 197.
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1.1.6 The Cantor-Bernstein theorem and the definition of
further new concepts

The same § 13 of this fifth paper (the Grundlagen ...) continues with just
mentioning a special case of an important and well known theorem, which is
now known as the Cantor-Bernstein theorem; it is presented in the following
formulation:

Hat man irgendeine wohldefinierte Menge M von der zweiten Mäch-
tigkeit, eine Teilmenge M ′ von M und eine Teilmenge M ′′ von M ′

und weiß man, daß die letztere M ′′ gegenseitig eindeutig abbildbar
ist auf die erste M , so ist immer auch die zweite M ′ gegenseitig
eindeutig abbildbar auf die erste und daher auf die dritte.37

A proof is not given; see for a further discussion the sections on Dedekind38

and on Bernstein.39

In the fourteenth section of Cantor’s work, in which a host of new ideas is
introduced, a number of theorems for transfinite numbers is given and proved,
such as the theorem that the distributive law is only valid in the form (α+β)γ =
αγ + βγ, in which (α+ β), α and β are the multiplicator; it is also shown that
α + ξ = β always has a unique solution for ξ, whereas ξ + α = β generally has
no solution.

A similar theorem applies for β = ξα; in this form it has a unique solution,
whereas β = αξ generally has not.

The sixth and last paper of this series may be seen as marking the beginning
of the Cantor-topology. It is a direct continuation of the previous paper, (the
Grundlagen); it appeared one year later in the Mathematisch Annalen and was
not included in the already published book version.

In this paper a perfect set is defined as a set which coincides with its first
derivative (§ 16), so P (1) = P . This condition differs from the one for a closed
set:

A set is closed (abgeschlossen) if it contains its first derivative as a subset,
i.e. P (1) ⊆ P or P (1) ∩ P = P (1).

A set is dense in itself (in sich dicht) if P ⊆ P (1) or P (1) ∩ P = P .40

Note that Cantor also gave a definition of a perfect set in § 10 in a different
formulation but with the same content.41 Also in section 1.1.10 definitions are

37op. cit. page 201.
38see under 1.2.
39see under 1.6.
40In Cantor’s notation: a set is closed if D(P, P (1)) = P (1) and a set is dense in itself if

D(P, P (1)) = P ; for the union of two sets A and B he used the notation M(A, B). The D and
the M were written in Gothic typeface. Brouwer used a Gothic D and S for intersection and
union ([Brouwer 1918 B], section 1); we will use the modern notation of ∩ and ∪ respectively.

Note that there is a difference between the concepts everywhere dense and dense in itself;
see for an example the Cantor set, page 95.

41see under section 1.1.4.
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given, again in different wordings, of the concepts perfect set, closed set and
dense in itself, which definitions can, however, again be proved to be equivalent
to the ones given above.

A continuum in the proper sense (Kontinuum in eigentlichen Sinne, §19)
is a set which is perfect and connected (in sich zusammenhängend), in which
‘connected’ (zusammenhängend) means, according to §19 of the Grundlagen,
that for every two elements t and t′ of the set, and for every ε > 0 there exist
a finite number of elements t1 = t, t2, ..., tn = t′ of the set such that for every i
|ti − ti+1| < ε.42

In this same § 19 the theorem, which claims that all linear perfect point sets
are equivalent, is proved.43 Cantor also noticed that the perfect set has the
cardinality of the continuum, and he was able to define this set with the help
of a formula for its individual elements (see 1.1.8).

There certainly was opposition against Cantor’s new ideas. In the paper
Über die verschiedene Standpunkte in Bezug auf das aktuelle Unendliche (1885)
Cantor discussed the possibility of the existence of the actual infinite, and the
paper Mitteilungen zur Lehre vom Tranfiniten is composed of a number of let-
ters, written to mathematicians, philosophers and theologians, in which Cantor
defended his standpoint.

1.1.7 Beitrage zur Begründung der transfiniten Mengen-
lehre

During the years 1895 and 1897, the second of the two important series of
papers was published in the Mathematische Annalen, under the title of this
section.44 In this series the results of twenty five years of development of the
Cantorian set theory are presented in a concise and precise way, this time with
the emphasis on ordered and well-ordered sets, resulting in the possibility to
discuss the continuum of the real numbers in a mathematically rigorous manner.

The remainder of the discussion of Cantor’s work will be concerned with this
second series. Several topics which are treated in this series, came up already in
earlier sections and will therefore either be just mentioned or completely omit-
ted.

The first paper begins with the earlier quoted definition of a set and of its
cardinality; the latter is introduced as the result of double abstraction.45

Ordering of cardinal numbers in less than and greater than is defined in
the usual way, just like addition and multiplication. The sum (product) of two

42Note that, if ‘connected’ is the proper translation for ‘zusammenhängend’, this differs from
the modern topological concept of ‘connectedness’: a set S is connected if it cannot be split
into two open non-empty subsets A and B, such that A ∩ B = ∅ and A ∪ B = S. According
to Cantor’s definition the rational scale is connected, according to the modern definition it is
not. In non-standard analysis the two definitions can be made to be equivalent again.

43Compare this to the theorem in section 1.1.9.
44[Cantor 1897], also in [Cantor 1932], page 282 ff.
45See the beginning of section 1.1.
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cardinal numbers is the cardinality of the sum (product) of two disjoint sets
with the two given cardinal numbers.

Also exponentiation of cardinal numbers is specified (in § 4) by means of the
concept of assignment. An assignment (Belegung)46 of the set N with elements
of the set M (or simply: the assignment of N with M) is a law (ein Gesetz),
according to which, with every element n ofN , a specific elementm = f(n) ofM
is associated. Repeated use of elements of M is permitted with this operation.
The set of all assignments of N with M is called the assignment set of N with
M , in symbols as MN (in Cantorian notation (N |M)).

If now a and b are two cardinal numbers and M and N two representing
sets for a and b (that is, that M is of cardinality a and N of cardinality b), then
Cantor defined:

ab = MN

This is in accordance with the traditional definition of exponentiation, and the
usual laws apply.

IfN is an arbitrary set with cardinality b andM is the set (0, 1), representing
the cardinal number 2, then the power set of N is defined as the set of all subset
of N , and can be shown to have cardinality MN = 2b.

A well-known theorem states that the cardinality of the power set of a set
is greater than the cardinality of the original set, i.e. there exists no one-to-one
mapping of the original set onto its power set. This results in the absence of a
greatest cardinal number.

1.1.8 The linear continuum

In § 4 of the Begründung papers the linear continuum X is defined as the totality
(Inbegriff) of all real numbers x on the closed interval [0, 1]47 and its cardinality
is written as c. If the continuum is expressed in a dual number system (only 0′s
and 1′s in the expansion), then an arbitrary real number x on that interval can
be written as the expansion:

x =
f(1)

2
+
f(2)
22

+ ...+
f(n)
2n

+ ... with f(n) = 0 or 1,

Because the numerator f(n) can only have the values 0 or 1, the series for x
is a Cauchy sequence48 with a denumerable (ℵ0) number of terms and with the
only possible values for those terms: 0 or 1

2n , that is two possible values at each
dual place. Hence the total number of possible values for x is 2ℵ0 , which is then
the cardinality of the set {x|x = f(1)

2 + f(2)
22 +...+ f(n)

2n +... with f(n) = 0 or 1},
which set is the perfect set.

Since the power of the continuum does not change when rewriting its ele-
ments in the decimal number system, the conclusion follows that the cardinality

46Philip Jourdain translates this as ‘covering’, which can be misleading.
47Compare this with the definition of the continuum, that Cantor used in 1.1.4, where the

continuum hypothesis was discussed.
48A Cauchy sequence is a sequence {tn} with the property that for every ε there exists a n

such that |tn+p − tn| < ε for every p.
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of the continuum, in the Cantorian meaning49 of the totality of all real numbers
on the interval [0, 1], is c = 2ℵ0 .

In § 5 the finite cardinal numbers (the natural numbers) are defined, as well
as the rules for addition and multiplication for the finite numbers in combination
with the smallest infinite cardinal number ℵ0, that is the cardinality of each
number of the second number class.50

1.1.9 Order types

A definition of a simply ordered set is, in the formulation of Cantor:

Eine Menge M nennen wir einfach geordnet, wenn unter ihren Ele-
menten m eine bestimmte Rangordnung herrscht, in welcher von je
zwei beliebigen Elementen m1 und m2 das eine den niedrigeren, das
andere den höheren Rang einnimmt, und zwar so, dass wenn von drei
Elementen m1, m2 und m3 etwa m1 dem Range nach niedriger ist
als m2, dieses niedriger als m3, alsdann auch immer m1 niedrigeren
Rang hat als m3.51

Note that the ordering of a set can be obtained in different ways.52 Given
a simply ordered set, the concept of order type (Ordungstypus) can be defined,
by a single abstraction from the nature of the objects:

Jeder geordneten Menge M kommt ein bestimmter Ordnungstypus
oder kürzer ein bestimmter Typus zu (...); hierunter verstehen wir
den Allgemeinbegriff, welcher sich aus M ergiebt, wenn wir nur von
der Beschaffenheit der Elemente m abstrahieren, die Rangordnung
unter ihnen aber beibehalten.53

Two simply ordered sets are of the same order type, if they can be mapped
ono-to-one onto each other under preservation of the order.54 In this case the
sets are called similar (ähnlich).

If an order type is written as α, then α is the corresponding cardinal number.
All order types with the same cardinal number α build up together the typeclass
[α]. Members of a typeclass are not necessarily similar, but they are equivalent.

Rules for addition and multiplication for order types are given in § 8. For
addition and multiplication associativity applies but commutativity generally
not and distributivity only for the form α(β + γ) = αβ + αγ with (β + γ) the

49This is not Brouwer’s idea of the continuum, as we will see in chapter 3.
50see section 1.1.5.
51[Cantor 1932], page 296.
52For instance the ordering of the rationals in their natural order or in one of the systematic

orders with which their denumerability can be proved.
53op. cit. page 497.
54This is not yet the ordinal number, see under 1.1.11.
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multiplicator.55 Also the following applies: ω = 1 + ω 6= ω + 1, where ω is the
order type of the natural numbers.

Finally, it is proved in this paragraph that the cardinal number of the sum
(product) of two order types equals the sum (product) of the cardinal numbers
of the two order types.

Standard symbols for the most well-known order types are: ω for the order
type of the natural numbers, η for that of the rationals and ϑ for that of the reals.

In § 9 a theorem of fundamental importance is stated and proved:

Hat man eine einfach geordnete Menge M , welche die drei Beding-
ungen erfüllt:

1) M = ℵ0.

2) M hat kein dem Range nach niedrigstes und kein höchstes Ele-
ment.

3) M ist überall dicht,

so ist der Ordnungstypus von M gleich η.56

Thus all densely ordered and denumerable sets without endpoints are iso-
morphic (similar) and have the order type η of the rational numbers.

As an example of Cantor’s proof-method we give a sketch of the proof of
the last theorem, which comes down to the following ‘back and forth’ pro-
cedure: because of condition 1) M can be written as a well-ordered set57

M0 = (m0,m1, ...,mn, ...) of order type ω. Also R, the system of rational num-
bers, can be written as a well-ordered set R0 = (r0, r1, ..., rn, ...) of the same
order type. We now map r0 on m0. Consider m1, this is situated in M in a
certain order relation compared to m0, say m1 > m0. Because of condition 2)
and 3) there are infinitely many elements ri in R with the same relation ri > r0.
Pick the ri with the smallest value for i, say ri1 and map m1 on ri1 . Now take r1
and suppose r1 6= ri1 . This is situated in R in a certain order relation compared
to r0 and ri1 . Select in M the mi with the lowest value for i and with the same
order relation compared to m0 and m1, say mi1 and map r1 on mi1 .

In general, at step 2n, pick rn; if rn has already been treated, go to the next
step; else find the first mi, such that mi is in the same position with respect to
m0,m1, ...,mn−1 as rn with respect to r0, r1, ...rn−1 and map rn on this mi.

Next, at step 2n+1, pick mn; if mn has already been treated, go to the next
step; else locate mn with respect to the already treated elements of M and find
the first untreated element ri in the same relative position.

Continuing in this way, all elements of R are mapped on elements of M
under preservation of order, and by means of a simple inductive argument it
can be shown that every element of M is a mapping of exactly one element of R.

55Compare this to the distribution laws for cardinal numbers in section 1.1.6.
56op. cit. page 304.
57for well-ordering, see under 1.1.12.
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Hence the defined relation is a one-to-one relation preserving the order, hence
a similarity relation.

1.1.10 Fundamental sequences and perfect sets

A fundamental sequence of the first order is a subset M ′ of a simply ordered
transfinite set M (M ′ therefore is also simply ordered) with order type ω or
∗ω (the reverse ordering of the natural numbers), which can be represented as
a0, a1, a2, ...an, ... (§ 10).58

In the case of an order type ω the sequence is called increasing, in the case
of order type ∗ω the sequence is called decreasing.

For an increasing sequence a limit (Grenzelement) of a fundamental sequence
{an} is an element m0 such that an < m0 for every n and for every m < m0 a
p can be given such that aq > m for every q > p. In that case m0 is limit point
(Hauptelement) of the set M in which the fundamental sequence is defined.
Also m0 is the least upperbound of the given sequence.

For the case of a decreasing sequence a similar definition is given.
Cantor introduced in this paragraph the definitions of a set which is dense in

itself, of a closed set and of a perfect set, all in terms of fundamental sequences
defined in the sets concerned, and of limit points of the fundamental sequences
which are elements of the sets. These definitions can be proved to be equivalent
to the definitions given in 1.1.6, and will not be presented here.

1.1.11 Well-ordering

In the second part of this Begründung series (from § 12 to the end), published
in 1897, the well-ordered sets are discussed; these sets can be defined as the
simply ordered sets in which every non-empty subset has a first element.59

Cantor conjectured, as he did before in the series Grundlagen einer allgemeinen
Mannigfaltigkeitslehre, that every set can be well ordered.

A segment (Abschnitt) of a well-ordered set is the set of all elements preced-
ing a given element, distinct from the first element (hence a segment is a finite
subset, which is never empty). A great number of theorems on (segments of)
well-ordered sets is deduced in § 13.

An ordinal number is the order type of a well-ordered set, hence ω is an
ordinal number and η and ϑ are not. It follows that the ordinal numbers are
the finite natural numbers, closed by ω and then followed by the numbers of the
second number class, or, in other words, the ordinal numbers are all numbers,
generated by the the first two of Cantor’s three generation principles (see 1.1.5).

Rules and theorems for ordinal numbers are deduced in § 14.

58Compare with Brouwer’s notion of ‘fundamental sequence’ on page 92 in the footnote.
59This is the usual definition of a well-ordered set, which Schoenflies already used in 1900

in the Jahresbericht der D.M.V. (see 1.5). Cantor’s definition is different and the definition
given here is Cantor’s theorem A of § 12.
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The second number class is defined as the totality {α|α is an order type of a
well-ordered set of cardinality ℵ0} (§ 15).60 This class has as first and smallest
element ω = limnn; it is constructed with the help of the two generation princi-
ples, it is completed by the third (the Hemmungsprinzip), and is of cardinality
ℵ1.61

Theorem A of § 14 says:

Sind α und β zwei beliebige Ordnungszahlen, so ist entweder α = β,
oder α < β, oder α > β.

Hence two arbitrary ordinal numbers are always comparable. This, in com-
bination with the conjecture that every set can be well-ordered which means
that every set can be assigned an ordinal number, results in the fact that every
set can be assigned a cardinal number, including the continuum. So the contin-
uum can be assigned an ℵi for some i. The questionable part of this argument
is of course the, for Cantor still unproved, well-ordering theorem.

The conclusion that any two cardinal numbers are comparable will eventu-
ally turn out to be equivalent to the axiom of choice, on which the proof of the
well-ordering theorem depends.

One final remark before closing the section on Cantor: In his letter of 28
July 1899 to Dedekind62 he mentioned the possibility that set theory can give
rise to paradoxes:

Eine Vielheit kann nämlich so beschaffen sein, daß die Annahme
eines ‘Zusammenseins’ aller ihrer Elemente auf einen Widerspruch
führt, so daß es unmöglich ist, die Vielheit als eine Einheit, als ‘ein
fertiges Ding’ aufzufassen. Solche Vielheiten nenne ich absolut un-
endliche oder inkonsistente Vielheiten.

Wie man sich leicht überzeugt, ist z.B. der ‘Inbegriff alles Denkbaren’
eine solche Vielheit; (...)

Wenn hingegen die Gesamtheit der Elemente einer Vielheit ohne
Widerspruch als ‘zusammenseiend’ gedacht werden kann, so daß ihr
Zusammengefaßtwerden zu ‘einem Ding’ möglich ist, nenne ich sie
eine konsistente Vielheit oder eine ‘Menge’.

(...)

Zwei äquivalente Vielheiten sind entweder beide ‘Mengen’ oder beide
inkonsistent.

60In Cantor’s definition the elements of the first number class, i.e. the natural numbers,
are not included in the second number class; Cantor’s definition of classes is not cumulative,
contrary to, for instance, Hilbert’s definition. See for this Hilbert’s Über das Unendliche, e.g.
in [Heijenoort 1967], page 375 and 386.

61Cantor touched upon the concept of number classes in the first section of his Grundlagen
einer allgemeinen Mannigfaltigkeitslehre, but the definition given above is from the viewpoint
of his further development the proper one.

62Not included in [Cantor 1937], but in [Cantor 1932], page 443.
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We will come back to the paradoxes at the end of this first chapter.

1.2 Dedekind (1831–1916)

Although Dedekind was senior to Cantor by more than thirteen years, it was
the latter who started the development of set theory. Dedekind published his
Stetigkeit und irrationale Zahlen63 in 1872. In this essay the real numbers are
defined by means of a partitioning of the rational numbers into two classes,
where every partitioning defines a real number, either rational or irrational.
(Such a partitioning of the rationals is called a Dedekind cut, see below.) But
there is as yet hardly any set theoretic aspect in this short essay. This aspect
can, however, be recognized in his Was sind und was sollen die Zahlen, published
in 1888. Hence it is justified to say that Cantor was the pioneer in building the
new set theory.

However, the influence of Dedekind on Cantor was great, as can be concluded
from the correspondence between the two. Dedekind was a valuable critic for
him, several corrections and suggestions from the side of Dedekind can be iden-
tified in the papers that Cantor published.

In his 1888 paper Was sind und was sollen die Zahlen64 Dedekind used the
terms System and Ding for set and element of a set respectively. A System itself
is also a Ding.65

Ein solches System S (oder ein Inbegriff, eine Mannigfaltigkeit, eine
Gesamtheit) ist als Gegenstand unseres Denkens ebenfalls ein Ding.66

With his own characteristic symbols and terminology Dedekind defined sub-
sets, in which the empty set was explicitly excluded, and conjunctions (unions)
and disjunctions (intersections)67 of sets as well as a mapping of one set onto
or into another. For one-to-one mappings the concept of equivalence class was
introduced.

Erklärung. Die Systeme R, S heißen ähnlich, wenn es eine derartige
ähnliche Abbildung ϕ von S gibt, daß ϕ(S) = R, also auch ϕ(R) =
S.68

(...)

63[Dedekind 1912].
64[Dedekind 1930b].
65Here we will use the modern terms set and element.
66op. cit. § 1, item 2.
67Dedekind used the notation of a Gothic M and S for the union and intersection of two

sets, whereas Cantor used here a Gothic M and D, Schoenflies the notation (M, N) for the
union of the sets M and N , and Gothic D for intersection and Brouwer a Gothic S and D
respectively. These rather confusing notations were later replaced by the uniform notation of
∪ and ∩ for union and intersection. See also the footnote on page 12.

68op. cit. § 3, item 32.
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Erklärung. Mann kann daher alle Systeme in Klassen einteilen, in-
dem man in eine bestimmte Klasse alle und nur die Systeme Q, R, S,
... aufnimmt, welche einem bestimmten SystemR, dem Repräsentan-
ten der Klasse, ähnlich sind.69

In § 4 Dedekind introduced the key notion ‘chain’ (Kette), which is deter-
mined by a set and a mapping ϕ of the set into itself. If K is a subset of a set
S, then K is a chain (‘Kette’) relative to a mappig ϕ if ϕ(K) is a subset of K.
Then ϕ(K) is also a chain and the conjunction and disjunction of chains form
a chain.

By means of the concept of chain the system N of the natural numbers is
defined (see below).

The theorem of the principle of complete induction for chains is proved as ‘Satz
59’ in the following form:

Satz der vollständigen Induktion. Um zu beweisen, daß die Kette
ϕ0(A) Teil irgendeines Systems Σ ist – mag letzteres Teil von S sein
oder nicht –, genügt es zu zeigen,

ρ. daß A ⊂ Σ, und

σ. daß das Bild jedes gemeinsamen Elementes von ϕ0(A) und Σ
ebenfalls Element von Σ ist.70

and this is followed by the remark:

Der vorstehende Satz bildet, wie sich später zeigen wird, die wis-
senschaftliche Grundlage für die unter dem Namen der vollständigen
Induktion (des Schlusses vom n auf n+1) bekannte Beweisart, (...)71

Dedekind was the first mathematician who gave a purely set theoretical defini-
tion of infinite (which definition was contested by Brouwer):

Erklärung. Ein System S heißt unendlich, wenn es einem echten
Teile seiner selbst ähnlich ist; im entgegengesetzten Falle heißt S ein
endliches System.72

This notion is nowadays called Dedekind infinite. On the basis of this defi-
nition, Dedekind proved the existence of infinite systems:

Es gibt unendliche Systeme.73

69op. cit. § 3, item 34.
70op. cit. § 4, item 59. Note that this is for Dedekind a theorem, which has to be proved;

for Poincaré this ‘raisonnement par récurrence’ is the ‘raisonnement mathématique par ex-
cellence’; for Brouwer the principle of complete induction is a natural act of mathematical
construction, not in need of any further justification (see thesis II of his list of theses).

71op. cit § 4 item 60.
72op. cit. § 5, item 64.
73op. cit, § 5, Satz 66.
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Schematically the proof proceeds via his realm of thoughts S; thinking of a
thought or the recognition of a thought as such is also a thought, which can be
regarded as an image of that thought. We create in this way an image ϕ(S)
of my realm of thoughts S. The fact that there are thoughts which are not
images of other thoughts shows that ϕ(S) is a proper subset of S. Together
with the similarity of this mapping (different thoughts give different thoughts
of thoughts) proves the infinity of the set of my thoughts. Note that Dedekind
proved here the existence of denumerable infinities only.

We notice that in the first notebook Brouwer judged negatively about the
method employed by Dedekind to prove the existence of infinite systems.74

Dedekind was now in the position to define the system of the natural num-
bers:

Erklärung. Ein System N heißt einfach unendlich, wenn es eine
solche ähnliche Abbildung ϕ von N in sich selbst gibt, daß N als
Kette eines Elementes erscheint, welches nicht in ϕ(N) enthalten
ist. Wir nennen dies Element, das wir im folgenden durch das Sym-
bol 1 bezeichnen wollen, das Grundelement von N und sagen zu-
gleich, das einfach unendliche System N sei durch diese Abbildung
ϕ geordnet.75

An improved version (up to isomorphism) of this definition for the system of
natural numbers is: N is the smallest system with a mapping ϕ of the system
into itself, such that there is exactly one element, which is not in the range of
ϕ.

Dedekind then showed that every infinite set contains a simply infinite sys-
tem (einfach unendliches System) and stated that if we abstract from the nature
of the elements of a simply infinite set, we call these elements the natural num-
bers or ordinal numbers or just numbers. The basic element (Grundelement) 1
is called the base of the sequence N and he added:

(...) kann man die Zahlen mit Recht eine freie Schöpfung des mensch-
lichen Geistes nennen.

and he then proved:

N ist die einzige Zahlenkette, in welcher die Grundzahl 1 enthalten
ist.76

He concluded this paragraph with a proof of the theorem of complete induction,
which he indeed stated, on the basis of his definition of the system of natural
numbers, as a theorem, which, in fact, is a direct corollary of theorem 59:

74The reader may verify this in I – 25, 30 and 38. A transcription of the notebooks will be
published later.

75op. cit, §6, item 71.
76op. cit, §6, item 79.
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Satz der vollständigen Induktion. (Schluß von n auf n′)

Um zu beweisen, daß ein Satz für alle Zahlen n einer Kette m0 gilt,
genügt es zu zeigen.

ρ. daß er für n = m gilt, und

σ daß aus der Gültigkeit des Satzes für eine Zahl n der Kette m0

stets seine Gültigkeit auch für die folgende Zahl n′ folgt.77

We will contrast this with Brouwer’s completely different views on complete
induction in several of the following chapters.

After having defined the system of the natural numbers, Dedekind went on
with the deduction of its properties, viz. the laws of inequalities, of addition and
of multiplication. Most proofs were carried out with the help of the theorem of
complete induction.

In the first paragraph of the preface to the first edition of Was sind ...
Dedekind wrote:

Indem ich die Arithmetik (Algebra, Analysis) nur einen Teil der
Logik nenne, spreche ich schon aus, daß ich den Zahlbegriff für
gänzlich unabhängig von den Vorstellungen oder Anschauungen des
Raumes und der Zeit, daß ich ihn vielmehr für einen unmittelbaren
Ausfluß der reinen Denkgesetze halte. Meine Hauptantwort auf die
im Titel dieser Schrift gestellte Frage lautet: die Zahlen sind freie
Schöpfungen des menschlichen Geistes, sie dienen als ein Mittel, um
die Verschiedenheit der Dinge leichter und schärfer aufzufassen.78

For Dedekind the number system did not depend on any form of time intu-
ition or space intuition, contrary to Brouwer’s concept of the natural number
system, as we will see. Compare this also with Cantor’s view on page 8.

Dedekind also played a crucial role in the theory of the continuum in his ear-
lier mentioned Stetigkeit und irrationale Zahlen. When the system of rationals
is represented in its natural order on a line with a freely chosen point zero, we
can define right and left with respect to any given point and thus define a Left
and a Right class. Every rational number on that line belongs to exactly one of
the classes, but there remain infinitely many points on that line which are not
representable by a rational number (e.g. the point that represents the number
whose square is 2). If, however, we do require that every partitioning into a
right and left class defines a number, then the system of numbers apparently
has to be extended. Dedekind performed this with the cut: every partitioning
of the rationals into a Right and Left class represents a real number, and every

77op. cit, item 80.
78[Dedekind 1930b], page V. See also chapter 8, page 313 of this dissertation for a further

comment on this quote.
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cut which does not represent a rational number, defines an irrational number.
The result is that the continuity of the line is mirrored in the continuity of the
set of the real numbers. Dedekind proved that the result really is a continuum
and that there remain no gaps.

1.3 Poincaré (1854–1912)

A short discussion about some aspects of Poincaré’s work is useful, mainly in
view of his concept of the continuum on the straight line in relation to the set of
the real numbers. Also his criterium for the existence of mathematical objects
and his view on the nature of complete induction are of interest.

Of course, his main interest in regard to Brouwer lies in his view on the
role of the intuition in the development mathematics. This will be discussed
separately in the chapters to follow.

In La grandeur mathématique et l’expérience, the second chapter of his book
La Science et l’Hypothèse (1902),79 he claimed that the continuum can only be
studied via analysis and not via a line or a plane in geometry, since in the latter
the line serves merely as an aid and illustration. Hence Poincaré agreed with the
Cantorian method of an arithmetical definition of the continuum. In analysis
one starts from the scale of natural numbers and subsequently constructs, by
means of repeated division, the system of rational or commensurable numbers.
But in this proces one never reaches the irrational or incommensurable numbers.

Le continu ainsi conçu n’est plus qu’une collection d’individus rangés
dans un certain ordre, en nombre infini, il est vrai, mais extérieurs
les uns aux autres. Ce n’est pas là la conception ordinaire, où l’on
suppose entre les éléments du continu une sorte de lien intime qui
en fait un tout, où le point ne préexiste pas à la ligne, mais la ligne
au point.80

And on the same page 30:

Mais c’est assez pour nous avertir que le véritable continu mathématique
est tout autre chose que celui des physiciens et celui des métaphysiciens.

To construct the irrational numbers, Poincaré applied the earlier mentioned
method of Dedekind cuts. In order to understand that the result of this method
can be interpreted as a number, it is stated on page 32:

Les mathématiciens n’étudient pas des objets, mais des relations
entre les objets; il leur est donc indifférent de remplacer ces objets
par d’autres, pourvu que les relations ne changent pas. La matière
ne leur importe pas, la forme seule les intéresse.

79[Poincaré 1916], page 29.
80op. cit. page 30.
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But this definition of irrational numbers is, in itself, not sufficient for Poincaré
to accept them as existing numbers. He asked for a good and sufficient reason
why to ascribe to them a definite existence; in fact the same question can al-
ready be asked in the case of fractions. Can we have a notion of those numbers
without, beforehand, accepting the existence of an infinitely divisible matter?
For if the infinite divisibility was a necessary condition, then the concept of
mathematical continuum would result from experience. And experience teaches
us the paradoxical possibility A = B, B = C, A < C. That paradox remains
in spite of an ever increasing refinement in measuring technique, albeit on a
different scale. We ourselves have to invent and construct the mathematical
continuum, in which always applies A = B,B = C ⇒ A = C.

1.3.1 The first stage in the construction of the mathemat-
ical continuum

The physical idea of a limit on the distinguishability of two points must be
abandoned and an infinite divisibility and countability has to be accepted. As
a result of that point of departure, paradoxes like ‘the whole is similar to a part
thereof’ and ‘the number of rationals equals the number of natural numbers’
cease to be paradoxes. Poincaré defined the mathematical continuum of the first
order as:

tout ensemble de termes formés d’après la même loi que l’échelle des
nombres commensurables.81

and next:

Si nous y intercalons ensuite des échelons nouveaux d’après la loi de
formation des nombres incommensurables, nous obtiendrons ce que
nous appellerons un continu du deuxième ordre.

Hence the rationals form the first order continuum and the reals the second
order continuum, and both are constructed in this first stage.

1.3.2 The second stage

After the construction of the continuum of the first and second order, one has
to understand why this step to the second order continuum has to be taken.
The formulation of the answer to this question takes place in the second stage,
hence this stage does not relate to some form of construction. Briefly, the answer
amounts to the following:

Intuitively we know that two lines, which we assume without width, intersect
in a point without measure, but that, if we only accept a continuum of the first
order, this would lead to a contradiction in case of the intersection of a line with
a circle. This impending contradiction shows us the necessity of a second order
continuum.

81op. cit. page 38.
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The summary in Poincaré’s text, which follows on the section about this
second stage, shows us the dilemma: on the one hand the continuum is intuitive,
because of the intuitive existence of the intersection of two lines. On the other
hand:

(...) l’esprit a la faculté de créer des symboles, et c’est ainsi qu’il
a construit le continu mathématique, qui n’est qu’un système par-
ticulier de symboles. Sa puissance n’est limitée que par la nécessité
d’éviter toute contradiction; mais l’esprit n’en use que si l’expérience
lui en fournit une raison.82

Hence, on the other hand the mathematical continuum is a construction.

1.3.3 The measurable quantity

Les grandeurs que nous avons étudiées jusqu’ici ne sont pas mesura-
bles; nous savons bien dire si telle de ces grandeurs est plus grande
que telle autre, mais non si elle est deux fois ou trois fois plus
grande.83

We can compare quantities in the sense that we can tell that one is larger or
smaller than the other, but not how much or how many times larger or smaller.
For that purpose we have to select a unit length and a convention of measuring
out that unit length along a length of which we want to know the quantified
measure, thus creating a ‘measurable continuum’.

1.3.4 A continuum of the third order?

According to Poincaré the creative power of man is not exhausted with the
construction of the mathematical continuum of the second order; there is the
possibility of a continuum of the third order. However, he did not elaborate this
idea, he merely saw it as an intellectual game without any practical meaning or
any chance of a mathematical application. He was motivated in this thought
experiment by Du Bois-Reymond and he seemed to accept the existence of
‘infinitesimals’.

Nous pouvons nous poser plusieurs questions importantes:

10 La puissance créatrice de l’esprit est-elle épuisée par la création
du continu mathématique?

Non, les traveaux de Du Bois-Reymond le démontrent d’une manière
frappante.

Poincaré sketched the possible existence of infinitely small quantities of different
order as a result of man’s continued creative power.

82op. cit. page 40.
83op. cit. page 41.
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Il serait aisé d’aller plus loin, mais ce serait un vain jeu de l’esprit;
on n’imaginerait que des symboles sans application possible, et per-
sonne ne s’en avisera. Le continu du troisième ordre auquel conduit
la considération des divers ordres d’infiniment petits est lui-même
trop peu utile pour avoir conquis droit de cité, et les géomètres ne
le regardent que comme une simple curiosité. L’esprit n’use de sa
faculté créatrice que quand l’expérience lui en impose la nécessité.84

This may remind the reader of the development of the non-standard anal-
ysis by Robinson, who, however, found applications for it in pure analysis and
outside the realm of just curiosity.85

This second chapter of La Science et l’Hypothèse is concluded with the obser-
vation that, despite the construction of the continuum, there still are apparent
paradoxes, like ‘the curve without tangent’, thereby referring to the work of
Weierstrass and others.

The final section of this chapter concerns the physical and mathematical
continuum of more than one dimensions, which will not be discussed here.

1.3.5 Mathematical existence and complete induction

Poincaré’s criterium for the existence of a mathematical object is simply ‘being
free of contradiction’:

En mathématiques le mot exister ne peut avoir qu’un sens, il signifie
exempt de contradiction.86

This is completely different from Brouwer’s criterium for existence, as we
will see. But Brouwer and Poincaré agree about the status of the principle of
mathematical induction. For both it is a most natural and fundamental method
and tool for the development of mathematics. About formal logic, Poincaré
remarked:

Si, au contraire, toutes les propositions qu’elle énonce peuvent se
tirer les unes des autres par les règles de la logique formelle, comment
la mathématique ne se reduit-elle pas à une immense tautologie? Le
syllogisme ne peut rien nous apprendre d’essentiellement nouveau et,
si tout devait sortir du principe d’identité, tout devrait aussi pouvoir
s’y ramener.87

But about mathematical induction he noted:

84op. cit. page 42, 43.
85See [Robinson 1966].
86[Poincaré 1920], page 162.
87[Poincaré 1916], page 9 and 10.
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L’induction mathématique, c’est-à-dire la démonstration par récur-
rence, s’impose au contraire nécessairement, parce qu’elle n’est que
l’affirmation d’une propriété de l’esprit lui-même.88

We remark that Brouwer, in his first notebook, quoted this fragment and
agreed with it, and that the second thesis from the list of theses at the end of
his dissertation also explicitly claims that mathematical induction is an act of
mathematical construction, justified by the ur-intuition of mathematics.

1.4 Zermelo (1871–1953)

The bulk of Zermelo’s foundational work was published after the time of Brou-
wer’s defence of his thesis, and will therefore not be discussed now. The proof
of the well-ordering theorem, however, was published in 1904 in the Mathema-
tische Annalen.89 Cantor mentioned the theorem in § 3 of his Grundlagen as
a conjecture and promised to reopen the issue later.90 Hilbert included it, in
relation to his first problem, on his list of unsolved mathematical problems in
1900 at the Paris conference.91

Zermelo’s proof hinges upon the axiom of choice, which states that, if A is a
set of which the elements consist of non-empty sets,92 a new set can be formed
by choosing one element from each of the sets that compose the set A. The
use of the axiom is exactly the part of Zermelo’s proof which is most sensitive
to criticism and it is indeed this part at which, in several articles by Jourdain,
Borel, and Schoenflies in subsequent issues of the Mathematische Annalen, the
criticism is aimed.93

Later it turned out that the axiom of choice has an impressive list of equiv-
alent statements, which seem to be not as obvious as the axiom itself.94 Doubt
was cast on the axiom because of certain seemingly paradoxical consequences
among, or following from, those equivalent statements.

Brouwer disagreed with the validity of the axiom of choice, since, as he
remarked in one of the notebooks,95 there does not, and cannot exist a law
which picks an element from every set; every living individual, when asked to
compose a choice set, composes one ‘according to the structure of his brain’.96

Moreover, he can only perform that for well-defined sets and sets of sets, and,

88[Poincaré 1916], page 24. See also for comment on Poincaré’s views [Largeault 1993], page
42 ff.

89[Zermelo 1904].
90[Cantor 1932], page 169.
91Göttinger Nachrichten, 1900, pages 253 – 297. Also included in [Hilbert 1932], vol. III,

page 298.
92.. welche mindestens ein Element m enthalten muß, ..
93See M.A. 59 and 60.
94e.g. the well-ordering theorem itself, Zorn’s lemma etc.; see for an impressive number of

equivalents of the axiom of choice [Rubin and Rubin 1963].
95Notebook VII, page 14.
96‘volgend uit zijn hersenstructuur.’
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when the same question is asked in a different language, the result might very
well be completely different.

In the dissertation Brouwer did not discuss the axiom, but he agreed with
Borel when the latter stated that the axiom of choice is just equivalent to the
well-ordering theorem.97 Either one may be taken as axiom, from which the
other then can be derived as a theorem. But the main argument in Brouwer’s
criticism and rejection of the well-ordering theorem is that the vast majority
of the elements of the continuum is unknown and hence cannot be mutually
compared or selected for the composition of the choice-set. Moreover, well-
ordering would turn the continuum into a denumerable set, which it is not.
Therefore in the dissertation the rejection of the axiom is an indirect one.

1.5 Schoenflies (1853–1928)

In a separate volume of the Jahresbericht der Deutschen Mathematiker-Vereini-
gung Band VIII (1900), Schoenflies published the first complete textbook on set
theory.98 Until that year all publications on sets were in the form of papers in
one of the major mathematical journals.99 Schoenflies’ book consists of three
parts (Abschnitte), each divided into chapters.

The grand title is Die Entwickelung der Lehre von den Punktmannigfaltig-
keiten, Bericht über die Mengenlehre, with as subtitles for the three parts:

I Allgemeine Theorie der unendlichen Mengen.
II Theorie der Punktmengen.
III Anwendung auf Functionen reeller Variabelen.
In the first part a systematic survey of Cantor’s set theory is presented, in

which also Dedekind’s influence on Cantor is shown. The second part gives a
further development of set theory in the direction of what was later to be called
Cantor-Schoenflies topology.

This work is mentioned here because Brouwer frequently referred to it in his
notebooks and in his dissertation, when discussing sets.

1.6 Bernstein (1878–1956)

In 1905 Bernstein published a paper in the Mathematisch Annalen under the
title Untersuchungen aus der Mengenlehre100 and in his notebooks Brouwer
discussed this paper elaborately, and disagreed with it.

The introduction of the Untersuchungen begins as follows:

97Mathematische Annalen 60, page 194, 195. Also in [Borel 1972], vol 3, page 1251.
98[Schoenflies 1900a].
99apart from Cantor’s monograph Grundlagen einer allgemeinen Mannigfaltigkeitslehre

(1883), and [Young and Chisholm Young 1906], the latter probably being unknown to Brou-
wer.
100[Bernstein 1905], page 117 ff.



1.6. BERNSTEIN (1878–1956) 29

Gegenwärtig stehen zwei Probleme innerhalb der Mengenlehre im
Vordergrund des Interesses. Das eine bezieht sich auf das Kontin-
uum, d.h. die Menge, welche aus allen reellen Zahlen besteht, das
andere bezieht sich auf die Grundlagen der Mengenlehre.101

In the first section of the first chapter Bernstein proved the theorem, which
Cantor mentioned but did not prove (the Cantor-Bernstein theorem)

Satz 1. Ist M äquivalent einem Teile M1 von N und N einem Teile
N1 von M , so ist M äquivalent N .102

Unknown to Bernstein, Dedekind had already proved the theorem in 1887.103

Bernstein further mentioned proofs by Zermelo, by Schröder and by himself.
Bernstein’s proof was published in the above mentioned textbook by Schoen-
flies.104

In § 5 Bernstein proved the following theorem:

Teilt man das Kontinuum in eine endliche Anzahl gleicher Teil-
mengen, so ist jede dieser Teilmengen gleich dem Kontinuum.

[with, in a footnote, the addition:]

Diese Teilmengen sind nicht als Intervalle, sondern als ganz un-
regelmäßig verteilte Punktmengen vorzustellen.105

Via the proof of a number of important theorems, the third chapter begins
as follows:

Die Behauptung von G. Cantor, das im Kontinuum nur zwei ver-
schiedene Mächtigkeiten vorkommen, ist eine Aussage, welche sich
auf alle Teilmengen des Kontinuums bezieht. Man kann sie in der
Form aussprechen:

Jede Teilmenge T des Kontinuums ist entweder abzählbar oder von
der Mächtigkeit des Kontinuums.

Bisher bewiesen ist dieser Satz nur für die abgeschlossenen Mengen
A, d.h. diejenigen, welche alle ihre Grenzelemente enthalten.106

We will see that, with regard to the continuum, Brouwer came in part to a
completely different conclusion: the continuum is no point set but it is given to
us in its entirety. One can only construct points on it. But with respect to the
101op. cit. page 118.
102op. cit. page 121.
103and again in 1899, probably having forgotten the 1887 proof; see for this a footnote

by E. Noether with the paper Ähnliche (deutliche) Abbildung und ähnliche Systeme, in
[Dedekind 1930a], Volume III, page 447.
104[Schoenflies 1900a], page 16; in a footnote on that page it is added that this proof was

first published in Borel’s Leçons sur la théorie des fonctions, [Borel 1950].
105[Bernstein 1905], page 133.
106op. cit. page 145.
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theorem that every subset of the continuum is either denumerable or has the
cardinality of the continuum, Brouwer’s conclusion is the same, and, as we will
see, he gave a proof of it in his eighth notebook and subsequently a different
proof in his dissertation.

1.7 The paradoxes

In 1895 Cantor was aware of the possibility of paradoxes in the case of an
uncritical use of set theory. And indeed Cantor wrote to Dedekind in a letter
of 28 July 1899:

Eine Vielheit kann nämlich so beschaffen sein, daß die Annahme
eines ‘Zusammenseins’ aller ihrer Elemente auf einen Widerspruch
führt, so daß es unmöglich ist, die Vielheit als eine Einheit, als ‘ein
fertiges Ding’ aufzufassen. Solche Vielheiten nenne ich absolut un-
endliche oder inkosistente Vielheiten.107

If the totality of a certain infinite number of elements (‘eine Gesamtheit der
Elemente einer Vielheit’) can be comprehended without contradiction, then we
have a ‘konsistente Vielheit’ or a set. Cantor showed in the mentioned letter
that the system Ω of all ordinal numbers is inconsistent, as is the system of all
ℵ′s.

In 1897 Burali-Forti published his una questione sui numeri transfiniti, which
is based on the same fundamental idea as the one we saw in Cantor’s publications
(perhaps it even originates from Cantor).108

Burali-Forti considered the set Ω of all ordinal numbers, which is itself an
ordinal number because this set Ω is also well-ordered, and thus can be repre-
sented by Ω + 1. Then we have the following contradiction:

Ω+1 > Ω (obvious) but also Ω+1 ≤ Ω, because Ω+1 is itself also an ordinal
number and hence belongs to Ω.

Russell and Zermelo independently discovered another paradox, not concern-
ing the ordinal numbers, but about the more primitive concept of a set without
order and the property of being ‘member of a set’. The paradox arises if we
consider the set of all sets, that are not elements of themselves (Russell), or a
set which contains all its subsets as elements (Zermelo). Russell published the
paradox, which is now known under the name of Russell paradox. In §78 of his
Principles of Mathematics he presented it in the following form:

The predicates which are not predicable of themselves are, therefore,
only a selection from among predicates, and it is natural to suppose
that they form a class having a defining predicate. But if so, let

107[Cantor 1932], page 443. This quote is the first paragraph of a more complete quotation
which was presented at the end of section 1.1.11.
108[Heijenoort 1967], page 104 in a translation by J. van Heijenoort.
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us examine whether this defining predicate belongs to the class or
not.109

In a letter of 16 June 1902 Russell informed Frege about this paradox, which
should, according to Russell, be a consequence of Frege’s Begriffschrift, and
Russell concluded:110

From this I conclude that under certain circumstances a definable
collection [Menge] does not form a totality.

The effect of this paradox on Frege was devastating;111 Dedekind too was
very unsettled by this unexpected result.112

A well known attempt to lift the paradox is the requirement to construct
the elements of a set before constructing the set itself, thus creating a hierarchy
in mathematical objects, and thus preventing that a set can ever be an element
of itself. See for this chapter 10 of Russell’s ‘Principles’. Brouwer discussed the
paradoxes elaborately in his notebooks; in chapter 3 of his dissertation they are
briefly treated and Russell’s solutions are rejected there.

1.8 Final remarks

There are, as yet, no conclusions to be drawn from this concise survey of the
history of set theory before 1907 and of the content of that theory. As said in
the beginning of this chapter, it just serves as an aid in the thorough analysis
and in the discussion of the foundational aspects of Brouwer’s dissertation.

In the following chapters the most fundamental notions in the process of
Brouwer’s systematic construction of the ‘mathematical edifice’ will be treated,
and we will meet many of the concepts that were sketched in this first chapter.
Even Brouwer’s most revolutionary ideas of those days, that ultimately devel-
oped into his intuitionism, have to be seen and interpreted in the light of the,
then very recent, history of this branch of mathematics.

109[Russell 1938], page 80.
110See for the English translation, authorised by Russell, of a letter originally written in

German, [Heijenoort 1967], page 124.
111see the epilogue of his Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet, written

in 1902 after completion of the second volume of the work (volume one appeared in 1893),
but before its publication.
112see the introduction of the third edition (1911) of [Dedekind 1930b], page XI.
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Chapter 2

Brouwer’s ur-intuition of
mathematics

2.1 Introduction

Brouwer’s opposition against logicism as the view that ultimately logic alone is
the sole basis for all of mathematics, and against formalism which views math-
ematics as a system of rule-following manipulations and deductions of meaning-
less symbols, thereby departing from a set of axioms which only has to satisfy
consistency, does not stand isolated; it has its history.

Mach, in Erkenntnis und Irrtum, claimed that ‘die Grundlage aller Erkennt-
nis ist also die Intuition’.1 However, he was referring here to knowledge of
natural sciences in general. The French semi-intuitionists Poincaré and Borel
granted an important role to intuition in pure mathematics. According to them,
logic plays its indispensable role in a mathematical argument, but, as Poincaré
remarked in the first chapter of La Valeur de la Science, logic on its own only
teaches us tautologies.2 A ‘mathematical intuition’ is needed, but this concept
should then be explained and specified. Poincaré distinguished three kinds of
intuition:3

1. L’appel aux sens et à l’imagination, i.e. falling back on mental images in
a mathematical argument.

2. La généralisation par induction, e.g. one can directly imagine a triangle,
but not a thousand-angle.

3. L’intuition du nombre pur; this gives, for Poincaré, pure mathematical
reasoning, and here he comes closest to what Brouwer had in mind. Poincaré
emphasized that it is on this third kind of intuition that the ‘raisonnement
mathématique par excellence’, that is the method of complete induction, is

1[Mach 1968], page 314, 315.
2See page 221 for a short discussion about the role of logic in mathematics according to

Poincaré and Borel.
3[Poincaré 1923], page 22.
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based; this is the way of reasoning that brings us from the particular case
of a mathematical statement to its general case; it also produces the system of
the natural numbers and, as Poincaré stressed, this method cannot be obtained
from logic.

However, Poincaré (like Borel, and other semi-intuitionists) did not specify
the exact nature of the intuition.4 Brouwer was the first to be very specific
on this point; he described exactly (although briefly worded) what exactly is
intuited and how, from this intuition, mathematics is built up.

In this chapter we will analyze the exact character of the, in Brouwer’s view,
most basal intuition for the whole of mathematics, the ur-intuition of all human
experience, and we will see that this concept and its corollaries require, for their
proper understanding, some interpretation. We will also analyze and interpret
how, departing from this ur-intuition, Brouwer succeeded in the construction
of the system of the natural numbers, the integers, and the rational numbers.
For the construction of the rationals, the character of the continuum as the
‘matrix to construct points on’ is not so obvious at first sight, but we will show
after some interpreting remarks about the insertion of new elements that it can
indeed be viewed as such.

We will also examine how these different kinds of numbers, as constructions
of the individual, are retained in memory for later use. It will turn out that the
rules of arithmetic are a natural consequence of Brouwer’s way of founding the
number system, and are no longer in need of an axiomatic foundation.

Right at the beginning of Brouwer’s dissertation, on page 8, the fundamental
concept of the ur-intuition of mathematics is introduced. This ur-intuition is
the ultimate foundation on which, in Brouwer’s terms, the mathematical edifice
is constructed and, as we will see, it consists of the intuition of the flow of time
in which the individual experiences perceptions of change. This intuited time
essentially differs from the external ‘physical time’, which can be numerically
expressed on the measurable time continuum, which, in its turn, is the result of
a construction on the intuitive time continuum.

Brouwer’s foundation of mathematics is thus completely different from the
attempted foundation on logic alone (Frege, Russell) or from the formalist foun-
dation (Hilbert).

The consequences of Brouwer’s way of founding are far-reaching. His con-
structivistic attitude, as a necessary result of the ur-intuition as a sole basis,
brings about strong limitations in the formation of sets and their possible car-
dinalities. But separate proofs of consistency are no longer required: the mere
possibility of the continuation of a construction or its successful completion is
the guarantee for its consistency or, rather, is the proof of its consistency.

However, the exact nature of the ur-intuition and the way in which, from
the ur-intuition, the system of the natural numbers, the system of the integers,

4For Borel, intuition consists of the experience of a mathematical object, the being fa-
miliar with it, its commonly shared experience with other mathematicians. See L’infini
mathématique et la réalité, [Borel 1914], included in [Borel 1950], page 175.
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and the rational scale can be constructed, requires, as said, some discussion,
investigation, and interpretation, since Brouwer is, in his dissertation and to a
lesser extent also in his notebooks, usually rather briefly worded about these
basic topics.

2.2 The dissertation about the ur-intuition

The first page of the first chapter of the dissertation comes straight to the point;
the chapter is entitled The construction of mathematics,5 and opens with the
following phrases:

‘One, two, three, ...’, we know by heart the sequence of these sounds
(spoken ordinal numbers) as an endless row, that is to say, continuing
for ever according to a law, known as being fixed.

In addition to this sequence of sound-images we possess other se-
quences proceeding according to a fixed law, for instance the se-
quence of written signs (written ordinal numbers) 1, 2, 3, ....

These things are intuitively clear.6

From this ‘intuitive counting’ the ‘main theorem’ of arithmetic (the num-
ber of elements of a finite set is not depending on the order in which they are
counted) can be deduced; in fact the theorem is mentioned without a proof, it is
merely made plausible by means of an example, suggesting that the proof should
be by complete induction. Note that the principle of complete induction is a
natural corollary of the way of generation of the natural numbers. For Brouwer
complete induction was neither an axiom, nor a theorem which requires a proof
(cf. Dedekind), but a natural mathematical act.7

Addition, multiplication, and exponentiation are subsequently defined by
means of continued and/or repeated counting, and after that the laws of com-
mutativity, associativity, and distributivity for these operations are deduced.
But just as in the case of the proof of the main theorem of arithmetic, these
definitions and deductions are merely sketches thereof, suggesting that, again,
a proper definition or proof should be inductive. The fact that these operations

5De opbouw der wiskunde.
6(page 3) ‘Een, twee, drie ...’, de rij dezer klanken (gesproken ordinaal-getallen) kennen we

uit ons hoofd als een reeks zonder einde, d.w.z. die zich altijd door voortzet volgens een vast
gekende wet.

Naast deze rij van klankbeelden bezitten we andere volgens een vaste wet voortschrijdende
voorstellingsreeksen, zo de rij der schrifttekens (geschreven ordinaal-getallen) 1, 2, 3 ...

Deze dingen zijn intüıtief duidelijk.
(In his corrected text Brouwer even strengthened the last sentence of the quote by replacing

it by ‘These things are intuitive’, which is stronger than the original.)
7See thesis II from the list of theses, added to the dissertation; see also chapter 8 of this

dissertation. Compare also with Poincaré’s attitude towards complete induction in section
1.3.5.
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can be proved follows directly from the ur-intuition and the status of the princi-
ple of complete induction as a natural act, but the reader should realize that in
the first pages of the dissertation Brouwer had not yet reached a discussion on
foundational matters; he merely sketched what was supposed to be intuitively
known and familiar to all.

As a result of the main theorem of arithmetic, an abstraction can be made
from the ordered sequence of numbers to finite sets without order. Negative
numbers are indicated as a continuation to the left of the ordinal number se-
quence, after which follows the definition of rational numbers as ordered pairs of
ordinal numbers and the definitions of the operations on these rational numbers.

In agreement with the normal process of extension of the number system,
the irrational numbers are subsequently introduced, ‘in the first place those with
fractional exponents’, which can be represented by, in Brouwer’s terminology,
‘symbolic aggregates of previously introduced numbers’. We can imagine this
in the case of, for instance, (p

q )
r
s as one of the symbolic aggregates (p, q, r, s) or

(p
q ,

r
s ); or, in the case of the roots of a polynomial equation, as the aggregate of

the degree and the coefficients of the equation.
It is noteworthy and typical for Brouwer’s approach to the construction of

the number system, that he stated this in the dissertation in the following way:

Next we can introduce successively the usual irrationals (first of all
the expressions containing fractional exponents) by writing them
as symbolic aggregates of previously introduced numbers and then
looking upon each of these as defining a partition of the earlier in-
troduced numbers into two classes, of which the second follows as a
whole after the first and has no first element; (...)8

Brouwer clearly referred, without mentioning the name, to the Dedekind cut,
but this cut is not employed here to define ‘arbitrary’ new irrational numbers;
in other words, it is not the key to the definition of the non-denumerable set
of the real numbers. It is introduced here as if he wanted to point to the fact
that for his procedure by means of ‘symbolic aggregates’ one can also use the
Dedekind cut to fix the same definable irrational numbers, but that, contrary
to the approach via symbolic aggregates, this method of Dedekind cuts can be
employed as a means to establish for such a new irrational number its natural
and proper place in the sequence of the previously introduced numbers, i.e. to fit
it into the natural order of the rationals. Hence the order relations between the
newly defined irrational numbers and the rationals is now determined. Also the
basic arithmetical operations on those new numbers can be defined on the basis
of the partition, which operations may give rise to again new irrational numbers.
A rational (‘earlier introduced’) number can then be made to correspond with

8(page 6) Vervolgens kunnen we stap voor stap de gebruikelijke irrationalen, (in de eerste
plaats de vormen met gebroken exponenten) invoeren, door ze als een symbolisch agglomeraat
van reeds eerder ingevoerde getallen te schrijven, en daarin verder te lezen een verdeling dier
reeds ingevoerde getallen in twee klassen, de tweede waarvan geheel op de eerste volgt, en
geen eerste element heeft;(...)
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a partition of which the lower class contains a least upper bound as element.
Brouwer just mentioned all these facts and possibilities, as yet without further
foundation or elaboration.

But already on page 6 of his dissertation Brouwer stated explicitly, and this
is a central theme throughout the dissertation, that the totality of the numbers
in any constructed system remains denumerable during every continued stage
of its development, because any ‘symbolic aggregate’ may contain any finite
number of earlier introduced numbers, and because the cardinality of the union
of a finite or a denumerable number of denumerable sets is denumerable.9

Also the final result of a construction of a totality of rational or irrational
numbers is everywhere dense in itself,10 i.e. between any two numbers another
number exists, i.e. can be constructed, hence the result is of the order type η.11

In summary, the first six pages (page 3 – 8) of the dissertation are no more
than a reminder of the well-known systems of the integers, of the rationals, and
of the definable irrational numbers, as based on the intuitively known natural
numbers. These pages show us the following: The system of the natural numbers
is considered as being intuitively clear to us; there is no need of a reduction à la
Dedekind, who had to make use of concepts like object (Ding) and chain (Kette)
to define the number system. In the quoted beginning of the dissertation we
read that sequences of expressed ‘sounds’ and sequences of written ‘signs’ are
both identified with ‘ordinal-numbers’.12 Intuition tells us that both sequences
of sounds and signs, different as they may be, refer to the same ordinal number
system. All rules for the elementary operations on this system are subsequently
defined by continued or repeated counting.

The key message of this brief reminder is that the various steps in the de-
velopment of the number system are perfectly constructive. The difference with
the formalist approach in the construction of mathematics13 is also emphasized
in this résumé; intuitive knowledge of the sequence of numbers is manifest from
the first page, in contrast to the formalist’s concept of natural numbers. Hence
there was for Brouwer no need to found arithmetic on a set of axioms, as Peano
did. Arithmetic arises naturally as a result of his concept of the number system.
Any axiomatic foundation of mathematics was rejected by Brouwer as inade-

9A theorem by Cantor from the beginning of Ein Beitrag zur Mannigfaltigkeitslehre, see
[Cantor 1878].

10In zich overal dicht; On page 7 of his dissertation Brouwer gave the classical definition
of this concept, but in his later intuitionism he distinguished between ‘everywhere dense’ and
‘everywhere dense in itself’. An ordered set is everywhere dense if between any two different
elements of the set another element of that set can be indicated. A set is dense in itself if
every element is a main element, that is, every element is the limit element of a monotone
fundamental sequence. In classical mathematics the continuum satisfies both conditions, but
in intuitionistic mathematics the continuum is everywhere dense, but not dense in itself. See
e.g. the Groningen lectures (1933), § 13 and 14. At this stage Brouwer had of course the
classical interpretation in mind.

11See [Cantor 1897].
12We will further discuss the status of signs on page 56.
13The construction of the mathematical building, in Brouwer’s terms.
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quate and beside the point. What he is about to show now is that the intuitive
foundation goes deeper; the ‘intuitively known’ number system rests on a more
fundamental basis: the ur-intuition of an abstracted human experience.

The truly foundational work begins in earnest on page 8 of the dissertation.
Here the ur-intuition of mathematics appears, in its explicit form, for the first
time:

In the following chapters we will examine further the ur-intuition14

of mathematics (and of every intellectual activity) as the substra-
tum, divested of all quality, of any perception of change, a unity of
continuity and discreteness, a possibility of thinking together several
entities, connected by a ‘between’, which is never exhausted by the
insertion of new entities. Since continuity and discreteness occur as
inseparable complements, both having equal rights and being equally
clear, it is impossible to avoid one of them as a primitive entity, try-
ing to construe it from the other one, the latter being put forward as
self-sufficient; in fact it is impossible to consider it as self-sufficient.
Having recognized that the intuition of continuity, of ‘fluidity’, is as
primitive as that of several things conceived as forming together a
unit, the latter being at the basis of every mathematical construc-
tion, we are able to state properties of the continuum as a ‘matrix
of points to be thought of as a whole’.15

This quote forms another often recurring theme in Brouwer’s views on the
foundations of mathematics, which is further developed in subsequent papers
from his hand: the abstraction from all observation is a unity of continuous
and discrete. The continuous is the ‘flowing’ in which the discrete takes place
in the form of events and both, the flowing and the discrete, are equally funda-
mental. This has to be interpreted as taking place in time.16 The individual
subject experiences events (‘perceptions of change’, in Brouwer’s terms), which

14The English translation in the Collected Works uses the term basic intuition, but the
Germanism ur-intuition has become current in this context.

15In de volgende hoofdstukken zullen we nader ingaan op de oer-intüıtie der wiskunde (en
van alle werking van het intellect) als het van kwaliteit ontdane substraat van alle waarneming
van verandering, een eenheid van continu en discreet, een mogelijkheid van samendenken van
meerdere eenheden, verbonden door een ‘tussen’, dat door inschakeling van nieuwe eenheden,
zich nooit uitput. Waar dus in die oer-intüıtie continu en discreet als onafscheidelijke compo-
nenten optreden, beide gelijkgerechtigd en even duidelijk, is het uitgesloten, zich van een van
beide als oorspronkelijke entiteit vrij te houden, en dat dan uit het op zichzelf gestelde andere
op te bouwen; immers het is al onmogelijk, dat andere op zichzelf te stellen. De continuüm-
intüıtie, het ‘vloeiende’, dus als oorspronkelijk erkennende, zo goed als het samendenken van
meerdere dingen in één, die aan elk wiskundig gebouw ten grondslag ligt, kunnen we van het
continuüm als ‘matrix van samen te denken punten’ eigenschappen noemen.

16Note that for Brouwer the intuition of time is sufficient; no separate intuition of space
in the Kantian sense is required (see page 52). The intuition of time gives us arithmetic and
as a result of Descartes’ ‘coordinate geometry’, the geometries, up to any finite number of
dimensions, Euclidean as well as non-Euclidean, can be reduced to arithmetic. See for this for
instance Brouwer’s inaugural lecture [Brouwer 1912], translated into English by A. Dresden
and published in November 1913 in the Bulletin of the American Mathematical Society (see
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are seperated by a ‘flowing’ time lag, which makes the separation manifest.
This experience is the foundation of Brouwer’s concepts of the system of natu-
ral numbers and of the continuum.17

For a better comprehension of this basic notion, we will first, before continu-
ing our discussion about the interpretation of the ur-intuition, investigate a few
other sources of information as far as their views on the ur-intuition are con-
cerned. The relevant items are, in a chronological order, Mannoury’s ‘opposition
from the audience’ during the public defence of Brouwer’s dissertation (1907),
Barrau’s ‘opposition’ on that occasion, Brouwer’s Rome lecture Die mögliche
Mächtigkeiten (1908), and then, after a discussion of the interpretation, his
inaugural lecture Intuitionism and Formalism (1912).

2.3 Mannoury’s opposition

For a proper understanding of Brouwer’s arguments in regard to the ur-intuition,
it is useful to take a look at some objections against it from others, and at
Brouwer’s defence against that opposition.

Although Mannoury’s objections were mainly aimed at the role of language
and logic in the construction of the mathematical building, we clearly discern
in Brouwer’s reply his concept of the ur-intuition of mathematics.18 Mannoury
claimed that, in a mathematical construction, either one has a living represen-
tation, in which case everything is irreducible, or there is the discrete ‘language
building’, in which case thing and relation are sufficient. This latter is the case
in e.g. the definition of Cantor’s (discrete) continuum, where ‘unit’ acts as the
thing and ‘successor’ as the relation.

Brouwer answered that neither is the case, there is only the intuitive con-
struction in the intellect.19 He emphasized that concepts (and not their repre-
senting words) as unity, once again, continuum and and so on are irreducible
concepts in the creation of a multiplicity. The intuition of thing – medium of
cohesion – second thing, or thing – asymmetric relation – other thing, that is the
unity of two different things, clearly separated by a continuous flow of time, may

[Benacerraf and Putnam 1983], page 77). Remember also that for Cantor the continuum
concept neither depends on time, nor on space (see page 8 of this dissertation).

17There are also social and moral aspects involved in Brouwer’s concept of man who is
perceiving changes, but these will not be considered here; see [Brouwer 1905].

18Mannoury was the first of the two ‘opponents from the audience’. At that time he was
‘privaatdocent’, and in later years professor, in Amsterdam.

19This is also the content of the first sentence of the summary of his dissertation on page
179:

Mathematics is created by a free action independent of experience; it develops
from a single aprioristic ur-intuition, which may be called invariance in change
as well as unity in multitude.

(De wiskunde is een vrije schepping, onafhankelijk van de ervaring; zij ont-
wikkelt zich uit een enkele aprioristische oer-intüıtie, die men zowel kan noemen
constantheid in wisseling als eenheid in veelheid.)

See chapter 8 for a discussion on this summary.
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turn this combination into a new unit on which the same operation of adding a
new thing may be applied, and so on.

Also the fact that two events are clearly separated makes a repeated insertion
of a new thing possible:

That intuition of cohesion (...) results immediately in the succession
of three things, namely first thing – medium of cohesion – second
thing, literally translated primum – continuum – secundum (..); we
might as well say: first thing – asymmetric relation – second thing; in
other sounds: first thing – second thing – third thing; hence we have
recognized as an inseparable attribute of the possibility of holding
together of two, the possibility of insertion, which can always be
continued, without completely covering the medium of cohesion with
elements.20

For a further discussion about the interpretation of the content of this quote,
see page 46.

2.4 Barrau’s objections against the ur-intuition

In his objections against Brouwer’s dissertation, Barrau21 argued that the think-
ing together of two points is the only mathematical primal activity. According
to Barrau the existence of irrational points emerges only after their success-
ful construction. Brouwer defined the arithmetical operations with the help of
transformations on the continuum, but these transformations, Barrau claimed,
can only take place with the earlier successfully constructed points, and can-
not be used to define ‘new’ points. Hence one cannot speak of a ‘matrix of
unconstructed points’.

Judging by Brouwer’s reply, Barrau was, in his argument, referring to the
Cantorian continuum,22 which was mentioned already by Mannoury in his ob-
jections. Brouwer returned to the matter, agreeing with Barrau that the discrete
continuum of Cantor does not exist. But his (Brouwer’s) own continuum con-
sists of the intuitive keeping together of two points, occuring in the unity of
thing – time lag – thing, or thing – asymmetric relation – thing, whereas in
Barrau’s argument the ‘thinking together’ follows from the two things, and is
not a fundamental entity of its own. Then Brouwer continued:

20[Dalen 2001], page 149, 150: Die samenhoudingsvoorstelling (...) geeft nu direct de opvol-
ging van drie dingen, nl. eerste ding – samenhoudingsmedium – tweede ding; letterlijk vertaald
primum – continuum – secundum; (...) we kunnen ook zeggen: eerste ding – asymmetrische
relatie – tweede ding; in andere klanken: eerste ding – tweede ding – derde ding; we hebben
dus als onafscheidelijk attribuut van de mogelijkheid van samendenken van twee herkend
de mogelijkheid van tussenvoeging, die steeds verder kan worden voortgezet, zonder dat het
samenhoudingsmedium ooit geheel zal worden overdekt met elementen.

21Barrau was a fellow student of Brouwer, and he was the second ‘opponent from the
audience’, whose objections, as well as Brouwer’s reply, are preserved. They were found as
loose sheets in one of the notebooks.

22i.e. a continuum of the real numbers; see page 9.
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For instance, if you say: I think these two together, then you in-
troduce – and your formulation clearly accompanies this – a third
thing, the ‘being together’, in which you connect both earlier given
things by an asymmetric relation.23

And, he argued, the intuition of the time lag between two things may indeed
be called ‘matrix of not yet existing points’, since an order type η, or every
denumerable unfinished set for that matter, can be constructed between the
two clearly separated things.24 Hence this matrix exists before any constructed
points on it exist and it exists even independent of the fact whether or not
points will be constructed on it; this independence emphasizes its existence on
its own (as part of the two-ity of course). So far Brouwer’s reply.

This concept of the continuum fits properly the above quoted paragraph
from page 8 of the dissertation, where Brouwer stated that the ur-intuition of
mathematics is formed by ‘a unity of continuity and discreteness, a possibility
of thinking together several entities, connected by a between, which is never
exhausted by the insertion of new entities’. Hence for Brouwer the discrete and
the continuous form an unseparable combination which makes the ur-intuition
possible: two events, separated by a continuous flow of time, can be seen as a
new unity, to which a third, separated from that unity by again a continuous
flow of time, can be added, and so on, thus creating the system of numbers (see
also the previous section, the reply to Mannoury). The effect of the ur-intuition
also becomes manifest in the interpolation of new elements. In Brouwer’s answer
to Barrau we can read that the awareness of the ‘between’, the continuous time
span between the two events, is itself the inserted third thing. We will work
out on page 46 ff. how we can combine this conclusion with the concept of the
‘between’ as an intuition of the continuum, acting as a matrix ‘which is never
exhausted by the insertion of new entities’, as it was formulated on page 8 of
Brouwer’s dissertation.

It is interesting to note that the content of Brouwer’s reply to Barrau is in
agreement with the résumé at the end of the second chapter of the dissertation
and with two other papers, the Rome lecture25 (1908), and the Wiener Gastvor-
lesungen26 (1927) (see below). For a short discussion of the relevant parts of
these two lectures, see the next section. As for the mentioned résumé: Brouwer
gave at the end of his second chapter as an example of a synthetic judgement a
priori:

2. the possibility of interpolation (namely that one can consider as
a new element not only the totality of two already compounded, but

23Als u b.v. zegt: ik denk die twee samen, dan voert u – en uw woorden begeleiden dit zeer
duidelijk – een derde ding, het ‘samen zijn’ in, waaraan u beide dingen, die tevoren waren
gegeven, door een asymmetrische relatie verbindt.

24See for this construction page 46.
25[Brouwer 1908b], also in [Brouwer 1975].
26[Brouwer 1929] and [Brouwer 1930b], both Vienna talks are also published in

[Brouwer 1975].
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also that which binds them: that which is not the totality and not
an element).27

2.5 The ur-intuition in the Rome and Vienna
lectures

In his lecture Die mögliche Mächtigkeiten,28 held at the International Conference
of Mathematicians in Rome in 1908, Brouwer opened with a summary of the
ur-intuition and its direct consequences:

Wenn man untersucht, wie die mathematischen Systeme zustande
kommen, findet man, dass sie aufgebaut sind aus der Ur-Intuition
der Zweieinigkeit. Die Intuitionen des continuierlichen und des dis-
creten finden sich hier zusammen, weil eben ein Zweites gedacht wird
nicht für sich, sondern unter Festhaltung der Erinnerung des Ersten.
Das Erste und das Zweite werden also zusammengehalten, und in
dieser Zusammenhaltung besteht die Intuition des continuierlichen
(continere = zusammenhalten). Diese mathematische Ur-Intuition
ist nichts anderes als die inhaltlose Abstraction der Zeitempfindung,
d.h. der Empfindung von ‘fest’ und ‘schwindend’ zusammen, oder
von ‘bleibend’ und ‘wechselnd’ zusammen.

Die Ur-Intuition hat in sich die Möglichkeit zu den beiden folgenden
Entwickelungen:

1) Die Construction des Ordnungstypus ω; wenn man nämlich die
ganze Ur-Intuitiom als ein ganzes Erstes denkt, kann man ein neues
Zweites hinzudenken, das man ‘drei’ nennt, u. s. w.

2) Die Construction des Ordnungstypus η; wenn man die Ur-Intuition
empfindet als den Uebergang zwischen dem ‘Ersten für sich’ und dem
‘Zweiten für sich’, ist die ‘Zwischenfügung’ zustande gekommen.29

This is Brouwer’s definitive notion: the awareness that the two experienced
events do not coincide is itself an experienced event, and therewith is the newly
inserted element between the two given elements (the two experienced events),
as can also be concluded from the following fragment of the second Vienna
lecture (1927):

Denn in der Urintuition ist die Möglichkeit der Zwischenfügung zwi-
schen zwei Elemente (nämlich die Betrachtung der Bindung als neues
Element), mithin auch die Konstruktion im intuitiven Kontinuum

27(page 119, 120) 2. de mogelijkheid van tussenvoeging, (dat men n.l. als nieuw element
kan zien niet alleen het geheel van twee reeds samengestelde, maar ook het bindende: dat wat
niet het geheel is, en niet element is).

28[Brouwer 1908b].
29[Brouwer 1975], page 102.
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von einer Menge von einander nicht berührenden geschlossenen In-
tervallen enthalten (...)30

We underline that Brouwer explicitly stated in point 2 of the Rome lecture
that if, in the construction of order type η, the ur-intuition is experienced as
the transition from the ‘first on its own’ to the ‘second on its own’, then the
interpolation is completed. Hence the simple fact of experiencing the transition
is already the interpolation.

This might give the impression that the awareness of the ‘flowing’ between
the first and the second is not the matrix onto which new elements can be con-
structed in the process of building η, as was stated in the reply to Barrau, but,
instead, the interpolated element itself. A plausible answer to this dilemma is,
that the ‘between’ is awarded a double role: as matrix and as interpolated en-
tity. This interpretation is indeed the most likely one, since Brouwer mentioned
both roles repeatedly, e.g. on page 8 of the dissertation ‘We are able to state
properties of the continuum as a matrix of points to be thought of as a whole’,
and also in the quote mentioned above from the Rome lecture ‘Wenn man die
Ur-Intuition empfindet als den Uebergang zwischen dem ‘Ersten für sich’ und
dem ‘Zweiten für sich’ ist die ‘Zwischenfügung’ zustande gekommen’.

The second role, taken literally, causes difficulties in the further construction
of η, since it is hard to imagine how between this transition, viewed as new
element, and, e.g. the original first element further points can be constructed.
The matrix, on which always more elements can be constructed, seems to be
lost; the new element is put in its place. But also the other quoted fragments
lead to the same conclusion: the ‘Zwischenfügung’ is the inserted element. In
the next section we will present what seems to us the proper interpretation.

2.6 Interpretation of the ur-intuition

The construction of the system of the natural numbers, departing from the ur-
intuition alone, and the subsequent construction of the order types ω and η on
the basis of the same ur-intuition, must, in the light of the quotes given above,
take place in the following way:31

30[Brouwer 1930b], page 434.
31Note that this interpretation is not only based on the dissertation, but also on later

writings, like the 1932 lecture Will, Knowledge and Speech [Brouwer 1933], partial translation
in [Brouwer 1975], (see below).
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2.6.1 The construction of natural numbers

Man, in his ur-state, experiences an event,32 and after that experience another
event, clearly separated from the first one by a certain time span, while the
first event is retained in his memory. Divested of all quality, he calls the first
event one and the second event two.33 The flow of time between one and two
is called the continuum (or a continuum), and this continuum cannot be expe-
rienced without the two events, just as the two events cannot be experienced
and recognized as not coinciding without the flowing continuum in between. It
is important to realize that two consecutive events are necessarily accompanied
by a connecting continuum.

The combination event – continuum – next event may, in its turn, be consid-
ered as one single event, retained in memory as such, and separated by a time
span from a new event which, again divested of all quality, results in another
two-ity; this new two-ity can, in its totality, be viewed as forming a three-ity,
which may be called three. Iteration of this process results in the system N of
the natural numbers and in the ordinal number ω.

As said, this combination event – time span – event, where the first event
may be composed of several earlier perceived combinations of events and time
spans, is retained in memory, and can therefore also be retrieved from memory
for further mathematical use.

For a proper understanding of Brouwer’s ideas, we need not go into the
physiological details of our brain functions. It is not immediately clear what
exactly is stored in one’s memory: the process of the construction of the number
itself, or a constructed sign representing that process and its resulting number
(see further page 56). The important thing is that the individual can, in some
way, retrieve from memory old (abstracted) experiences and abilities. When we
consider the first sentence of the earlier quoted paragraph from page 8 of the
dissertation,

In the following chapters we will examine further the ur-intuition of
mathematics (and of every intellectual activity) as the substratum,
divested of all quality, of any perception of change, a unity of con-
tinuity and discreteness, a possibility of thinking together several
entities, connected by a ‘between’, which is never exhausted by the
insertion of new entities.34

32That is to say, in Brouwer’s view, the subject experiences a sensation. There are no
independent external events.

As a kind of warning we stress that one should not view Brouwer’s explanation too realisti-
cally (in the sense of too literally and lifelike), e.g. as a protocol of experimental psychology.
Different individuals have different intellectual histories, and the various stages of Brouwer’s
‘subject’ run different courses in different individual minds. Brouwer’s account is of course
idealized.

33Note that Brouwer starts counting with ‘one’, whereas modern mathematics usually begins
counting with zero; we will stick for the moment to Brouwer’s convention, and begin with one.

34In de volgende hoofdstukken zullen we nader ingaan op de oer-intüıtie der wiskunde (en
van alle werking van het intellect) als het van kwaliteit ontdane substraat van alle waarneming
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the conclusion seems justified that the actual (not yet abstracted) experience
consists of events that actually happen in the life of the subject. However, the
most fundamental mathematical intuition is the observation of a series of events,
combined into a totality in the sketched way, and divested of all quality. Hence
that, what is retained in memory after, for instance, experiencing two consecu-
tive and well-separated events, must be some constructed symbolic sign, which
represents the experienced combination, after abstraction from its actual con-
tent. After another experience of two well-separated events on another occasion,
the individual again abstracts from all content, and he notices that that, what
is retained in his memory, is on both occasions the same abstract entity and he
labels this ‘of all quality divested entity’ with a symbolic sign, which he names
‘two’.

This conclusion can also be drawn from the following quote from Brouwer’s
lecture at the University of Amsterdam Will, Knowledge and Speech (1932),
which shows that Brouwer, in this respect, did not change his view during the
years:

However, only at the highest levels of civilization does mathematical
activity reach full maturity; this is achieved through the mathemat-
ical abstraction, which divests two-ity of all content, leaving only its
empty form as the common substratum of all two-ities.

This common substratum of all two-ities forms the primordial in-
tuition of mathematics, which through self-unfolding introduces the
infinite as a perceptual form and produces first of all the collection
of natural numbers, then the real numbers and finally the whole of
pure mathematics or simply of mathematics. We shall not concern
ourselves here further with the manner of these constructions.35

One question remains to be answered about the construction of the number
system. On page 5 of his dissertation Brouwer stated:

Now we can continue the sequence of ordinal numbers to the left by
0, -1, -2, etc., (...)36

The question is: how can the system of integers, the system of the positive
and negative whole numbers together, be consistent with the ur-intuition as

van verandering, een eenheid van continu en discreet, een mogelijkheid van samendenken van
meerdere eenheden, verbonden door een ‘tussen’, dat door inschakeling van nieuwe eenheden,
zich nooit uitput.

35Willen, Weten, Spreken, [Brouwer 1933]: Tot volle ontwikkeling komt echter het bedrijf
der wiskundige handeling eerst op hogere cultuurtrappen, en wel door middel van de
wiskundige abstractie, die de tweeheid van alle inhoud ontdoet, en daarvan slechts de ledige
vorm als gemeenschappelijk substraat van alle tweeheden overlaat. Dit gemeenschappelijk sub-
straat van alle tweeheden vormt de oer-intüıtie der wiskunde, die door haar zelfontvouwing
het oneindige als gedachtenvorm invoert, en op hier verder buiten beschouwing blijvende wijze
eerst de verzameling der natuurlijke getallen, vervolgens die der reële getallen, en ten slotte
de gehele zuivere wiskunde, of kortweg wiskunde levert. (English translation by W. van Stigt;
see [Stigt 1990]).

36We kunnen nu de rij der ordinaalgetallen naar links voortzetten met 0, -1, -2, enz., (...)
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a foundation for the natural numbers. Where are the negative integers to be
found in the result of that ur-intuition? We postpone the answer till the end of
the following section on the rational numbers.

2.6.2 The rational numbers

In order to construct the order type η from the system of the natural numbers
N, we must realize that every experience of a time span between two events is
identical in character, since, in the construction of η in a dual system, every
interval can always be split into two parts. In that sense every two continuous
intervals are, as a result of an identification process, recognized as being of
the same nature. For Brouwer there was no need to discover their similarity in
character, nor to declare them as similar by axiom; it is an act, that makes them
similar, one forces them as such, in the same sense as one forces a constructed
scale on the continuum to be everywhere dense,37 according to the principle
that mathematical activity is neither a process of discovery, nor a necessity, but
a free act, resulting in the free creation of the mathematical building. This
principle is repeatedly applied in the dissertation and is explicitly stated in its
summary,

Mathematics is a free creation, independent of experience; it devel-
ops from a single aprioristic basic intuition, which may be called
invariance in change as well as unity in multitude.38

This element of ‘free will’ in mathematical activity is more extensively elab-
orated in the mentioned Will, Knowledge and Speech. In this lecture Brouwer
argued that knowing and speaking are forms of action, through which human life
is maintained and enforced. They originate in the anthropological phenomena
of 1) mathematical viewing, 2) mathematical abstraction and 3) enforcement of
will by means of signs. As for the first item, this comes into being in two phases,
that of becoming aware of time and that of causal attention. About mathemat-
ical viewing in general (and this equally applies to all forms of mathematical
viewing and not only to causal sequences), Brouwer noticed in this same lecture:

Mathematical attention is not a necessity, but a phenomenon of life,
subject to the free will, everyone can find this out for himself by
internal experience: every human being can at will either dream-
away time-awareness and the separation between the Self and the
World-of-perception or by his own powers bring about this separa-
tion and call into being in the world-of-perception the condensation
of separate things. Equally arbitrary is the identification of different

37see page 79 under item 7.
38(page 179) De wiskunde is een vrije schepping, onafhankelijk van de ervaring; zij ontwikkelt

zich uit een enkele aprioristische oer-intüıtie, die men zowel kan noemen constantheid in
wisseling als eenheid in veelheid. See chapter 8 for a further discussion on mathematics as a
free creation.
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temporal sequences of phenomena which never forces itself on us as
inevitable. [my italics]39

Now, for a proper understanding of the construction of the rational scale
(which scale is, as we saw, not depending on the exact nature of defining events;
all connecting time spans are identical, or better, are ‘identified’, this to em-
phasize the character of mathematics as an act) we proceed via an interpreting
remark about the earlier mentioned double role of the connecting continuum
between two events, viz. the role of matrix and that of interpolated entity. This
gives rise to the following interpretation of the continuum in regard to the con-
struction of the η-scale.

The awareness of the flowing between the first event and the second one is
itself a sensation, a third sensation in addition to the two abstracted events that
we will call now zero and one;40 this third sensation is substantialized to an event
between the two original events, and may be called a half. We emphasize that
the newly defined ‘ 12 ’ is not a point, constructed on the continuum ‘somewhere
halfway’ between 0 and 1, since there is no ‘halfway’ yet; the point ‘ 12 ’ is the
insertion (‘Zwischenfügung’) between 0 and 1 itself, it is the ‘experience of the
flowing between 0 and 1, divested of all quality’. There simply is no other choice
for the inserted event, since the awareness of the connecting continuum is the
only experience between the original two events, and it becomes so only after
the second event.

Having now recognized the ‘event’ 1
2 between the two events 0 and 1 as being

clearly different and therefore separated from the two, there is, as a result of
that separation, a connecting continuum between 0 and 1

2 , as well as between 1
2

and 1, because, as we saw, two not coinciding events are necessarily connected
by a continuum. Hence we can iterate the process between every two adjacent
points and thus construct the order type η.

In this interpretation the flowing continuum may be seen as the matrix for
points to be constructed between 0 and 1.

39Dat wiskundige beschouwing geen noodzaak, doch een aan de vrije wil onderworpen le-
vensverschijnsel is, daarvan kan ieder bij zichzelf de inwendige ervaring opdoen: ieder mens
kan naar willekeur hetzij zich zonder tijdsgewaarwording en zonder scheiding tussen Ik en
Aanschouwingswereld verdromen, hetzij de genoemde scheiding door eigen kracht voltrekken
en in de aanschouwingswereld de condensatie van aparte dingen in het leven roepen. En even
willekeurig is de zich nooit als onvermijdelijk opdringende identificering van verschillende tem-
porele verschijnselreeksen. (For the English translation of this frament from Will, Knowledge
and Speach see [Stigt 1990], page 418, 419.)

40Note that we now call the first event ‘zero’ (we are free to do so; we will have to change
this again for the construction the negative integers and rationals). On page 9, 10 and 11 of
his dissertation Brouwer is constructing the ‘measurable continuum’, without giving names
to the constructed points yet. In fact he selects an arbitrary point as the ‘zero’ point only
after the construction of the everywhere dense dual scale, therewith (after also selecting a
unit distance) turning it into a measurable scale, but for easy reference to earlier constructed
points in our present argument we name the original events and the intercalations already at
this early stage, in advance of Brouwer’s results.
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The scale of integers

Now, we still have the unanswered question about the negative integers. There
are several ways to give them a place in Brouwer’s construction of the number
system. With all of them, the answer lies again in viewing mathematics as a free
creation of the human mind. We might, for instance, imagine the construction
of the negative integers to take place in the following way. We experience an
event and, well separated from it, a second event. We are free to baptize this
second event ‘zero’. Viewing the two events and their connecting continuum as
one single event, then the next event, separated from the previous two-oneness,
we call ‘one’, and so on. Now, the awareness of the flowing between the first,
unnamed, event and the second event which we called ‘zero’, is, as we saw,
substantialized to a new event, which we may call ‘minus one’. We repeat this
procedure between the first unnamed event and the new event ‘minus one’,
thus creating another new event ‘minus two’. Iteration of the process between
the first unnamed event and the last newly added one, results in the system
of the negative integers. (The first and always unnamed event we might then
informally dub ‘minus infinity’.)

There is of course also the standard method of constructing Z by means of
ordered pairs of natural numbers, and this method could also have been used
for the construction of the rationals; but our aim is, following Brouwer’s line of
reasoning, to construct the complete number systen (i.e. integers and rationals)
on the basis of the ur-intuition alone.

One can imagine the basic arithmetical operations on the system of the
integers to be defined, as Brouwer did this on the first pages of his dissertation,
by continued and/or repeated counting (see page 4 of his dissertation, see also
our page 35). However, after a closer analysis of the continuum (see the next
chapter) Brouwer developed a more sophisticated definition with the help of
group theoretic arguments, to be applied to the measurable continuum and,
again, no axiomatization is needed for these operations, since, ultimately, they
are all based on the ur-intuition and its corollaries, i.e. the repeated experience
of the move of time, resulting in the extension of the natural number system
and the insertion of always new elements between earlier constructed natural or
rational numbers.

2.7 The ur-intuition in the inaugural lecture

The conclusion, following from the interpretation of the role of the connecting
continuum, can also be drawn from the following quotation from the inaugural
lecture Intuitionism and Formalism41 on the occasion of Brouwer’s professorship
in 1912, in which he said the following:

This neo-intuitionism considers the falling apart of moments of life
into qualitatively different parts, to be reunited only while remain-

41[Brouwer 1913].
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ing separated by time as the fundamental phenomenon of the human
intellect, passing by abstraction from its emotional content into the
fundamental phenomenon of mathematical thinking, the intuition of
the bare two-oneness. This intuition of two-oneness, this ur-intuition
of mathematics, creates not only the numbers one and two, but also
all finite ordinal numbers, inasmuch as one of the elements of the two-
oneness may be thought of as a new two-oneness, which process may
be repeated indefinitely; this gives rise still further to the smallest
infinite ordinal number ω. Finally this ur-intuition of mathematics,
in which the connected and the separate, the continuous and the
discrete are united, gives rise immediately to the intuition of the lin-
ear continuum, i.e. of the ‘between’, which is not exhaustible by the
interposition of new units and which therefore can never be thought
of as a mere collection of units. 42

Hence in the awareness of the fact that we can view two separated events
as a unity, we perceive the intuition of the continuum as the ‘between’, as that
what makes the two events a single one, as that what binds them. And as a

42[Brouwer 1912]; see also [Brouwer 1919c], pages 11 and 12. For the English text see
[Benacerraf and Putnam 1983], page 80. Dit neo-intüıtionisme ziet het uiteenvallen van le-
vensmomenten in qualitatief verschillende delen, die alleen gescheiden door de tijd zich weer
kunnen verenigen, als oer-gebeuren in het menselijk intellect, en het abstraheren van dit
uiteenvallen van elke gevoelsinhoud tot de intüıtie van twee-enigheid zonder meer, als oerge-
beuren van het wiskundig denken. Deze intüıtie der twee-enigheid, deze oer-intüıtie der
wiskunde schept niet alleen de getallen één en twee, doch tevens alle eindige ordinaalgetallen,
daar één der elementen der twee-enigheid als een nieuwe twee-enigheid kan worden gedacht, en
dit proces een willekeurig aantal malen kan worden herhaald. Verder wordt, door dezelfde her-
haling onbepaald voortgezet te denken, het kleinste oneindige ordinaalgetal ω geconstrueerd.
Eindelijk is in de oer-intüıtie der wiskunde, waarin het saamgehoudenen en het gescheidene,
het continue en het discrete verenigd liggen, mede onmiddellijk aanwezig de intüıtie van het
lineaire continuüm, d.w.z. van het ‘tussen’, dat door inschakeling van nieuwe eenheden zich
nooit uitput, dus ook nooit als verzameling van eenheden zonder meer kan worden gedacht.

(The English translation of the originally Dutch text is by A. Dresden and was published
in the Bulletin of the American Mathematical Society in November 1913.)

In [Brouwer 1912] Brouwer employed the term ‘neo-intuitionism’ to contrast it with Kant’s
intuitionism. According to Brouwer, we find with Kant an ‘old form of intuitionism, in which
time and space are taken to be forms of conception inherent in human reason’. This results
for Kant in the apriority of the axioms of arithmetic and geometry. The discovery of the non-
Euclidean geometry was a severe blow for Kant’s theory, but intuitionism has recovered, in
Brouwer’s terms, ‘by abandoning Kant’s apriority of space, but adhering the more resolutely
to the apriority of time’. This is called by Brouwer in his inaugural address neo-intuitionism.
For Brouwer the intuition of time is sufficient, thanks to the arithmetization of geometry
as a result of the work of Descartes. Already in [Brouwer 1914] the ‘neo’ is dropped from
neo-intuitionism and the term ‘intuitionism’ is introduced for his own mathematics. This
mathematics is elaborately worked out in [Brouwer 1918] and in [Brouwer 1919a]. Also his
paper [Brouwer 1919b], which summarizes the previous two, only speaks of ‘intuitionism’.
To mark the difference with the work of Poincaré, Borel, Lebesgue and others (who claimed
that mathematics is more than a formalistic construction; it has a content too), the term ‘pre-
intuitionism’ is introduced to designate the work of those French mathematicians from around
the turn of the century (see e.g. [Brouwer 1952] and [Brouwer 1954c]). In the second Vienna
lecture ([Brouwer 1930b], page 2) Brouwer called this pre-intuitionism ‘die altintuitionistische
Methode’.
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result of the fact that we can view this binding ‘between’ as an event (in fact as
the only possible event), separated from the original two, the ‘between’ can act
as the matrix for always more intercalations, since the process can be iterated.

2.8 The ur-intuition in the notebooks

In the notebooks we can roughly observe during which phase of the preparation
of his dissertation Brouwer was occupied with the ur-intuition, the possible
sets and the continuum. This turned out to be rather late. Whereas in the
notebooks 1 to 5 Brouwer was mainly working on foundational matters, thereby
criticizing or responding to the work of Cantor, Russell, Poincaré and Couturat,
from halfway number 5 onwards he elaborated his own ideas on sets and their
possible cardinalities. It is significant that the ur-intuition in its explicit form,
as it was written down in the dissertation, only appears in the last notebook.
Hence the concept of the two-ity discrete-continuous as the ultimate foundation
of mathematics must have been developed shortly before taking his doctoral
degree.

When considering the possibility to construct the infinite, Brouwer remarked
in notebook II, page 7:

(II–7) We only have the awareness of ‘infinite’, that is ‘always contin-
uing’, in one dimension. Hence we can only use this one-dimensional
infinity in the construction of a geometrical system.43

Brouwer’s concept of the ‘infinite’ is, similar to Dedekind’s, that of ‘always
continuing’, that is, the process of growth to the ordinal number ω.44 The
only method of construction of denumerably infinite sets (which is the only
possible constructible infinite set45), is the continued repetition of the same
operation of ‘adding one element’, which already implies the concept of time in
the composition of the system of the natural numbers.

(VIII–24) One should always keep in mind that ω only makes sense
as a living and growing induction in motion; as a stationary abstract
entity it is senseless; ω may never be conceived to be finished, e.g.
as a new entity to operate on; however, you may conceive it to
be finished in the sense of turning away from it while it continues
growing, and to think of something new.46

43De bewustheid van ‘oneindig’, dat is ‘altijd maar door’ hebben we alleen ééndimensionaal.
Alleen van die ééndimensionale oneindigheid kunnen we dus gebruik maken om een meetkundig
systeem op te bouwen.

44In regard to the continuum, there is quite a difference between Dedekind and Brouwer.
45See further in chapter 4, when discussing possible sets.
46Men bedenke steeds dat ω alleen zin heeft, zolang het leeft, als groeiende, bewegende

inductie; als stilstaand abstract iets is het zinloos; zo mag ω nooit àf gedacht worden, om
m.b.v. het geheel als nieuwe eenheid te werken: wel mag je het àf denken in de zin, van je er
van af te keren, terwijl het doorloopt, en iets nieuws te gaan denken.
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We should never see ω as finished in the sense of a stationary and completed
process of counting; it persists in its growing, even without our active interfer-
ence. The induction ‘does the work’, but the continuation of the act of counting
into the second number class from ω onwards may be looked at, and can be
interpreted as an example of ‘thinking of something new’.47 We may conceive
ω as finished in the sense that its method of generation is determinately given;
the sequence of natural numbers continues in its process of growing, following
the same successor operation, in which nothing new happens.48 It is finished in
the intensional sense.49

The concept of time as the basic intuition of mathematics, appears in the
third notebook:

(III–7) Time acts as that, which can repair the separation.50

Despite the content of the paragraph in which this short quote is found, and
which speaks of ‘sin’ and ‘self-preservation’, this could very well be understood to
refer to a time awareness between two events. The connecting time continuum,
‘which can repair the separation’ between two events, is the medium onto which
an everywhere dense scale of rationals can be constructed. It involves the one-
dimensional continuum, which we meet in the seventh notebook; the higher-
dimensional space still carries here the ‘sign of hostility’, the property of the
external world when man faces this world and acts on it:

(VII–4) Meanwhile I can only use the one-dimensional continuum
to build on (that is the primal intuition of time); I feel that I am
able to construct the multidimensional by myself (it is the space, the
hostile outside of myself, no externalization of myself).51

Time clearly becomes the primal intuition for arithmetic, and hence for the
whole of mathematics.

But there is also a different kind of intuition: that of real space, which
Brouwer mentioned in notebook eight, but to which he already alluded in the
first one:

(I–3) As a consequence of our doom it is self-evident, that our space

47This continuation, however, can no longer be viewed as finished in the same interpretation
of ‘letting it persist in its growing and continue from the beginning of the next class’; here
the result is a denumerably unfinished set, the maximum attainable in the set construction;
see further the discussion in chapter 7.

48See also page 322.
49See Brouwer’s dissertation, page 176; see also chapter 8 of this dissertation in which the

actual versus the potential infinite and the finished versus the unfinished will be discussed.
50De tijd treedt op als dat, wat de scheiding wel weer in orde kan brengen.
51Intussen kan ik alleen het eendimensionaal continuüm gebruiken om op te bouwen (dat

is de intüıtie van de tijd, die primair is), het meerdimensionale voel ik, niet zelf te kunnen
bouwen (het is de ruimte, het vijandige buiten mij, geen veruiterlijking van mijzelf). (see also
Life, Art and Mysticism, [Brouwer 1905]).
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has three dimensions. That number is within us as our externaliza-
tion.52

And then in number eight:

(VIII–1) Real space is intuitive, but mathematical space, which is
also intuitive, is constructed out of the one-dimensional intuition of
time.53

We observe in the notebooks, more than in the resulting dissertation, the
ultimate foundation of human mathematical thinking: his mystic experience
of ‘just being there’ and the observation of what occurs to him. Any form of
interference is ‘sinful’.

We also note that real space is distinguished here from mathematical space.
Mathematical space is intuitive in the sense that it can be fully described and
constructed departing from the intuition of time alone. Real space is also in-
tuitive, but in a different sense. An intuition of a three-dimensional space ‘as
a consequence of our doom’ should be understood to be the outcome (effect)
of the abandoning by mankind of his natural destiny in his attempt to control
the world. Man wants to rule, and for that purpose alone he ‘mathematizes’
the world, he invents mathematically described physical laws, projected on a
three-dimensional real space. Here man is far removed from his one-dimensional
mathematical space which is based on the ur-intuition.54 One should note that
this quote is from the first notebook, written at a time during which the influ-
ence of his recent publication Life, Art and Mysticism was still great compared
to a few years later when arguments like the one in the quotation more or less
slip out of the picture. But a certain mystic tendency in Brouwer’s work was to
remain.

Kant needed time and space as ‘Anschauungsformen’ to ground arithmetic
and geometry. For him space and time are within us, in our perceptive faculty,
as a necessary means to observe the objects in the external world. We cannot
imagine the absence of space, but we can imagine empty space, since the a priori
space presents itself to us as ‘appearance’ (Erscheinung).55

In Brouwer’s words, when discussing Kant’s concept of space in chapter II
of the dissertation:

Kant defends the following thesis on space:

The perception of an external world by means of a three-dimensional
Euclidean space is an invariable attribute of the human intellect;

52Het spreekt volgens onze doem vanzelf, dat onze ruimte drie afmetingen heeft. Dat getal
zit daar in ons als onze veruiterlijking.

53De reële ruimte is intüıtief, maar de mathematische ruimte, die ook intüıtief is, is opge-
bouwd uit de eendimensionale tijdsintüıtie.

54This all will be extensively discussed in chapter 6 of this dissertation. Brouwer treats it
in his second chapter.

55[Kant 1995]: Transzendentale Elementarlehre, §§ 1 – 5.
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another perception of an external world for the same human beings
is a contradictory assumption.

Kant proves his thesis as follows:

Of empirical space we notice two things:

10. We obtain no external experiences barring those placed in em-
pirical space, and cannot imagine those experiences apart from em-
pirical space. (...)

20. For empirical space the three-dimensional Euclidean geometry
is valid (...);

from which it follows that the three-dimensional Euclidean geom-
etry is a necessary condition for all external experiences and the
only possible receptacle for the conception of an external world so
that the properties of Euclidean geometry must be called synthetic
judgements a priori for all external experience.

Both premisses serve to demonstrate in a certain sense (...) the
objectivity in the first instance of empirical space per se, without
which no external experience is said to be accessible to thought, and
secondly of the group of Euclidean motions constructed thereon.56

As a comment on this we state first that Brouwer’s summary of Kant’s con-
clusion that three-dimensional Euclidean geometry is a necessary condition for
all external experience, should be limited to the statement that three dimen-
sional Euclidean space is the required condition for such experience. The latter
expresses Kant’s intention better. A second comment is that Kant (Brouwer
is summarizing Kant, after all) would not grant an objective per se status to
empirical space. The Anschauungsform of space is the only way for us to ex-
perience objects. Space and time are the two ‘Anschauungsformen’ (forms of
intuition), but an objectively existing space remains unknown to us on principle.

For Brouwer the intuition of time had to be sufficient as a foundation for
the construction of the mathematical edifice since an intuition of space for the
foundation of Euclidean geometry became untenable due to the development of

56(dissertation, page 113 – 115) Kant verdedigt omtrent de ruimte de volgende stelling:
De voorstelling van een uitwendige wereld door middel van een driedimensionale Euclidische

ruimte is van het menselijk intellect een onveranderlijk attribuut; een ándere voorstelling van
een uitwendige wereld bij dezelfde mensen is een contradictoire onderstelling.

Kant bewijst zijn stelling als volgt:
Van de empirische ruimte merken we twee dingen op:
10. wij krijgen geen uitwendige ervaringen, dan geplaatst in de empirische ruimte, en kunnen

ons die ervaringen niet los van de empirische ruimte denken (...),
20. voor de empirische ruimte geldt de driedimensionale Euclidische meetkunde (...),
waaruit volgt, dat de driedimensionale Euclidische meetkunde noodzakelijke voorwaarde

voor alle uitwendige ervaringen en het enig mogelijke receptaculum voor de voorstelling ener
uitwendige wereld is, zodat de eigenschappen der Euclidische meetkunde synthetische oordelen
a priori voor alle uitwendige ervaringen moeten worden genoemd.

De beide premissen betogen in zekere zin (...) de objectiviteit, eerst van de empirische ruimte
zonder meer, zonder welke geen uitwendige ervaring heet te kunnen worden gedacht, (...) en
vervolgens van de daarin geconstrueerde Euclidische bewegingsgroep.
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non-Euclidean geometries. The intuition of time guarantees us arithmetic (just
as with Kant) but, as a result of Descartes’ work, geometry becomes definable
in terms of arithmetic (or rather: analysis).

We must interpret Brouwer’s concept of the intuition of real space in the
sense that we experience it, we observe it, as we experience and observe causal
sequences in our daily life, as a consequence of man, operating in, and attempt-
ing to control, his surroundings. There is no objective external real space for
Brouwer.

In regard to causality and causal sequences, note the difference with Kant,
for whom causality is one of the categories (reine Verstandesbegriffe), which
play their role in our reflection on the data, obtained by our senses and pre-
sented to the mind (Verstand). These data necessarily are observed through the
Anschauungsformen space and time.

Brouwer’s view on space is expressed in the following quote from the sec-
ond notebook, in which again mathematics as the result of a free act can be
recognized:

(II–16) It is an act of free will to put space. It is an act of free will to
put in it the relation of distance and straight line, which represents
a Euclidean group.57

See also page 105 of the dissertation, where Brouwer strongly criticized Rus-
sell’s view that a multidimensional continuum is a necessary condition for the
experience of objects:

To which we answer again that such a world of objects (things) is not
a necessary condition for experience; that empirical space is an ar-
bitrary creation [added correction in handwriting: of our imagination]
to enable us, all the same, with the aid of mathematical induction
to bring different causal sequences (of results of measurements) to-
gether under one point of view; (...).58

However, the creation of real external space seems not to be completely an
act of free will, but is in its turn based on the postulate of the existence of
continuous functions which man needs for an easy and successful description
of the physical nature (which remains of course a consequence of the ‘fall of
mankind’):

57Het is willekeur om de ruimte te stellen. Het is willekeur om daarin het afstands-
en rechtelijnverband te stellen, dat een Euclidische groep representeert. See also, again,
[Brouwer 1933].

58Waarop wij weer antwoorden, dat een dergelijke wereld van objecten (choses) voor de
ervaring niet nodig is, dat de empirische ruimte een willekeurige schepping (toegevoegd: onzer
verbeelding) is, om verschillende causale volgreeksen (van meetresultaten), tòch met behulp
van mathematische inductie onder één gezichtspunt samen te brengen; (...).

Note: In our opinion ‘arbitrary’ (willekeurig) has to be taken in its literal meaning of ‘out
of free will’ and not as ‘random’. In his translation Van Stigt uses ‘arbitrary’ but in our view
the free-will-aspect has to be emphasized.
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(VIII–42) We would not have any representation of space if we were
not thinking in terms of the postulate of mutual measurability of
coordinates, that is, the existence of certain continuous functions.59

So far in the notebooks (still in the eighth) the primal intuition of time is
just designated as the ‘basic mathematical intuition’, but not yet in the explicit
form of the ur-intuition of the twofoldness discrete and continuous, the unity
of event – time span – other event, i.e. the move of time, which, however, we
encounter for the first time in the last notebook:

(IX–26) The construction of the sequence one, two, three, ... out of
the ur-intuition 0 proceeds as follows:

(0) 1st. one – two (separated by flow of time)

(0) 2nd. two – three (separated by flow of time)

This sequence is applied when counting points with the help of the
ur-intuition:

(0) 1st one – visual perception of a (first) point

(0) 2nd two – visual perception of a second point

etc.60

and also, a few pages later:

(IX–29) The sequence ω can only be constructed on the continuous
intuition of time.61

Although in the first notebook Brouwer alluded to time as a necessary con-
dition for the construction of a set,

(I–27) Dedekind, in his ‘example of an infinite system’ actually con-
structs the ‘chain’ by a constant repetition of the successor opera-
tion. Because in fact he says: ‘the whole, which I can construct is
formed in this way’ (where does he get the time for that?)62

59Wij zouden geen ruimtevoorstelling hebben, als we niet uitgingen van het postulaat der
onderlinge meetbaarheid van coördinaten, dus van het bestaan van zekere stetige functies.

60Het opbouwen van de rij één, twee, drie, ... uit de oerintüıtie 0, gebeurt aldus:
(0) 1e. één – twee (gescheiden door tijdsvloeiing)
(0) 2e. twee – drie (gescheiden door tijdsvloeiing)
Deze rij wordt toegepast bij het tellen van punten, door middel van de oerintüıtie:
(0) 1e één – gezichtsgewaarwording van een (eerste) punt
(0) 2e twee – gezichtsgewaarwording van een (tweede) punt
enz.
61De reeks ω is alleen op te bouwen op de continue tijdsintüıtie.
62Dedekind bouwt feitelijk bij zijn ‘voorbeeld van een oneindig systeem’ de ‘keten’ op door

telkens herhaling van de volgoperatie. Want feitelijk zegt hij: ‘het geheel, dat ik maken kan
(waar haalt hij de tijd daarvoor?) is aldus gevormd.

(Note that we are not yet discussing sets, their possible constructions and cardinalities. At
this place we merely discuss the role of time in the construction of numbers.)
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and in the third notebook time was mentioned as that, which can repair all sep-
aration (see above, quote III-7), it was only in the seventh that that Brouwer
emphasized the intuition of time as the most basic ur-intuition for the construc-
tion of a sequence and in the ninth that this concept was worked out in the
given quotation IX–26. Only here it is explicitly stated how the twofoldness of
discrete and continuous arises out of the ur-intuition of the awareness of time,
and how, as a result of this, the system of the natural numbers becomes feasible.

It was only about six months before the public defence of his dissertation,
most probably in August or September 1906 as can be concluded from the cor-
respondence with Korteweg, that the fundamental concept of the ur-intuition of
the twofoldness became manifest in writing. Through this concept mathematical
objects became free creations of the individual mind.

2.9 On the status of spoken or written signs

Returning now, after what seems to us a proper and justifiable interpretation
of the ur-intuition and its corollaries, to the discussion on the status of the
signs representing the numbers,63 we note that in the construction of the order
types ω and η the role of spoken or written signs is not mentioned; the numbers
are a direct creation of the mind, and are retained in memory as numbers and
not represented by symbols. On the role of spoken or written language in this
process of creation, Brouwer stated in the earlier mentioned inaugural lecture
Intuitionism and Formalism:

And in the construction of these sets64 neither ordinary language nor
any symbolic language can have any other role than that of serving
as a non-mathematical auxiliary, to assist the mathematical memory
or to enable different individuals to build up the same set.65

Time is the only basic intuition, as we again can see in the same inaugural
lecture:

In this way the apriority of time does not only qualify the properties
of arithmetic as synthetic a priori judgments, but it does the same
for those of geometry, (...). For since Descartes we have learned to
reduce all these geometries to arithmetic by means of the calculus
of coordinates.66

63See the first two paragraphs of Brouwer’s dissertation; see also the beginning of section 2
of this chapter.

64i.e. denumerable sets.
65En bij de opbouw dezer verzameling kan noch de gewone, noch enige symbolische taal

een andere functie vervullen, dan die van een onwiskundig hulpmiddel, om het wiskundig
geheugen te ondersteunen of om door meerdere individuen dezelfde wiskundige verzameling
te doen bouwen.

66Hiermede echter zijn op grond van de aprioriteit van de tijd niet slechts de eigenschappen
der rekenkunde als synthetische oordelen a priori gekwalificeerd, doch ook die der meetkunde,
(...). Immers sinds Descartes heeft men achtereenvolgens al deze geometrieën door middel van
coördinatenrekening op de rekenkunde leren terugvoeren. (translation A. Dresden)
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and this will remain one of the basic concepts for Brouwer, together with the
concept of the experience of the move of time on which the intuition of continu-
ous and discrete as an inseperable two-ity is based, and also together with that
of the role of language as no more than an aid since mathematics is fundamen-
tally a mental construction. This can be concluded from the quotes mentioned
above, as well as from several published papers of later time, e.g. the paper
Historical background, principles and methods of intuitionism, published in the
South African Journal of Science in 1952. In this paper the development of
intuitionistic mathematics is sketched, which development is in later years usu-
ally explained by Brouwer in terms of the ‘two acts of intuitionism’, the first of
which goes as follows:

(...) the First act of intuitionism completely separates mathematics
from mathematical language, in particular from the phenomena of
language, which are described by theoretical logic, and recognizes
that intuitionist mathematics is an essentially languageless activity
of the mind, having its origin in the perception of a move of time,
i.e. of the falling apart of a life moment into two distinct things,
one of which gives way to the other, but is retained by memory. If
the two-ity thus born is divested of all quality, there remains the
empty form of the common substratum of all two-ities. It is this
common substratum, this empty form, which is the basic intuition
of mathematics.

(...)

In the edifice of mathematical thought thus erected, language plays
no other part than that of an efficient, but never infallable or exact,
technique for memorizing mathematical constructions, and for sug-
gesting them to others; so that mathematical language by itself can
never create new mathematical systems.67

Hence signs in spoken or written form, considered as words or symbols in
a language, are, when viewed on their own, no free creation of the individual
mind, like the numbers are. We have a language (as a cultural phenomenon)
at our disposal which makes communication possible, and the only role of this
language in mathematics is to refer to the creations by the mind, with the
purpose to support one’s own memory and to communicate mental creations
with others. Thus a very plausible interpretation of the first six pages of the
dissertation seems to be that Brouwer presented a short overview of how we
are able to know the system of the numbers, and how we are able to operate
on it, this all being purely based on the intuition of time. These things are
intuitively clear should, in this interpretation, be read as: these matters are the
intuitive awareness of the intuition of time and its two-ity, as man experiences
it. This will be described in chapter I of Brouwer’s dissertation from page
8 onwards. The first six pages present the construction of the mathematical
building, starting from the result of this intuition.

67[Brouwer 1952], also in [Brouwer 1975], page 508 – 515.
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However, as we said before, by the end of the first world war Brouwer was
considering a revised edition of his dissertation. In view of that he made many
corrections in his own copy of the dissertation, either based on later views or
merely expressing his original intentions more clearly.68 E.g. the sentence ‘these
things are intuitively clear’ was corrected as ‘these things are intuitive’, which
certainly expressed Brouwer’s intentions better, and the interpretation can now
be read as these matters are the intuition of time and its two-ity, contrary to
the original text, which has to be understood as ‘these matters are immediately
and intuitively understood by us’.

There is, however, more to say about written or spoken signs. We men-
tioned in the quote from the South African Journal of Science the first act of
intuitionism as the separation of language from all mathematical activity, which
abolishes all mathematical construction by means of linguistic applications of
the principles of logic. The second act enables us to reconstruct mathematics,
now as a purely mental building. The two acts of intuitionism were formulated
explicitly for the first time in the Berliner Gastvorlesung (1927)69 in similar
terms as in the South African Journal of Science. The second act reads here:

Es ist die zweite Handlung des Intuitionismus, welche hier einen
kompensierenden Ausweg schafft, nämlich das Erkennen der Selbst-
entfaltung der mathematischen Ur-Intuition zur Mengenkonstruk-
tion. Diese Mengenkonstruktion, welche leider trotz ihres einfachen
gedanklichen Inhaltes eine einigermassen langatmige Beschreibung
erfordert, welche aber ganz allein das ganze Gebäude der intuition-
istischen Mathemathik trägt, besteht in Folgendem:

Zunächst wird eine unbegrentzte Folge von Zeichen festgelegt mittels
eines ersten Zeichens und eines Gesetzes, das aus jedem dieser Ze-
ichenreihen das nächstfolgende herleitet. Wir wählen z.B. die Folge
ζ der ‘Nummern’ 1, 2, 3, .... Sodann ist eine Menge ein Gesetz, (...)70

68See the new edition of Brouwer’s dissertation, in [Dalen 2001].
69These lectures appeared in print only posthumously in 1992; see

[Dalen, D. van (ed.) 1992].
70[Dalen, D. van (ed.) 1992], page 23. It can be, and has been defended that this second

act follows from the first: in the Cambridge lecture of November 1951 Changes in the relation
between classical logic and mathematics. (The influence of intuitionistic mathematics on
logic), Brouwer stated: ‘One of the reasons that led intuitionistic mathematics to this extension
was the failure of classical mathematics to compose the continuum out of points without the
help of logic’. Brouwer meant with this extension the creation of choice sequences as elements
for spreads in order to be able to handle arbitrary elements of the continuum and to bring
the continuum beyond its role of just the matrix to construct points on. But then Brouwer
added in the margin of the manuscript: ‘incorrect, the extension is an immediate consequence
of the selfunfolding’. In other words, the second act of the recognition of the selfunfolding
of the mathematical ur-intuition to the construction of spreads (sets, Mengen) follows from
the first act without the need to state it explicitly; it is included in it, it is included in the
recognition of intuitionistic mathematics as an essentially languageless activity of the mind,
having its origin in the perception of a move of time. See [Dalen, D. van (ed.) 1981a], page
93.
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The exact character of the mentioned law is not yet of importance here,71 for
now we just want to point to the fact that Brouwer used the concept ‘Zeichen’
(sign, symbol). Does that contradict the first act, that makes mathematics an
essentially languageless activity of the mind? It seems not, because the ‘un-
limited sequence of signs’ is here, as in the beginning of the dissertation, the
written reproduction of the mental construction of, for instance, the natural
number system. In view of the elucidation that Brouwer gave about the role of
language in mathematics, this seems to be a reasonable explanation. See also
the quoted phrase from his inaugural speech on page 56: ‘(...) neither ordinary
language nor any symbolic language can have any other role than that of serving
as a non-mathematical auxiliary, (...)’ (my italics).

However, in 1947 Brouwer published a one-page paper, entitled Guidelines
of intuitionistic mathmatics,72 in which he felt the need for a further elaboration
about the role of symbols in mathematics, and which ends with the phrase:

Because mathematics is independent of language, the word symbol
(Zeichen) and in particular the words complex of digits (Ziffernkom-
plex) must be understood in this definition73 in the sense of mental
symbols, consisting in previously obtained mathematical concepts.74

So, did Brouwer after all allow symbols an existence and a role in mathe-
matics itself, and not just in the language that accompanies it? Or did he still
intend to say: a symbol stands for a mathematical construction?

The exact text in the English translation speaks of ‘symbols, consisting in
previously obtained mathematical concepts’. The original Dutch text uses the
words ‘gedachtentekens, bestaande in reeds verkregen mathematische denkbaar-
heden’. ‘Bestaande in’ can be translated as ‘consisting in’ or ‘existing in’, but the
term ‘consisting in’ has also the meaning of ‘being based on’ or ‘being dependent
on’, whereas the meaning of ‘existing in’ is limited to the more literal meaning
of just ‘being in’. Hence ‘consisting in’ points to a dependence of the sign on the
already present mental mathematical concepts, and must indeed be regarded as
the proper translation.

The last quote tells us exactly how far Brouwer went in his further develop-
ment of the symbol concept as a mathematical entity. If we again read the first
page of his dissertation, especially the last phrase of it (in Brouwer’s improved
version ‘these things are intuitive’), but this time in the light of this 1947 paper,
we must conclude that first the mind creates the concept, i.e. the number or the
number system, and then the mind creates an abstract symbol (i.e. not a physi-
cal symbol in ink or sound waves) for that concept, which stresses the similarity

71see chapter 4.
72Richtlijnen der Intüıtionistische Wiskunde, [Brouwer 1947], English translation in

[Brouwer 1975], page 477.
73i.e. the definition of a spread, i.e. a ‘Menge’, which is a law (‘ein Gesetz’); see also our

fourth chapter.
74Wegens de taalloosheid der wiskunde behoort in de genoemde definitie [van spreiding] bij

teken (Zeichen), in het bijzonder ook bij het woord cijfergroep (Ziffernkomplex), gedacht te
worden aan gedachtentekens, bestaande in reeds verkregen mathematische denkbaarheden.
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with other experiences of the move of time. In fact, man has no choice. He sim-
ply has to create a mental abstract symbol after divesting the actual experiences
of all content, in order to represent the natural numbers constructed so far; and
this symbol has to be a part of mathematics since it is needed for the extension
of the natural number system: it has to be connected to new abstracted expe-
riences by a new continuum, identical to all others. Hence the mental symbol
is still no element of the language. It only becomes so if it is transformed into a
linguistic symbol, which is orally expressed or written down and used in a logi-
cal or other language game, apart from mathematics. Only then it has become
the symbol that Brouwer meant in the earlier quoted phrase from the inaugural
lecture: ‘neither ordinary language, nor any symbolic language can have any
other role than that of serving as a non-mathematical auxiliary’.

In the second chapter of his dissertation, when discussing the use of math-
ematics for the intervention in nature by means of the creation of causal se-
quences, it is expressed as follows:

the simplest example of this being the sound image (or written sym-
bol) of a cardinal number obtained by the process of counting, or the
sound image (or written symbol) of the measuring number obtained
by the process of measurement.75

Here again: the act of counting is mental, the act of assigning a symbol to
the result and the symbol itself are also mental, but the expressed sound or the
written symbol becomes part of the language and, when used as such, does no
longer belong to the mental building of mathematics. The mind creates a car-
dinal number and then it creates a symbol which stands for the created number
and, in order to prevent an endless series of arbitrary signs, it creates a system-
atic way of constructing signs, for example the dual or the decimal notation of
numbers.

Note the essential and fundamental difference with the formalist approach
where every system of symbols, operating rules, and axioms, stripped of all
intuition, forms a mathematical theory.

2.10 The notebooks on spoken or written signs

Little is said on this subject in the nine notebooks. It seems as if the concept was
almost taken for granted in the dissertation, or was not yet completely worked
out, perhaps because Brouwer was not fully aware of all its implications. The
really important remarks were made in later publications, beginning with the
inaugural lecture. Only a few allusions to the sign concept in the notebooks are
worth to be mentioned here.

75(page 84) het eenvoudigste voorbeeld hiervan is het door de telhandeling verkregen
klankbeeld (of schriftteken) van aantal, of het door de maathandeling verkregen klankbeeld
(of schriftteken) van maatgetal.
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In the fifth notebook the construction of the system of the natural numbers
is discussed:

(V–14) Now the practice of counting is the construction of the fan-
tasy system one, two, three etc., to the images of which are related
the objects of reality as a method.76

Hence the symbols one, two, three, ... are images of things in reality, they
are reflecting a facet of the external world by means of a mental creation of the
symbols, and are, as a mental creation, not yet elements of a spoken or written
language.

In the seventh notebook, when discussing the creation of Cantorian numbers
of the second number class, it is, in a deleted fragment, expressed as follows:

(VII–14) I can write down all Cantorian numbers of the second num-
ber class by means of a finite number of signs. But those signs are
symbols, which have to be shaped with the help of the ‘and so on’.77

The signs are in this case part of the language, and stand for the mental
creation of the symbols for the Cantorian numbers.

Finally, on the first page of the eighth notebook, as a note in the margin:

(VIII–1) Whereas signs, that stand for something arbitrary, e.g. for
‘arbitrary finite number’, just belong to the system of signs, that
accompany the passion for building, not the building itself.78

It seems as if Brouwer treated signs and symbols in the notebooks and in
the dissertation intuitively, and that the concept was only fully elaborated and
viewed in all its consequences after the public defence of the dissertation. There
was more to it than he originally realized.

2.11 Summary and conclusions of this chapter

We have seen in this chapter that the exact charaterization and specification of
the ur-intuition appeared very late in the notebooks, hence we may assume that
the details of this concept only materialized shortly before writing it down in
the draft for his dissertation, and hence shortly before the date of his academic
promotion.

The other sources in which this basal concept showed up (Mannoury’s and
Barrau’s ‘oposition from the floor’, the Rome lecture and the Vienna lecture)

76Nu is de praktijk van het tellen de opbouw van het fantasie systeem een, twee, drie enz.,
op welke beelden de dingen der werkelijkheid als methode worden betrokken.

77Alle Cantorse getallen der tweede getalklasse kan ik opschrijven met een eindig aantal
tekens. Maar die tekens zijn de nieuw te vormen symbolen met behulp van het ‘èn dat en
zovoorts’.

78Terwijl tekens voor iets willekeurigs, b.v. voor ‘willekeurig getal’, alleen horen in het
tekensysteem, begeleidend iets van de bouw-passie, niet van het bouwwerk zelf.
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were very clarifying, compared to the briefly worded text from the dissertation.
However, an interpretation still had to be worked out. The construction of
the several number systems, as corollaries of the ur-intuition, required a cer-
tain amount of explication, but the main results for arithmetic (and hence for
the whole of mathematics) turned out to be that time is the only intuition re-
quired for the construction of the mathematical edifice. The intuition of space
is (contrary to Kant’s view) no longer needed.

Brouwer did recognize an ‘intuition of real space’, but this is just an experi-
ence of it, just as the whole of our external world and the causal sequences in
it are experienced by us; but this experience does not have the character of an
‘ur-intuition’, and this ‘experience without content’ is not needed for the con-
struction of the building of mathematics. The individual mind constructs the
numbers as abstractions from sequences of experienced events that are taking
place in time, and he also constructs mental signs to represent these numbers for
future use in e.g. arithmetic or set theory, and this is sufficient for the ultimate
foundation of his whole enterprise.

As a final remark we note that in Brouwer’s later work the idea of the
continuum as a ‘matrix to construct points on’ disappeared with the emergence
of choice sequences and spreads, but that the concept of the continuum as the
immediate result of the ur-intuition remained (see page 74).



Chapter 3

The continuum, intuitive
and measurable

3.1 Introduction

This chapter covers Brouwer’s analysis of the result of the ur-intuition, viz. the
intuitive continuum, its character and its properties.1 We ended the preceding
chapter with the remark that the intuitive continuum as the immediate corol-
lary of the ur-intuition was emphasized repeatedly in the dissertation, as well as
in other publications of later date. Also after the introduction and the develop-
ment of the ‘perfect spread’, which gives us the ‘full continuum’ of all unfinished
choice sequences on the unit interval, the continuum still remains the immedi-
ate result of the ur-intuition. We will see that, in order to prevent confusion,
the different concepts about the continuum (like the ‘intuitive’ continuum, the
‘reduced’ continuum, the ‘full’ continuum) have to be distinguished sharply.

We find the origin of Brouwer’s continuum concept, as we saw, in the flow
of time as the medium of cohesion between two well-separated events. Apart
from the construction of the integers and of the rational scale, more properties
of the continuum and of these scales can be deduced, still on the basis of the
mathematical intuition and of the concept of mathematics as a free creation of
the individual human mind.

Several properties of the continuum were discussed in the previous chapter,
and new ones will come up in the present one, again requiring interpretation
about what exactly Brouwer had in mind, like the idea of a ‘freely constructed
scale’, or the property of being ‘partlially unknown’ of an infinite sequence
approximating a point.

We will argue that ‘partially unknown’ can be interpreted in two ways:
1. Partially unknown on principle. This is the case with lawless choice se-
quences; the respective elements are not individualized.

1See Brouwer’s dissertation, page 9 ff.
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2. Partially unknown but individualized. The elements are not yet known since
they are not yet computed, but they are ‘intensionally known’; this is the case
with e.g. the sequences defining

√
2 or π.

Another important item to be discussed is the notion of the ‘everywhere
dense scale of the rationals’. Brouwer claimed that in the process of construct-
ing the rational scale, there might be ‘points not reached’; we can even leave
(or find out afterwards that we have left) a complete segment of the continuum
unpenetrated by inserted points. Brouwer declared the everywhere dense char-
acteristic of the rational scale η to be the result of an ‘agreement’ (which we
will argue to be the result of a free act of the mind); but then the following two
questions have to be examined:
1. How can we exclude a segment of the continuum from the insertion of new
elements, given the fact that the awareness of the non-coincidence of two ex-
periences is the inserted element? In other words, how do we create an empty
segment under this interpretation?
2. Once we succeed in the construction of such a segment or we become aware
of it, how do we eliminate it again?

Another point of discussion is the Bolzano-Weierstrass theorem. Brouwer
stated that this theorem is a direct corollary of the measurability of the contin-
uum, but closer inspection reveals that he employed in its proof the principle of
‘reductio ad absurdum’, as well as the ‘tertium exclusum’.

Of special interest for this subject are the notebooks, which show a de-
velopment from a possible constructibility of the continuum (albeit that this
possibility was only expressed once, at the level of a thought experiment), via
‘something mysterious but nevertheless intuitively known’ to the continuum ‘as
the result of the ur-intuition’. An evolution in Brouwer’s thoughts about the
exact nature of the continuum can be observed in the nine notebooks.

In the first section of this chapter a concise overview will be presented of just
a few different (and sometimes mutually opposing) opinions about the contin-
uum, as well as the names of the philosophers and mathematicians attached to
them. This overview serves as an introductory remark, to make a comparison
with Brouwer’s ideas possible, which ideas were often deviating from those of
the mainstream of mathematics. Moreover, this overview shows the importance
that, through the ages, mathematicians and philosophers have attached to the
continuum.

3.1.1 Aristotle

Euclid held the position that a line is composed of points, as can be concluded
form definition 4 in Book 1 of The Elements:

4. A straight line is a line which lies evenly with the points on itself.2

2A not too lucid definition; see [Heath 1956], page 153.
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Aristotle, who lived some fifty years earlier, took up a different position. For
him, a line (the continuum) is not composed of points; all one can say is that a
line is indefinitely divisible. In his Physics, in Book III, under B–6, a–14, this
is explained as follows:

Now, ‘to be’ means either ‘to be potentially’ or ‘to be actually’, and a
thing may be infinite either by addition or by division. I have argued
that no actual magnitude can be infinite, but it can still be infinitely
divisible (it is not hard to disprove the idea that there are indivisible
lines), and we are left with things being infinite potentially.3

and the first part of Book VI contains the following sections:

Proof that no continuum is made up of indivisible parts.

and

Proof that distance, time and movement are all continua.

In the first section of book VI Aristotle argued as follows:

For instance, a line, which is continuous, cannot consist of points,
which are indivisible, first because in the case of points there are no
limits to form a unity (since nothing indivisible has a limit which is
distinct from any other part of it), and second because in their case
there are no limits to be together (since anything which lacks parts
lacks limits too, because a limit is distinct from that of which it is a
limit).4

A similarity between Aristoteles’ conclusions and Brouwer’s ideas will be (or
will become) clear, and the contrast with e.g. Cantor is obvious.

3.1.2 Georg Cantor

In chapter 1 of this dissertation (see page 8 and page 14) Cantor’s views on
the continuum were given: the continuum is composed of points. Cantor’s
continuum is the arithmetical continuum of the real numbers. The concepts of
time and space presuppose the continuum concept.

3.1.3 Hermann Weyl

In 1918 Weyl published Das Kontinuum. In chapter II of this booklet, Zahlbegriff
und Kontinuum, the system of the real numbers is defined in a way similar to
Dedekind. In § 6 the ‘anschauliches Kontinuum’ (intuitive continuum) and the
‘mathematisches Kontinuum’ are discussed. In this section it is stated:

3[Aristotle 1999], page 71.
4Op. cit. page 138.
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Bleiben wir, um das Verhältnis zwischen einem anschaulich gegebe-
nen Kontinuum und dem Zahlbegriff besser zu verstehen (..), bei der
Zeit als dem fundamentalsten Kontinuum;

(...)

Um zunächst einmal überhaupt die Beziehung zur mathematischen
Begriffswelt herstellen zu können, sei die ideelle Möglichkeit, in dieser
Zeit ein streng punktuelles ‘jetzt’ zu setzen, sei die Aufweisbarkeit
von Zeitpunkten zuzgegeben.

(...)

Zwei Zeitpunkte A, B, von denen A der frühere ist, begrenzen eine
Zeitstrecke AB; in sie hinein fällt jeder Zeitpunkt, der später als A,
aber früher als B ist. Der Erlebnisgehalt, welcher die Zeitstrecke
AB erfüllt, könnte ‘an sich’, ohne irgendwie ein andrer zu sein als
er ist, in irgend eine andere Zeit fallen; die Zeitstrecke, die er dort
erfüllen würde, ist der Strecke AB gleich.5

Note the similarity with Brouwer’s concept of the combination discrete and
continuous which we observed in the previous chapter. From available evidence
we know that Weyl was in the possession of the English translation of Brou-
wer’s inaugural address from 1912, in which this inseparable combination is
stressed. He may also have read Die mögliche Mächtigkeiten (1908) in which
also the ‘Zeitstrecke’ between two events as a matrix for ‘Zeitpunkte’ is under-
lined.6 Weyl then posed the question whether we can use this concept of ‘points
in a time continuum’ and their mutual relation of ‘earlier’ and ‘later’ as the
foundation of the real number concept, and thus, whether this time continuum
can serve as a model for the mathematical continuum of real numbers, and he
claimed:

Gewiß: das anschauliche und das mathematische Kontinuum decken
sich nicht; zwischen ihnen ist eine tiefe Kluft befestigt. Aber doch
sind es vernünftige Motive, die uns in unserm Bestreben, die Welt
zu begreifen, aus dem einen ins andere hinübertreiben;

(...)

Beschränken wir uns hinsichtlich des Raumes auf die Geometrie der
Geraden! Will man nun doch versuchen, eine Zeit- und Raumlehre
als selbständige mathematisch-axiomatische Wissenschaft aufzurich-
ten, so muß man immerhin folgendes beachten.

1. Die Aufweisung eines einzelnen Punktes ist unmöglich. Auch
sind Punkte keine Individuen und können daher nicht durch ihre
Eigenschaften charakterisiert werden. (Während das ‘Kontinuum’

5[Weyl 1918], page 67.
6Note that Brouwer’s thesis On the Foundations of Mathematics was not yet available in

any other language except Dutch.
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der reellen Zahlen aus lauter Individuen besteht, ist das der Zeit-
oder Raumpunkte homogen.)7

Note the terminology: the continuum of time- or spacepoints is ‘homoge-
neous’, which has to be understood in the sense of ‘having no gaps’, i.e. in
the Brouwerian meaning of ‘flowing’. But the conclusion is clear: the intuitive
continuum of space and time is not composed of individual points which can
be indicated one by one, contrary to the ‘continuum’ of real numbers. The
quotation-marks around the term continuum serve to stress that, for Weyl, the
totality of the real numbers, even though it has the properties of denseness
and perfectness, is not a continuum in the intuitive sense, like the continua of
time and space are. But this intuitive continuum has to be transformed into a
measurable continuum, and therefore the following formulation is offered:

2. Das Stetigkeitsaxiom muß dahin formuliert werden, daß mit
Bezug auf eine Einheitsstrecke OE jedem Punkt P eine reelle Zahl
als Abzisse entspricht und umgekehrt.

3.1.4 Otto Hölder

Hölder published in 1924 Die mathematische Methode.8 In this book he dis-
cussed, on the one hand, in Part I, vierter Abschnitt, the ‘points of a line’ when
dealing with mathematical continuity:

(§ 33) (...) der Begriff einer zusammenhängende Linie. Er kann
dadurch definiert werden, daß eine Linie, in der Weise auf eine ge-
radlinige Strecke bezogen wird, daß jedem Punkte der Strecke ein
einziger Punkt der Linie zugeordnet erscheint; (...)

On the other hand, in Part III, Zusammenhang mit der Erfahrung, § 134, Apri-
orisches und aposteriorisches Wissen, he stated:

Da ferner, was die Hauptsache ist, gewichtige innere und äussere
Gründe für die Annahme des Kontinuums sprechen, so kann ich
kein Hindernis sehen, die Idee des einfachen Kontinuums als eine
unbedingte (a priorische) Form anzusehen, welche die Bedingung
für gewisse Arten der Erkenntnis darstellt.

with, in a footnote, the addition:

Die Gedanke, das Kontinuum einfach als gegeben anzunehmen, hat
neuerdings auch unter den Mathematikern an Boden gewonnen, wie

7Op. cit. page 70 – 73.
8[Hölder 1924]; full title: Die mathematische Methode: logisch erkenntnistheoretische Un-

tersuchungen im Gebiet der Mathematik.
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aus einer 1920 in Nauheim bei der Mathematikerversammlung gepflo-
genen Diskussion hervorzugehen scheint.9

In §§ 75 and 76 the irrational numbers are studied; they are defined with
the help of Dedekind cuts. At the end of § 76 Hölder wrote:

Bedenkt man, daß die Definition jedes Schnittes ein besonderes Ge-
setz erfordert, so bedeutet der Begriff der Gesamtheit aller Schnitte,
daß wir glauben, uns die Gesamtheit aller der Gesetze, die noch einer
gewissen Forderung entsprechen, denken zu können. Eine solche
gänzlich unbestimmte Gesamtheit dürfte aber einen unzulässigen Be-
griff vorstellen; demgemäß bin ich der Ansicht, daß das Kontinuum
nicht rein arithmetisch erzeugt werden kann.

with, again in a footnote, the addition:

Ich habe dies bereits im Jahre 1892 ausgesprochen (vgl. Göttingische
gelehrte Anzeigen, 1892, S 594). H. Weyl in seiner Schrift: Das Kon-
tinuum, kritische Untersuchungen über die Grundlagen der Analysis,
1918, vertritt sehr entschieden eben diese Ansicht.

But there seems to be a fundamental difference between Hölder and Weyl:
for Hölder the continuum is composed of points, but cannot in any way be
constructed from points. It is presented to us as a totality.

3.1.5 Émile Borel

Émile Borel presented in his Éléments de la Théorie des Ensembles (1949) in
chapter II a definition of the continuum in terms of Dedekind cuts. For him the
line is composed of points. In § 11 he remarked about the continuum and its
cardinality:

Nous définissons la puissance du continu comme étant celle de l’ensemble
de points d’un segment de droite, par exemple du segment [0, 1]

and the title of § 12 reads Le continu n’est pas dénombrable.
Note, on the other hand, that Borel, as a French intuitionist, required for

a mathematical object a finite definition and, for that reason, did not accept
infinite choice sequences as representations for arbitrary non-lawlike irrational
numbers.10

9Clearly referring to Brouwer, who, at the Nauheim conference of 1920, presented his
lecture Does every real number have a decimal expansion? ([Brouwer 1921a], in English
[Brouwer 1921b], also published in the Mathematische Annalen, [Brouwer 1921c]) Weyl was
also present at this conference, but he lectured on a physical subject.

10[Borel 1950], page 160.
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3.1.6 A modern sound

Finally, a modern dictionary like The Collins Dictionary of Mathematics (edi-
tion 1989) defines the continuum simply as the set of all real numbers.

This is the concept of the continuum that eventually survived till the present
time: the continuum as the set of all real numbers, or the set of all Dedekind
cuts. This is exactly the continuum concept which was contested by Brouwer in
1907. For him the continuum is intuitively given to us, as the flowing medium
of cohesion between two events, not itself consisting of points (events) but an
inexhaustible matrix for a continued insertion of points. Originally there are no
points on the continuum, we can construct points on it, or indicate a place on
it, which we call ‘indicated point’.

As a conclusion of this introduction, we may state that, firstly, there is in the
history of mathematics no communis opinio about the nature of the continuum,
and, secondly, Brouwer’s view reminds us of what Aristotle already had stated
in the Physics.

Brouwer’s continuum concept was explained in the previous chapter; in the
next section we summarize the properties of the intuitive continuum which result
from that concept, and which are presented in his dissertation. Also we try to
piece together from the notebooks the development of Brouwer’s ideas on the
intuitive and the measurable continuum. We must, however, be aware of the
fact that in the notebooks the concepts of the (measurable) continuum and of
sets (which are to be discussed in chapter 4 of this dissertation) are frequently
too interwoven to keep them strictly separate.

3.2 A few other publications by Brouwer

The first seven pages of Brouwer’s dissertation presented us the intuitive con-
tinuum as the continuous flow of time, of which we become aware by two well-
separated sensations. Divested of all quality, this combination event-connecting
medium-event gives us the numbers one and two, and this two-ity can be seen
as a new single thing, to which another well-separated event can be added as a
third, giving the number three, and so on.

Before going into the details of the properties of the intuitive continuum as
they were further elaborated by Brouwer, we will first briefly summarize the
content of three other papers (partly of much later date) on this concept, as a
first indication of where Brouwer’s new ideas and their elaborations ultimately
were leading to.

It will be obvious that in Brouwer’s reply to Mannoury’s opposition during
the public defence of the dissertation, the same concept of the intuitive con-
tinuum was pronounced as in the dissertation. He was, after all, defending his
dissertation. In the previous chapter about the ur-intuition of mathematics we
already referred to this reply, in which Brouwer also clarified the origin of the
continuum concept from the move of time. Brouwer emphasized again that the
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continuum intuition is the intuition of the medium of cohesion between the two
events. There is first thing – medium of cohesion – second thing, or, literally
translated primum – continuum – secundum.

In an earlier quoted (see chapter 2) fragment from his Inaugural lecture (In-
tuitionism and Formalism, 1912) the ur-intuition of mathematics is introduced
in similar wording as in the dissertation:

This neo-intuitionism considers the falling apart of moments of life
into qualitatively different parts, to be reunited only while remaining
separated by time, as the fundamental phenomenon of the human
intellect, passing by abstracting from its emotional content into the
fundamental phenomenon of mathematical thinking, the intuition of
the bare two-oneness.11

This ur-intuition gives rise to the system of the natural numbers (finite
ordinal numbers) and, as a natural corollary, also to the smallest infinite ordinal
number ω. Immediately after that, on the same page, it is stated:

Finally this basal intuition of mathematics, in which the connected
and the separate, the continuum and the discrete are united, gives
rise immediately to the intuition of the linear continuum, i.e. of the
‘between’, which is not exhaustible by the interposition of new units
and which therefore can never be thought of as a mere collection of
units.12

Also in the Rome lecture (1908) it is presented in the same formulation and with
the same content (see above, on page 42):

Das Erste und das Zweite werden zusammengehalten, und in dieser
Zusammenhaltung besteht die Intuition des continuierlichen (con-
tinere = zusammenhalten).

We discussed this in chapter 2, but it is summarized here to stress the
contrast with Brouwer’s later views on the continuum and its decimal represen-
tation. For that purpose we present the following quotes from the Begründung
papers (1918–1919).13 In this paper the new set concept, that of spread (in

11[Brouwer 1912]; see [Benacerraf and Putnam 1983], page 80 for the English translation by
A. Dresden; or, in Dutch, [Dalen 2001], page 182. Dit neo-intüıtionisme ziet het uiteenvallen
van levensmomenten in qualitatief verschillende delen, die alleen gescheiden door de tijd zich
weer kunnen verenigen, als oergebeuren in het menselijk intellect, en het abstraheren van
dit uiteenvallen van elke gevoelsinhoud tot de intüıtie van twee-enigheid zonder meer, als
oergebeuren van het wiskundig denken.

12Eindelijk is in de oerintüıtie der wiskunde, waarin het samengehoudene en het gescheidene,
het continue en het discrete verenigd liggen, mede onmiddellijk aanwezig de intüıtie van het
lineaire continuüm, d.w.z. van het ‘tussen’, dat door inschakeling van nieuwe eenheden zich
nooit uitput, dus ook nooit als verzameling van eenheden zonder meer kan worden gedacht.

13Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Drit-
ten, [Brouwer 1918] and [Brouwer 1919a]. Further clarification and discussion on this founda-
tional paper follows on page 133, in which section the quotes will be presented and discussed
more extensively.
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German: Menge), is defined, and one easily might get the impression that with
the development of this concept, Brouwer is giving up the notion of the intuitive
continuum from the dissertation. But this impression will turn out to be a false
one.

Der Mengenlehre liegt eine unbegrentzte Folge von Zeichen zu Grun-
de, welche bestimmt wird durch ein erstes Zeichen und das Gesetz,
das aus jedem dieser Zeichen das nächstfolgende herleitet. Unter
den mannigfachen hierzu brauchbaren Gesetzen erscheint dasjenige
am geeignetesten, welches die Folge ζ der Ziffernkomplexe 1, 2, 3, 4,
5, ... erzeugt.

Eine Menge ist ein Gesetz, auf Grund dessen, wenn immer wieder
ein willkürlicher Ziffernkomplex der Folge ζ gewählt wird, jede dieser
Wahlen entweder ein bestimmtes Zeichen, oder nichts erzeugt, oder
aber die Hemmung des Prozesses und die definitive Vernichtung
seines Resultates herbeiführt, wobei für jedes n nach jeder unge-
hemmten Folge von n−1 Wahlen wenigstens ein Ziffernkomplex an-
gegeben werden kann, der, wenn er als n-ter Ziffernkomplex gewählt
wird, nicht die Hemmung des Prozesses herbeiführt. Jede in dieser
Weise von der Menge erzeugte Zeichenfolge (welche also im allge-
meinen nicht fertig darstellbar ist) heisst ein Element der Menge.
Die gemeinsame Entstehungsart der Elemente einer Menge M wer-
den wir ebenfalls kurz als die Menge M bezeichnen.14

The simplest example of a spread is one, in which the basic collection is the
set of the natural numbers, and in which on every node the sign is composed
of the same natural number as the one chosen from the basic collection. In
this representation and after removal of every finitely terminating branch, the
elements of the set consist of infinite sequences of natural numbers.

If, then, we allow at every node every choice15 from the system ζ of the
natural numbers, we obtain the set C:

Ein zweites Beispiel einer unendlichen Menge bildet die Menge C der
unbeschränkt fortgesetzten Folgen von zu ζ gehörigen Ziffernkom-
plexen, deren Kardinalzahl wir mit c bezeichnen werden.16

This can be interpreted in more than one way as a representation of the
open or half open set of the real or the irrational numbers between 0 and 1,
as Brouwer explained on the same page. Also on page 17 of this paper it is
expressed as follows:

14[Brouwer 1918], page 3; see also [Brouwer 1975], page 150.
15This ‘every’ is of course in its most basic form limited to the representation of the number

system, with which we operate. In the binary system the number of choices is two, in the
decimal system it is ten, and we are talking about a finite spread in case of a binary or decimal
representation of the set C of the real numbers.

16Begründung paper I, [Brouwer 1918], page 9 or [Brouwer 1975], page 156.
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Ein Beispiel einer (im weiteren Sinne) überall dichten, perfekten
Menge liefert die Menge C, geordnet auf Grund der natürlichen
Rangordnung der von ihr erzeugten reellen Zahlen zwischen 0 und
1.17

Hence the set C is not itself the set of the reals, but can be interpreted as
such. Apparently, in 1918 Brouwer was of the opinion that the ‘continuum of
the set of the real numbers’ on the open interval (0, 1) is an ordered set. In 1923
he proved this theorem to be wrong.18

It is important to note that it is now possible to speak of arbitrary elements
of the set C, hence of an arbitrary real number, as the continuation of this quote
on the same page shows:

Seien nämlich a1...an, b1, b2... und a1..an, c1, c2... (b1 > c1) zwei
willkürliche Elemente von C ...

We draw attention to the fact that in the second Begründung paper19 ‘a point
on a line or on a plane’ is neither constructed according to some algorithm, nor
is it given in the form of a sequence of signs (from ζ); it consists instead of a
non-terminating choice sequence of nested intervals, defined with the help of
the rational η-scale, and which sequence remains fundamentally unfinished. In
fact in this paper such a set of nested intervals is defined in the form of the
ebene Punktmenge, but the definition also applies to n dimensions or to one
dimension:

In derselben Weise, wie Punkte der Ebene und ebene Punktmengen,
können Punkte des n-dimensionalen Raumes und n-dimensionale
Punktmengen definiert werden.20

with the following clarification in a footnote on the next page:

Die Bezeichnung ‘Punkt der geraden Linie’, bzw ‘Punkt des n-di-
mensionalen Cartesischen Raumes’ ist schon S. 10 des ersten Teiles
einmal gebraucht worden, aber in einem von dem hier definierten
verschiedenen Sinne.

the difference being, that in the first paper a ‘point’ is an infinite sequence
of elements of ζ, whereas in the second paper ‘points’ are defined as infinite
sequences of nested intervals.

One might indeed get the impression that Brouwer has abandoned his con-
cept of the continuum as the result of the ur-intuition. But he never retracted
his view as expressed in the dissertation and in the notebooks, viz. that the
continuum is intuitively presented to us; neither did he mention the concept in

17Ibid, page 164.
18See page 105.
19Theorie der Punktmengen, [Brouwer 1919a].
20On the first page of [Brouwer 1919a]; see [Brouwer 1975], page 191.
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its explicit form any more, except for a remark at the end of the first section
of the second Vienna lecture, in which the validity of the ur-intuition of the
two-ity is stressed and, in addition to that, a small but important handwritten
note in that lecture, both showing that he, in fact, held on to his old view of an
intuitively given continuum. This handwritten note is in the form of a reminder,
that it should be added ‘at the end of section I of the continuum lecture, that,
nevertheless, the continuum is still the immediate result of the ur-intuition’ (see
page 74 for the relevant quote).

Hence Brouwer distinguished between the intuitively given continuum as the
connecting medium between two separated events, and the ‘full continuum’ (as
he named it in the second Vienna lecture) of the set of the real numbers between
0 and 1, represented in the form of unfinished choice sequences. We must keep
in mind this distinction when reading the Begründung papers and the second
Vienna lecture. In the Begründung paper I, page 9, the set C was defined as the
‘unbeschränkt fortgesetzten Folgen von zu ζ gehörigen Ziffernkomplexen, deren
Kardinalzahl wir mit c bezeichnen werden’, but Brouwer was clearly referring
to a representation of the real numbers on the unit line segment, and not to the
intuitive continuum.21 Also in the second Vienna lecture Brouwer spoke of the
‘finished elements of the reduced continuum’ and of the ‘unfinished elements
(choice sequences) of the full continuum’.

Brouwer may have been aware of a possible confusion in the whole of the
continuum concept, and perhaps for that reason the intuitive continuum is ex-
plicitly restored in all its dignity in the last paragraph of the first section of this
second Vienna lecture; in fact it was never abandoned, and it remained the only
ur-intuition on which all of mathematics, including the ‘full continuum of the
unfinished elements’ is founded:

Die Einführung der Mengenkonstruktion, auf welcher also die fertige
überabzählbare Vielfachheit des Kontinuums beruht, bedarf nach
stattgefundener Besinnung auf die mathematische Urintuition der
Zweiheit, welche dem gesamten Intuitionismus zugrundeliegt, keiner
weiteren Besinnung, und impliziert auch keine petitio principii (so
daß die anfangs erwähnte Betrachtung des Kontinuums als reine
Anschauung a priori nach Kant und Schopenhauer22 sich im Lichte
des Intuitionismus im wesentlichen behauptet).23

To stress the content of this quote, but perhaps also to preclude or correct in
a next edition wrong conclusions by the reader, which may very well be caused
by the use of the term ‘continuum’ in the two presented ways, Brouwer added

21Note the similarity with Weyl (page 65), who explicitly stated that the space continuum
is not composed of points, and has to be distinguished from the set of the real numbers of the
unit line interval, which is also emphasized in Brouwer’s dissertation.

22See e.g. [Schopenhauer 1970], Handschriftliche Nachlass III, Reisebuch 1819, § 33 and
§ 85. See also [Schopenhauer 1977], Parerga und Paralipomena II, § 29, 30 about respectively
time and space as a priori Anschauungsformen.

23[Brouwer 1930b], page 6; see also [Brouwer 1975], page 434.
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the handwritten remark in the margin of his own copy of the second Vienna
lecture:

Add at the end of section I of the continuum lecture that, neverthe-
less, the continuum is still the immediate result of the ur-intuition,
just as with Kant and Schopenhauer.24

As a conclusion from the text of the beginning of the dissertation and of the
discussed parts of the other publications, we can now state the following:
One should distinguish between the intuitively given continuum based on the
ur-intuition, and the ‘full continuum’ of the unfinished elements of the unit
segment. The latter depends for its existence on the former, since only the ur-
intuition makes the existence of the general concept of the continuum possible;
in other words, the continuum has to be a familiar intuition-based concept be-
fore we can ‘simulate’ it by defining arbitrary elements on it by means of choice
sequences. This latter act is called by Brouwer the intuitive initial construction
of mathematics (die intuitive Anfangskonstruktion der Mathematik). In a let-
ter to Fraenkel, dated January 12 1927, Brouwer even stated that this initial
construction was already present in the dissertation.25 For a further discussion
of this claim, see page 117 and page 156.

On the intuitive continuum, which is turned into a measurable continuum,26

an arbitrary point P can be approximated by an infinite sequence of nested in-
tervals, determined by rationals of (limited) free choice. Conversely, a freely cre-
ated infinite choice sequence of nested intervals, with a width becoming smaller
than any positive rational, defined on a measurable continuum, determines a
point P , in the sense that not the limit of the sequence designates the point,
but the always unfinished sequence itself is the point.27 Apparently, Brouwer
was looking for a clear presentation of these concepts by means of a lucid and
concise terminology. Note that the single term ‘continuum’ is always referring
to the intuitive continuum, which remains the most fundamental basis for all
mathematics. To designate the infinite and everywhere dense sets on the intu-
itive continuum, an additional term is added, giving the ‘reduced continuum’
of the denumerable set of finished and well-defined elements (e.g. the η scale),
and the ‘full continuum’ of the non-denumerable set of the unfinished elements
of choice sequences which act as a representation of the set of the reals.

The set of all real numbers is henceforth (i.e. after 1918) defined with the
help of spreads, and the spread in which on every node all choices are available,
and which stands for the ‘full continuum’ of the real numbers, is now called the
universal spread or the perfect spread (a term of Heyting).

24In continuum voordracht, aan het slot van I toevoegen, dat het continuum dus toch weer
uit de oerintüıtie onmiddellijk gegeven is, juist als bij Kant en Schopenhauer.

(This copy is kept in the Brouwer archives.)
25See [Dalen, D. van 2000], page 289.
26See the next section of this chapter.
27After all, if the limit of the sequence would define a point, then the continuum would be

(or become) atomic again.
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3.3 Properties of the intuitive continuum

After this preview on future developments, we will now return to the discussion
in the dissertation, and we will present what seems to us, also in the light
of the mentioned papers from Brouwer’s hand, a proper interpretation of the
construction of a scale on the intuitive continuum in order to transform it into
a measurable continuum.

On page 8 and 9 of the dissertation, properties of this intuitive continuum
are formulated; these properties are valid for the time continuum and for the
straight line (as well as for multidimensional space). Several of the following
properties merit a further discussion. They are not all of equal importance, but
we will mention them all for completeness sake:

The construction of the everywhere dense scale

1. There is neither a first, nor a last point in a sequence of points that can be
constructed on the intuitive continuum by means of the ur-intuition of the two-
ity; a sequence of points can de extended to the left and to the right, forming
together a sequence of ordertype of the integers.

The statement that there is no first point in a sequence of points on the
continuum is not further explained by Brouwer and might seem contradictory.
After all, there is a first event which is labelled as 0 or as 1. We discussed this
dilemma in the previous chapter (see page 48) and we suggested the following
interpretation: we can label the second event as 0 and the third as 1 etc. The
interpolated point between the first and the second we may call then −1, the
interpolated point between the first event and −1 we then call −2 etc. By iter-
ation of this process, the first event in this interpretation then gets informally
the status of −∞. By repeated and continued interpolation between the con-
structed numbers on this scale of integers, the positive and negative rationals
can be constructed. But this, again, is an interpretation, and more interpreta-
tions are possible of Brouwer’s mere statement that the sequence of points on
the intuitive continuum contains neither a first point nor a last point.

2. Every interval on the intuitive continuum is always divisible by the in-
terpolation of a new point, resulting in the ordertype η of the rational numbers
in a dual representation. This was also dealt with in our chapter 2. Brouwer
added as a handwritten remark in his corrected version of the dissertation, that
this procedure may be called the ‘split’ of the intervals.28

3. At every stage of this ‘split’ process there are always points not reached;
we can select such a point in advance and this point can even be approximated
arbitrarily close by some infinite dual fraction:

We can even arrange the construction in such a way that the ap-
proximation of a point by an infinite dual fraction is given by an

28De ‘tweedeling’ der intervallen.
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arbitrarily given law of progression, (...)29

The expression ‘arbitrarily given law of progression’ comes across in this
context as a ‘contradictio in terminis’, or at least as a confusing concept. Does
it intend to say that any law of progression will do, or that there is just one law
which prescribes an arbitrary free choice for every next term; in other words,
does it mean that we have a free choice for any law of progression or that we
have a free choice at every next dual (or decimal) place? It seems that both
conditions satisfy Brouwer’s intention; there is only one strict requirement: a
given point has to be approximated arbitrarily close, which can be specified by
the condition that between the point concerned and the last term of the dual
fraction alway more ‘dual places’, i.e. extensions of the dual fraction, can be
inserted without ever reaching the point. Now, one can of course imagine that
always new points are inserted between the last one and the point concerned,
so that one approximates the point arbitrarily close (or that one still remains
an appreciable distance removed from it), but these words and the accompa-
nying picture unavoidably involve this process to take place on an everywhere
dense and measurable space- or time continuum, which can hardly be reconciled
with the ‘awareness of the between’ as the newly inserted element between two
consecutive events (two constructed elements), and therefore a closer analysis
is required.

For a proper solution to these apparent dilemmas of ‘arbitrarily given laws
of progression’ and of ‘approximation of a point’, see the items 4 and 7 of this
section. Also the selection beforehand of a point which has to be avoided (or a
segment which has not to be penetrated) asks for an interpretation. See for this
page 81 and note that in that argument a beforehand assumed measurability of
the continuum is avoided.

4. For the moment we assume that we have indeed constructed a scale of
order type η on the intuitive continuum, on which every point, not belonging
to that scale, can be approximated arbitrarily close. We noticed already that
the resulting scale needs not to be everywhere dense on the continuum, that
is, there may remain unintended ‘open segments’ after ω steps of interpolation.
How this is possible, and how this can be cured, will be discussed under item 7.

But the quote given in item 3 continues as follows:

(...), though the continuum with the scale constructed in this way
differs in no respect from a continuum on which the scale is con-
structed in complete freedom. Conversely we see that for any scale
which has been constructed on the continuum, there exists a point
corresponding to any conceivable law of progression.30

29(dissertation, page 9, 10) (...) we kunnen zelfs zorgen, dat de benadering van een punt door
een oneindige duaalbreuk volgens een willekeurige denkbare voortschrijdingswet plaatsheeft;

30(dissertation, page 10) (...) terwijl dan toch het continuüm met schaal, op deze wijze
geconstrueerd, in niets zich onderscheidt van een continuüm met geheel vrij geconstrueerde
schaal; omgekeerd leiden we hieruit af, dat voor een eenmaal op het continuüm geconstrueerde
schaal voor elke denkbare voortschrijdingswet een punt bestaat.
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We observe that Brouwer used the expression ‘law of progression’ and not
‘law of approximation’, but from the context it is obvious that Brouwer had in
mind sequences, converging to a ‘point’.

More important is the contrast that Brouwer created between the dual scale,
constructed in the given way by the interpolation of a point on every sub-
segment, and a ‘freely constructed’ scale, without giving any further clarification
or explanation of the meaning of ‘freely’.

The construction of the dual scale of order type η seems to be a free con-
struction in the sense that, when constructing the scale, the first two points,
i.e. the first two natural numbers one and two (or in a more modern notation
zero and one) determine the unit measure. The first interpolated point is by
definition the point a half (or, on the dual scale, the point 0.1), and this point
is not placed somewhere halfway, since there is no ‘halfway’ yet between zero
and one at this stage of the construction; there is only the connecting medium
between the two sensations, experienced as a new sensation (see page 46). This
experienced new sensation becomes the interpolated point and therewith defines
or creates the halfway point.

What more freedom can there be in the construction of a scale on the con-
tinuum?

There is, however, one restriction or one lawlike rule in Brouwer’s sketched
scale construction that limits its ‘complete freedom’: the selection beforehand
of a point P , and subsequently taking care that this point is avoided in the
construction, and even (see the quote above) arrange things in such a way that
the point is, by some law, approximated arbitrarily close by points of the scale.
This is a restriction in the freedom of the construction, and Brouwer must have
referred to this in the quoted paragraph, and he contrasted it with a scale,
constructed in complete freedom.

That the resulting scale differs in no respect from a ‘freely constructed’ scale,
is not yet further explained at this place, but will be clarified on the same page
under the measurable continuum, when the resulting scale is made everywhere
dense (see item 7 on page 81).

We remarked already that if the ‘awareness of the between’ is the inter-
polated point, then it is hard to see how we can avoid a certain point on a
continuum. Intuitively such an ‘avoidance’ can only be imagined when operat-
ing on a completed measurable continuum (see, again, item 7).

5. A sequence approximating a point must be considered as partially un-
known:

However, we can never consider the approximating sequence of a
given definite point as being completed, so we must consider it as
partially unknown.31

First of all we note that Brouwer, in his corrected version of the disserta-
31(dissertation, page 10) We kunnen de benaderingsreeks van een bepaald aangewezen punt

evenwel nooit af denken, dus moeten we haar als gedeeltelijk onbekend beschouwen.
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tion, added a footnote to the expression ‘given definite point’: ‘Take e.g. the
number π.’32 This new footnote makes the quote even more difficult in its in-
terpretation. On a constructed scale a lawlike sequence, i.e. a sequence which
evolves according to a fixed and known law, and which is convergent and is
approximating an earlier chosen point, as in the case of the expansion of π, is
certainly never finished, but we may consider it as completely known, just as
we may consider the sequence of natural numbers N as completely known but
never finished. Moreover, a fundamental sequence, built up from a first element
and a repeated application of the same algorithm (e.g. adding the successor
element in the case of N, or a more complicated algorithm in the case of π or√

2), may be understood as ‘finished’ in the sense that for every natural number
n the nth term is known, or ‘the nth term is individualized’, or ‘the sequence is
individualized’.33

An approximating sequence, however, which is constructed by free choice,
is never finished and partially unknown, since only the finished part is known,
but this type of sequence appears as a mathematical object only in Brouwer’s
later work.

In regard to lawlike sequences, there are in the dissertation clear indications
as to their being fully known. On page 142 and 143, the first paragraph under
Ad 20 reads as follows:

In the first chapter we have seen that there exist no other sets than fi-
nite and denumerably infinite sets and continua; this has been shown
on the basis of the intuitively clear fact that in mathematics we can
create only finite sequences, further by means of the clearly con-
ceived ‘and so on’ the order type ω, but only consisting of equal
elements; (consequently we can, for instance, never imagine arbi-
trary infinite dual fractions as finished, nor as individualized, since
the denumerably infinite sequence of digits cannot be considered as
a denumerable sequence of equal objects), and finally the intuitive
continuum (by means of which we have further constructed the ordi-
nary continuum, i.e. the measurable continuum), but no other sets.34

Hence a sequence of the order type ω, constructed according to a simple algo-
rithm, i.e. with the help of the infinite repetition of one and the same object

32[Dalen 2001], page 44.
33See above, on page 50, the quote from the notebookpage VIII–24.
34We hebben in het eerste hoofdstuk gezien, dat er geen andere verzamelingen bestaan,

dan eindige en aftelbaar oneindige, en continua; hetgeen is aangetoond op grond van de
intüıtieve waarheid, dat wij wiskundig niet anders kunnen scheppen, dan eindige rijen, verder
op grond van het duidelijk gedachte ‘enzovoort’ het ordetype ω, doch alleen bestaande uit
gelijke elementen, (zodat we ons b.v. de willekeurige oneindige duaalbreuken nooit af, dus
nooit gëındividualiseerd kunnen denken, omdat het aftelbaar oneindige aantal cijfers achter
de komma niet is te zien als een aftelbaar aantal gelijke dingen), en tenslotte het intüıtief
continuüm, (met behulp waarvan we vervolgens het gewone continuüm, het meetbaar con-
tinuüm, hebben geconstrueerd). (The third chapter of the dissertation, from which this quote
is drawn, will be further discussed in chapter 6.)
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or operation,35 is never finished, but is ‘individualized’, while the arbitrary dual
fraction can neither be imagined to be finished, nor to be individualized.

Clearly, the idea of ‘free choices’ is already present in the quoted part in
a very rudimentary form (in fact merely to underline the contrast with an al-
gorithmic sequence), and not yet worked out as an extremely useful means in
the construction of sets and as an efficient way to handle the continuum of the
real numbers without the need for an underlying matrix in order to make the
construction of points possible.

In trying to draw a conclusion, in which we do justice to the quoted fragment
from Brouwer’s dissertation, which amounts to ‘never completed, hence partially
unknown’, we attempt to interpret the concept ‘partially unknown’.

For lawless choice sequences things are obvious: the unfinished part (the
unchosen decimal places) are unknown on principle.

For a lawlike expansion like π or
√

2, or for the value of a recursive function,
the decimal places of the expansion or the values of the function can be computed
for any value of n. But, in view of the fact that Brouwer explicitly mentioned
π as an example, one might claim that, as long as the value for a given n is not
computed, it must be considered as still unknown, even if the rule is known and
we know it to be individualized in advance. Hence ‘partially unknown’ can have
two meanings: 1) partially unknown on principle and not individualized; only
a free choice makes it known and no law prescribes this choice, and 2) partially
unknown ‘for the time being’, but potentially known; the term is in principle
individualized, only the computation has yet to be made. Brouwer must have
had this second meaning in mind when mentioning the given example of π.36

However, a different interpretation, in which we also do justice to other
quotes from Brouwer’s dissertation or from the notebooks, is still possible; see
for a further and more comprehensive discussion of this topic chapter 8, page
320, when discussing the existence of the actual and potential infinite, either or
not lawlike.

6. According to Cantor the totality of points on the continuum is not denu-
merable, but Brouwer claimed that we may not speak of the totality of points
of the continuum. The most one can speak of is the totality of the already
constructed points on the continuum at any specific time, and this quantity is
finite, potentially denumerably infinite or, at the most, denumerably infinite un-
finished (this latter to be understood metaphorically; it expresses an intention
or a process; see chapter 7).

7. So far, the presented construction of a scale on the continuum does not
give us the certainty that the result is everywhere dense, since, as we saw, we
can in the construction of the scale easily avoid a point or even a whole segment.

35See the footnote on page 143 of Brouwer’s dissertation.
36Brouwer’s ‘partly unknown’ should not be confued with Wittgenstein’s ‘on following rules’.

See [Wittgenstein 1984], §185 – 242. See for comment and analysis on this [Kripke 1982].



80 CHAPTER 3. THE CONTINUUM, INTUITIVE AND MEASURABLE

Therefore Brouwer added the following:37

(...) but we agree to contract every segment not penetrated by the
scale into one point, in other words, we consider two points as differ-
ent only when their approximating dual fractions differ after a finite
number of digits.

The details of this construction are, again, not elaborated in the dissertation,
but we can imagine it to take place in the following way:

The algorithm of the ‘splitting of intervals’, according to which the scale η is
constructed on a line segment, may, as Brouwer claimed, avoid a specific point,
or we may even discover after ω steps that a certain segment is left empty. In
that case one can easily verify that, in the process of repeated subdivision of an
interval of which the empty segment concerned is a sub-interval, we can proceed
in such a way that the dual fractions of the boundaries after ω interpolations
will not differ after any finite number of digits. To obtain this result, we proceed
in the following way:

Let A be the segment in the interval (0, 1) which has to remain void of
interpolated points; so after any step the newly inserted point will not be in A.
The first interpolated point is called 0.1 and is, say, to the left of A, leaving
A in the subsegment (0.1, 1). (In the following argument we will only consider
the newly interpolated points in the segment containing A.) We then prescribe
the next interpolated point in this segment (0.1, 1), which is called 0.11, to be
to the right of A, leaving A in the subsubsegment (0.1, 0.11). We note that the
first dual place of the two boundaries of the segment containing A are equal and
will remain so in the further development. The next interpolated point in the
segment (0.1, 0.11) is called 0.101, and is put again to the left of A, resulting in
A to be in the sub3-segment (0.101, 0.11). The next point 0.1011 in this segment
is again to the right of A, leaving A in the sub4-segment (0.101, 0.1011). The
first three dual places of the boundaries of the segment containing A are now,
and will remain, equal during the continued construction.

r r r u u r r rq q q qqq0 0.1 0.101 A 0.1011 0.11 1� -

Proceeding in this way of alternating the insertion of new points left and
right of the segment, thereby approximating its boundaries arbitrarily close,

37(dissertation, page 10) (...) maar we spreken af, dat we elk segment, waarin de schaal
niet doordringt, tot een enkel punt denken samengetrokken, m.a.w. we stellen twee punten
dan alleen verschillend, als hun duale benaderingsbreuken na een eindig aantal cijfers gaan
verschillen.

(Note that in Brouwer’s later terminology the term ‘difference’ in this sense is replaced by
the more positive term ‘apartness’.)
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while avoiding the segment itself including its boundaries, we obtain the required
result, since at every subsequent combination of adding one point to the left and
one to the right of A the number of equal dual places increases by two. Hence,
in the approximation of A from the right and from the left, the dual fractions
will after ω steps not differ after any finite number of digits.

A segment satisfying these conditions is then contracted into one point by
identifying its two boundaries.

It will be clear that this construction does not satisfy the intuitionistic stan-
dards of later years, since the principle of the ‘tertium exclusum’ is applied, in
the sense that the segment A is determined to such an extent that every next
interpolated point can be clearly identified to be either to the left or to the right
of A.

One question remains to be answered: how can we select and indicate on
the continuum a point P which is to be avoided, or a segment which is not to
be penetrated under the sketched interpretation in which ‘the awareness of the
between is the interpolated point’, hence without having a scale to mark these
points. That is, how can we indicate points on an intuitive continuum?

The most obvious way seems to be to select the first interpolated point (or
any point after a finite number of interpolations) as the point P to be avoided,
and e.g. the first two points (or any two consecutive points after a finite number
of interpolations) as defining the interval not to be penetrated, and start (or
continue) the naming of new points only after this ‘point-or-interval-defining’
selection.

The measurable continuum and the Bolzano-Weierstrass theorem

If then, the text of the dissertation continues on page 11, we select an arbitrary
point as zero-point, the scale has turned the continuum into a measurable con-
tinuum. In order to be able to measure a certain distance from the zero-point to
a given point, we also need a unit of distance. Brouwer does not speak explicitly
of a unit of distance at this place in his dissertation, but it is obvious that the
first two points, the points ‘one’ and ‘two’ (or ‘zero’ and ‘one’) are in a ‘natural
way’ determining the unit distance, and this distance is made to be equal to
the distance between any two consecutive points in the construction of N by
another free act of the constructive mathematician.

The following theorem can now be stated; it is, according to Brouwer, di-
rectly following from the measurability of the continuum:

From the measurability we conclude that every denumerably infinite
set of points, lying in the segment determined by two points as its
endpoints, has at least one limit point, i.e. at least one point such
that on at least one of its sides in every segment contiguous to it
there are other points of the set.38

38(dissertation, page 11) Uit de meetbaarheid leiden we af, dat elk aftelbaar oneindig aantal
punten, gelegen binnen een door twee punten begrensd segment, minstens één grenspunt
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Brouwer’s argumentation for this theorem (known as the Bolzano-Weierstrass
theorem) is the following: suppose the theorem does not hold, i.e. there is no
limit point, then the set of intervals defined by consecutive points must have an
infimum which is unequal to zero, hence which is positive; then the bounded
interval would be covered by a finite times this infimum, which is apparently
false since the set of points is denumerably infinite. Hence we have a contra-
diction, so the theorem holds. But we see immediately that the proof is not
constructive and that the method of reductio ad absurdum is applied, as well
as the principle of the excluded third, and therefore the proof will, again, not
satisfy later intuitionistic standards.

A closer and more formal analysis of Brouwer’s argument, which also enables
us to attempt to replace it by a constructive proof, shows that he in fact did the
following: suppose there is no limit point P in the set A of the elements forming
the measurable continuum, defined on the interval [0, 1], hence suppose:

¬∃P∀ε∃x ∈ A(x ∈ Uε(P ))

which is (classically) equivalent to:

∀P∃ε∀x ∈ A(x 6∈ Uε(P ))

so for every point P of A there is an ε such that there is no other point of A in
an open segment Uε(P ) of A, containing P . So

⋃
Uε(P ) = [0, 1], and according

to the Heine-Borel theorem this union has a finite subset, also covering the in-
terval [0, 1]. Hence the interval is covered by a finite number of intervals, each
containing only one point of A, which leads to a contradiction. Therefore there
must be a limit point in the resulting set A. But now we have applied ‘reductio
ad absurdum’ and the ‘tertium non datur’ !

If we attempt to prove it constructively, that is, without using the tertium
non datur, we might proceed as follows:

Take the collection {|x− y||x, y ∈ A ∧ x 6= y}. Suppose now this set has an
infimum ε > 0, so suppose

∃ε∀x, y(x, y ∈ A ∧ x 6= y −→ |x− y| > ε)

Then there is a minimum in the set of all distances between the points, that is,
only finitely many points are on the interval A, which is a contradiction. So:

¬∃ε∀x, y(x, y ∈ A ∧ x 6= y −→ |x− y| > ε)

or:
∀ε¬∀x, y(x, y ∈ A ∧ x 6= y −→ |x− y| > ε)

But this is as far as we can get, since the next step ∀ε∃x, y¬(...) cannot be made
intuitionistically. Hence the existence of a limit point cannot be proved, and

heeft, d.w.z. minstens één punt zó, dat naar minstens één van beide kanten binnen elk eraan
grenzend segment, hoe klein ook, nog andere punten liggen.
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with good reason, since in intuitionistic mathematics the Bolzano-Weierstrass
theorem is in general not valid, as can be concluded from the following coun-
terexample:
Define the denumerably infinite set {xn}, (n = 1, 2, 3...) on the interval [0, 1] as
follows:

xn = 2−n if at the nth decimal place in the decimal expansion of π the
sequence 0123456789 begins.

xn = 1− 2−n if this is not the case.
Since, at least in Brouwer’s days, this was an unsolved problem (but may

now be replaced by any other unsolved problem in the expansion of π), we can-
not say that either 0 or 1 will be a limit point.

In a footnote to the quoted Bolzano-Weierstrass theorem on page 11, Brou-
wer added that a bounded open segment on the continuum is equivalent to
the whole continuum. Both form the ‘open continuum’, from which the ‘closed
continuum’ can be built in the following somewhat notable way:

Let there be given an open continuum; placing an arbitrary point P on it
results in two open continua left and right of P , e.g. from the open continuum
(0, 1) we can make, by ‘placing the point 1

2 ’ on it, two open continua (0, 1
2 )

and (1
2 , 1). Conversely, from two open continua, one new open continuum can

be built by coupling two endpoints by the insertion of one point between the
two, e.g. by the insertion of the point 1

2 we can glue together the two open
continua (0, 1

2 ) and ( 1
2 , 1) to form the single open continuum (0, 1). In the same

way, Brouwer continued, one can transform an open continuum into a closed
one by identifying the end-points by means of one inserted point. The result
is either a sort of a ‘loop’ which indeed is a closed continuum, or the inserted
point acts as the point-at-infinity or the ‘ideal point’ from projective geometry.
That this last option seems to be the correct one, at least in the year 1907,
follows from the concluding remarks about the group definition of the operation
of addition on page 19 of the dissertation. On this page Brouwer called the
resulting coinciding endpoints the point at infinity.39 Note, however, that the
major part of this concluding remark was deleted in Brouwer’s planned improved
and corrected edition of the dissertation.40

It is a notable procedure indeed; one could of course also have added two
points at both boundaries of an open continuum (that is, added the boundaries
of the open continuum to it), to turn it into a closed one; this certainly is a more
direct and more intuitive idea of defining a closed continuum from an open one,
and this certainly is what one would expect. After all, a closed interval has
two endpoints, both being an element of that interval. One can only guess why
Brouwer used this method of turning an open interval into a closed one. A rea-
son could be one of minimality: he only needed one point for the closure instead
of two. However, Brouwer’s method is not correct from an intuitionistic point
of view: the addition of one point may be insufficient to transform an open

39Oneindigheidspunt.
40[Dalen 2001], page 49.
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continuum into a closed one, since a condition for a closed set is, that every
limit point is element of the set, i.e. every convergent sequence of elements has
a limit element, belonging to that set. Perhaps Brouwer was eventually of the
same opinion, which might then be the reason for deleting the fragment of page
19 during the correction of his copy of the dissertation; a partial deletion of the
footnote on page 11 might then have been forgotten.

After the construction of the measurable continuum, the dissertation con-
tinues with the definition of addition and multiplication on this continuum by
means of transformation groups. Since we are concentrating on the foundational
aspects of the continuum in Brouwer’s work, this group theoretical part will not
be discussed here, just as, for the same reason, the subsequent treatment of
projective geometry is left out.

3.4 The notebooks and the intuitive continuum

Numerous notes and remarks on the intuitive and measurable continuum were
jotted down throughout the nine notebooks. In the following subsections we
have attempted to present a significant selection that might shed light on the
evolution of his ideas about this fundamental topic and that also might illustrate
the results, conclusions, and interpretations from the previous section.

The idea, in the first notebook, of a constructible continuum (from logical
principles alone) is an isolated remark.41 Immediately after that the continuum
appears as intuitively given. Brouwer repeatedly quoted and discussed the ideas
of Poincaré, who felt the need to define a mathematical continuum, in order to
overcome the paradoxes, arising from a physical continuum;42 this paradox was
denied by Borel.43 Evidently, Poincaré had a great influence on Brouwer, but in
Poincaré’s definition of the continuum, as in all his definitions of mathematical
entities, the use of only finitely many words was a strict requirement, whereas
for Brouwer no definition at all was needed for the continuum, since it is intu-
itively given to us.

Brouwer distinguished between the intuitive continuum (intuitively given,
arising from the ur-intuition alone, not constructed, not composed of points)
and the mathematical continuum (or definable continuum, or fictive continuum),
which consists of points, constructed on the intuitive continuum.44 This process
of construction never terminates, but, in the case of the construction of some
lawlike sequence or set (e.g. N or η), its result may nevertheless from a certain
point of view be understood as known, because of the application of one and
the same algorithm ω times. Therefore ‘known’ has to be interpreted in the

41See the next subsection, page 85.
42See page 24.
43[Borel 1909], see also [Borel 1972], volume IV, page 2151.
44We saw on page 73 that after 1919 also the ‘full continuum’ of the real numbers was

introduced.
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sense of ‘potentially known’, and not ‘actually known’ since the sequence is
never finished (see the preliminary remarks on page 77; see page 320 for a more
comprehensive discussion).45

But despite his general views on the intangibility of the intuitive continuum,
as expressed in the notebooks but also in the dissertation itself, Brouwer was
not completely satisfied with a concept that forbade him to speak of ‘arbitrary
irrational numbers’. Especially in the last two notebooks we can clearly rec-
ognize attempts to get a better grip on the intuitive continuum by means of
the admission of infinite sequences of free choice as objects in his mathematical
realm, thus turning the intuitive continuum into the ‘full continuum’ of the reals
on the unit interval. These objects did not find their way into the dissertation
yet, but certainly were an adumbration of later developments in his work.

3.4.1 The continuum, its possible construction from logi-
cal principles alone

Brouwer was, as we will see, already at an early stage convinced of the apriority
of the intuitive continuum, but not from the very beginning.

In his dissertation he had arrived at his seemingly final notion of the contin-
uum; however, from the notebooks we can conclude that this final notion was
not that final; in the very last notebook he still persevered in his attempts to
grant properties to the continuum, beyond its simple role as ‘matrix to construct
points on’. On page 133 we will see that he indeed succeeded in this attempt.

The beginning of the first notebook still leaves open the question on the
apriority of the continuum:

(I–9) It is an interesting but philosophically unimportant question
whether geometry (including projective geometry) can be built up
from just logical principles and the one-dimensional continuum (and
maybe even, to construct that one-dimensional continuum from log-
ical principles).46

This is a completely isolated remark, in which Brouwer had considered found-
ing the continuum on logical principles alone. It even looks like a rhetorical
question with a negative answer. His final viewpoint would soon be that the
notion of the continuum is intuitively given to us. In his last notebook this is, as
we saw, for the first time expressed in terms of the ur-intuition of the combina-
tion of two discrete events, separated by a continuous time interval. Hence the
continuum concept is not founded on logic or on logical priniples at all, but on
the mathematical intuition of the connecting medium between two experiences.

45The ‘denumerably unfinished’ set is of course a completely different story; see for this
chapter 7.

46Een interessante, maar filosofisch onbelangrijke vraag is: is het mogelijk de geometrie
(ook de projectieve) op te bouwen uit enkel logische principes en het eendimensionale con-
tinuüm? (En misschien zelfs, om ook dat eendimensionale continuüm uit logische principes
op te bouwen?)
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3.4.2 The continuum, the intuition

Despite the reference in the first notebook to the constructibility of the contin-
uum, there is also, in the same notebook, the statement that the continuum is
not depending on the concept of number (I–40), but that it is something which
one can take for granted, since everybody has the same mental picture attached
to this word; there simply is no need for a construction or definition. In the
following quotes the similarity with Borel’s view on the intuition of the contin-
uum and its existence as a mathematical object is striking (see the footnote on
page 34); for Borel the continuum is real because of its, among mathematicians,
commonly shared notion of it.

(II–1) We can take the continuum as a starting point, because here
people understand each other.47

This means that there is no misunderstanding of the matter; everybody
knows intuitively what he is talking about when discussing the continuum, de-
spite the fact that it is undefinable and mysterious:

(II–25) Until now the continuity of the line was the unknown, about
which no misunderstanding was possible.48

and on II–27:

In the unconscious continuity of the straight line –not yet eliminated
by mathematical logic– something of the old unconscious παντα ρει
lay hidden.49

On the one hand Brouwer still considered the process of ‘building up’, on the
other hand there is the intuition, and these two views are not necessarily exclu-
sive; on the contrary, both are needed in the construction of the mathematical
edifice since the intuition gives us the two-ity of discrete and continuous, and
thus the continuum; and departing from this continuum the act of construc-
ting the mathematical building can begin. Therefore the one (the intuition)
necessarily precedes the other (the process of building). This concept of the
continuum is, in an early stage, still the result of some ‘vague’ intuition, appar-
ently shared by everybody, but in the παντα ρει we already recognize his view
of the continuum as the flowing and connecting, being enacted in time:

(III–7) Time acts as that, which can repair the separation.50

47Van het continuüm kunnen we uitgaan, omdat de mensen zich daarop verstaan.
48De continüıteit van de lijn was tot nog toe het onbekende, waarover geen gemis aan

verstandhouding mogelijk was.
49In de onbewuste continüıteit der rechte lijn –nog niet door mathematische logica

weggenomen– lag nog wat van het oude onbewuste παντα ρει.
50De tijd treedt op als dat, wat de scheiding wel weer in orde kan brengen.
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The shifts and changes in Brouwer’s opinion can often be inferred from erased
lines and paragraphs. Cantorian views were often crossed out, or diverging com-
ments were added. As an example of a deleted fragment we give the following
fragment:

(II–35) This modern mathematics starts from thing and relation,
hence from discreteness; but suppose this was wrong and one had to
start from continuity?

And suppose the systems with simple relations can never be con-
structed directly (except axiomatically of course, and supported by
the existence theorem afterwards) because they do not arise geneti-
cally from the mind? But in everybody is the desire for axioms, to
which then the world will be adapted?51

The terms in which Brouwer expressed ‘this modern mathematics’ which
is just based on the non-intuitive ‘thing and relation’, and which can possibly
only be constructed on an axiomatic foundation and whose existence can only
be determined afterwards, are somewhat belittling. He clearly referred to the
axiomatic method as the foundation of mathematics:

In chapter III of his dissertation, Mathematics and logic,52 Brouwer argued
first that mathematics is not dependent on logic, but, instead, logic on mathe-
matics. He subsequently applied this argument to four subjects,53 of which the
first one is entitled The foundation of mathematics on axioms.54 In this first ap-
plication of his view of the role of logic, the geometries of Euclid, Schur, Hilbert,
Lobatchevski and others are discussed, with the conclusion (not in the original
dissertation, but added by Brouwer to the improved and corrected version of
it):

Résumé: one should, in axiomatic investigations, not look for clari-
fication of the foundations of mathematics, but only for solutions of
mathematical problems, (...)55

Hence mathematics cannot be founded on axioms, since axioms only serve
the purpose of making the mathematical building manageable, to make solutions
for mathematical problems possible in a systematic way.56

51Die moderne wiskunde gaat uit van ding en relatie, dus van discreetheid; maar als dat nu
eens fout was, en men moest uitgaan van continüıteit?

En als de stelsels met eenvoudige relaties nu eens nooit direct zijn op te bouwen — dan
axiomatisch natuurlijk, en zo achteraf gesteund door de existentiestelling — omdat ze niet
genetisch uit de geest voortkomen? Maar in allen is de wil tot de axioma’s, waaraan de wereld
dan wel wordt aangepast?

52Wiskunde en logica.
53See page 133 of Brouwer’s dissertation; see also chapter 7 of this dissertation.
54De grondvesting der wiskunde op axioma’s.
55Résumé: men mag in de axiomatische onderzoekingen geen opheldering van de grond-

slagen van de wiskunde zoeken, maar alleen oplossingen van wiskundige opgaven, (...)
[Dalen 2001], page 116.

56See further page 252 ff.
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It must be emphasized that the quote (II–35) is not directed against strict
formalism, in which mathematical objects have disappeared, and in which math-
ematics is merely the manipulation with meaningless symbols according to spe-
cific rules. Formalism was developed by Peano, Dedekind, Hilbert and others,
and Brouwer’s public opposition against this formalism emerged again in 1912
in his inaugural address.

The reason for deleting the quoted passage (II–35) will most likely be the
following: neither discreteness alone, nor continuity alone will do for the con-
struction of mathematics; both continuity and discreteness are required to build
the mathematical edifice. Neither one can be based on the other, two differ-
ent discrete events are necessarily connected by a continuum and a continuum
cannot be experienced without two different events. But in the notebooks this
explicitly expressed ur-intuition will only appear much later, in the last note-
book IX (See quote IX–26 on page 55).

3.4.3 The physical continuum

In La Science et l’Hypothèse Poincaré discussed the physical continuum, with
the conclusion that this continuum concept can lead to the following paradox:
A = B; B = C; A 6= C57, which can only be avoided in mathematics by the
introduction of the mathematical continuum. As a comment on this, Brouwer
asked and answered:

(III–24) Investigate if the indefinitely refinable physical continuum
of one dimension (satisfying, according to Poincaré, A = B; B = C;
A 6= C, which is then automatically everywhere dense) is, according
to Cantor, equivalent to the ‘Geordnete Menge’ η. Yes, of course.58

Poincaré needed a mathematical continuum in order to get rid of the para-
doxes of the physical continuum. The required continued refinement of Poincaré’s
physical continuum is similar to Brouwer’s construction of the order type η, but
the result of Poincaré’s construction will be everywhere dense, without the need
for a contracting operation, which Brouwer needed for his measurable contin-
uum. This follows from the physical nature of Poincaré’s construction. When
we observe that A = B, then we can, by improving our measuring equipment,
find a C between A and B, such that A = C, C = B but A 6= B. Poincaré
used, as an example, in La Science et l’Hypoths̀e for A,B and C weights of e.g.
10, 11 and 10.5 grams (instead of indicated points on a line). If we assume that
the measuring equipment (the balance in this case) can always be improved
and refined, there will not remain a ‘gap’ between two equal weights, which
has to be ‘contracted into one point’. After all, we are doing physics here and
not mathematics, and a gap is identical to a difference in weights. When two

57See the discussion on Poincaré, section 1.3. See [Poincaré 1916], page 34 ff.
58Ga eens na, of het onbepaald te verfijnen fysisch continuüm van één dimensie (van Poincaré

volgens A = B; B = C; A 6= C; dat dus vanzelf überall dicht is) volgens Cantor niet
gelijkwaardig is met de ‘Geordnete Menge’ η. Ja natuurlijk.
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weights are, in case of an unlimited accuracy in the measuring apparatus, the
same, there cannot be a gap between the two.59

In IV–21–23 Brouwer once more discussed this physical continuum, when
stating that we want continuity in nature in order to be able to describe it by
means of continuous and even differentiable functions; we force continuity upon
nature for the benefit of our mathematical model of it.

3.4.4 The mathematical versus the intuitive continuum

In the dissertation Brouwer’s conclusion for the continuum was: a line is not
composed of points, one cannot speak of a line as a collection of points, they
can only be constructed on the continuum. The justified, but not yet expressed
conclusion at this place in the notebooks could already be that the continuum
is a cardinality of its own. However, Brouwer limited the role of the intuitive
continuum to that of a matrix to construct a different kind of continuum on:
the mathematical continuum:

(IV–30) The continuum is intuitive, a correction on the definite-
ness; the mathematical continuum is totally different: that must
be constructible by us from finite numbers and inductively (that
is, leaving freedom for a jump60 without change of property, hence
one-dimensional jump.61

Brouwer distinguished here the concept of the intuitive continuum from that
of the ‘mathematical continuum’; the terminology is Poincaré’s, and the state-
ment can be best understood in terms of Brouwer’s ‘measurable continuum’ or
‘definable continuum’. For the term mathematical continuum see also the next
section.

In the following quote, in which Brouwer apparently is still searching for his
final terminology, the ‘building up’ of the continuum is expressed; this is now
in terms of the construction of the definable continuum on the intuitive one.
Here the group theoretical method of the construction of points is given; in his
dissertation, Brouwer used this method to define the basic operations on the
constructed definable continuum.

(IV–23) The one-dimensional continuum is built as a group of trans-
formations of some points. We indeed have it intuitively; but that
we specifically consider this intuitive aspect is because we know that

59Borel disagreed with this argument of Poincaré. Imperfections in measuring equipment
do not lead to a contradiction in the concept of the physical continuum which would neces-
sitate the definition or construction of a mathematical continuum. See [Borel 1909], see also
[Borel 1972], page 2151.

60Brouwer used the term ‘saltatory change’, Dutch: sprongverandering, an abrupt discon-
tinuous jump, as opposed to continuous change.

61Het continuüm is intüıtief, correctie op de bepaaldheid, het mathematisch ‘continuüm’ is
heel iets anders: dat moeten we helemaal kunnen construeren uit eindige getallen en inductief
(d.i. vrijheid laten van sprongverandering zonder eigenschap-verandering, dus eendimensio-
nale sprongverandering.
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we will never run out of points for all the groups that we possibly
will build.62

We know the continuum is intuitively given. The continuum that is ‘built
as a group of transformations of some points’, is the measurable continuum,
constructed on the intuitive one. See also the quote (V–19) below.

We note here that the terminology gradually transforms into that of the
dissertation.

3.4.5 The mathematical continuum is the measurable con-
tinuum with rational scale

The conclusion from the last quote (IV–23) was, that ‘building’ means here
the transformation of the intuitive continuum into the measurable continuum
according to the method of transformation groups, as explained in the disserta-
tion. In his later notebooks this method is worked out in more detail. Already
in the fifth one Brouwer made the next step:

(V–18) The continuum has no cardinality: I can construct on it as
many points as I wish; it is intuitive (I build the points on it) like
everything of which the moral basis can be sensed.63

Hence the continuum resists classification in the range of cardinal numbers
à la Cantor. At this stage Brouwer did not yet grant the continuum the status
of a separate cardinality in itself.

Thereupon the construction of a rational scale on the intuitive continuum
is formulated in V–19: construct on the line a group (that is, a denumerable
set; the term ‘group’ has to be understood here in this non-algebraic sense),
and hence a scale; then every point not on that scale can be approximated by
means of that scale, of course after completion of the ‘contraction’-operation as
described on page 79 (page 10 of Brouwer’s dissertation):

(V–19) If I have the intuitive continuum, then I can, in some ar-
bitrary way, construct on it a number continuum, arbitrarily desig-
nating point by point for every number, but only within the proper
interval.64

62Het eendimensionaal continuüm is opgebouwd als groep van transformaties van enige
punten. We hebben het wel intüıtief; maar dat we juist dat intüıtieve nemen, komt, omdat we
alleen zó weten, dat we voor allerlei groepen, die we eventueel zullen bouwen, nooit punten
tekort zullen komen.

63Het continuüm is niet van een machtigheid: ik kan er zo veel op zetten als ik wil; het is
intüıtief (de punten bouw ik er op), zoals alles, waarvan de morele ondergrond kan worden
gevoeld.

64Heb ik het intüıtieve continuüm, dan kan ik daar op een of andere willekeurige manier een
getallen continuüm op construeren, punt voor punt willekeurig aanwijzen bij elk getal, alleen
binnen het juiste interval.
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The last part of this sentence (‘but only within the proper interval’) points
to the fact that we can insert points on every interval, but that the naming of
a newly inserted point is determined by the interval in which it is put (e.g. the
first inserted point in the interval (0, 1) can, in the dual representation, only be
named 0.1).

In V–20 it is stated that a rational scale (of order type η, ‘fine without a
bound’65) can be placed at random. If another similar scale is constructed on
the same continuum, then every point of the line can be expressed in both scales
and a conversion from one scale to the other is possible, after selecting a zero
point for both. Clearly one scale is sufficient since a point, not lying on that
rational scale, can be approximated arbitrarily close by the rational scale and
is identical with its approximating sequence expressed in the scale:

(V–20) In case of the fictitious continuum I understand
√

2 to be
identical to the fundamental sequence of its decimal fraction.66

This is a statement of fundamental importance. In this early stage Brouwer
already declared an irrational number on the continuum to be identical to the
fundamental sequence itself, and not to its limit. This view, which is now
communis opinio had, however, not yet been generally accepted at that time.
It will also be Brouwer’s view when defining ‘arbitrary real numbers’ by means
of nested intervals.67

3.4.6 The continuum is no point set

In the fifth notebook we recognize Brouwer’s concept of the continuum, as it
was laid down in the dissertation: the continuum is intuitive, it is not composed
of points, it cannot be expressed in a Cantorian cardinality, but it is an unlim-
ited source for points. As a comment on § 207 of Russell’s Fondements de la
Géométrie,68 Brouwer remarked:

(V–30) With the continuum you never reach a point; this for those
who want to see the continuum as a point set.69

In VI–18 it is stated that the continuum is a priori, just like arithmetic,
but the fact that the theory of groups of rational numbers is applicable to the
measurable continuum, is empirical.

The construction of the rational scale on the one-dimensional intuitive con-
tinuum is defined in VI–22 by means of the group of motions (translations) just
as this was done in the earlier quoted fragment from IV–23, and not yet, as in
the dissertation and at other places in the notebooks, by repeated splitting of
intervals.

65‘fijn zonder perk’.
66Bij het fictieve continuum versta ik onder

√
2 de Fundamentalreihe van de decimaalbreuk

er van.
67see page 126, in the section about the Review of Schoenflies.
68[Russell 1901], page 248.
69Met het continuüm bereikt men nooit een punt; dit aan ’t adres van hen die het continuüm

als een Punktmenge willen opvatten.
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3.4.7 The vast majority of the irrational numbers can only
be approximated and not defined

In the sixth notebook Brouwer presented, for the first time, a more or less
detailed analysis of irrational numbers: the majority cannot be directly repre-
sented on the measurable continuum:

(VI–21) For the fictitious continuum70 it holds that:

1st Every element is a main element.

2nd For every fundamental sequence there is a limit element.

But can I imagine that?

I can only specify a fundamental sequence by its limit element71 (in
general I cannot specify a particular infinite decimal fraction; I can
only define some decimal fractions as identical with the limit element
which is speciefied in a different manner). Hence I cannot speak of
every fundamental sequence, independent of a limit element. But it
is an intuitive axiom of the intuitive continuum that every point can
be approximated by a given scale. (cf. 1st).

(...)

The intuitive continuum has the property that for every arbitrary
scale construction, between every two points of the scale an intuitive
continuum remains.72

70or fictive continuum. Note the difference with the mathematical or measurable contin-
uum of the η-scale, in which not every fundamental sequence has a limit-element belonging
to that scale. The term fictive continuum is not used in the dissertation. At this place in the
notebooks it has the meaning of the mathematical continuum of the η-scale, extended by the
algorithmically defined irrational numbers. ‘Every fundamental sequence’ (under item 2) has
then to be read as ‘every well-defined fundamental sequence’, since there are no other funda-
mental sequences. Compare this with Borel’s practical continuum ([Borel 1908b]) and Weyl’s
atomistic continuum ([Weyl 1921]). Compare this also with Brouwer’s sets of cardinality
denumerably infinite unfinished (his dissertation chapter III).

71Note that the term fundamental sequence is used here in the meaning of Cauchy se-
quence, as, in fact, it is often used. For Cantor however (see e.g. his Begründung) a fun-
damental sequence is defined as a denumerable subset of a simply ordered transfinite set,
and needs therefore not to be convergent. The same applies on most occasions for Brou-
wer; see e.g. the Berliner Gastvorlesungen, chapter 3, the end of the second paragraph
([Dalen, D. van (ed.) 1992], page 31): Mit der Folge ζ in der ‘natürlichen Rangordnung’
ähnliche Spezies heissen Fundamentalreihen. Hence these sequences need not necessarily be
convergent.

72Voor het fictieve continuüm geldt:
1e Elk element is hoofdelement.
2e Bij elke fundamentaalreeks is een grenselement.
Maar kan ik me dat voorstellen?
Een fundamentaalreeks kan ik alleen aangeven [een bepaalde oneindige decimaalbreuk kan

ik in ’t algemeen niet aangeven; ik kan alleen sommige decimaalbreuken definiëren als identiek
met het, op andere wijze aangegeven, grenselement] door zijn grenselement. Ik kan dus niet
spreken van elke fundamentaalreeks, onafhankelijk van een grenselement. Maar wel is een
intüıtief axioma van het intüıtief continuüm, dat elk punt door een gegeven schaal te benaderen
is. (St 1e). (.....) De eigenschap van het intüıtieve continuüm is, dat bij elke willekeurige
schaalconstructie tussen elke twee schaalpunten weer een intüıtief continuüm overblijft.
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At this place in the notebooks, and in contrast to the earlier quoted V–20,
Brouwer again distinguished the fundamental sequence from its limit element.
In his more modern view the irrational number is the sequence itself (the choice
sequence, algorithmically defined or by free choice), and not its limit-element; in
this form it also appeared in quote V–20 on page 91. But when Brouwer wrote
down VI–21, in which the irrational number was defined as the limit element
of the fundamental sequence, two irrational numbers a and b are equal, if their
defining sequences {an} and {bn} have the property

∀k∃n∀m1m2 > n |am1 − bm2 | < 2−k (k, n,m1,m2 natural numbers)

The last property in VI–21 is fundamental for the intuitive continuum. Be-
tween every two non-coinciding points indicated or constructed on it (two points
satisfying the property of apartness, in Brouwer’s more modern terminology),
there always remains another intuitive continuum, on which other points can be
indicated or constructed. This iterated possibility of intercalation of new points
results in the construction of the dual rational scale.

But of course every fundamental sequence (here to be understood as a con-
vergent fundamental sequence) stands for a number, and, later on, is a number.

About a possible ‘totality of points’ on a line, Brouwer remarked:

(VI–23) I can say ‘if a point is on a line’, but I cannot speak of ‘all
points of a line’ (a class of units).

(VI–33, 34) I cannot speak of all groups73 of a set of a certain car-
dinality. After creating a certain order, e.g. the order of the points
of the plane, I can indicate some groups, but never all groups.

In the same way I can indicate some real numbers (...), and as many
as I wish, but never all (...)

I can however point to every real number (with a finite number of
gestures or sounds) by applying the continuum intuition, and then
‘pointing to’ a number.74

The last phrase of this quote carries with it a kind of haziness, in the sense
that one can wonder what exactly is meant by ‘pointing to a real number’. This
haziness might, again, include an early anticipation of the choice aspect. Just

73Here, as elsewhere, the term group is used in the more general meaning of a set or, in this
case, of a subset.

74(VI-23): Ik kan wel spreken van ‘als een punt ligt op een lijn’, maar niet van: ‘alle punten
van een lijn’ (een klasse van eenheden).

(VI-33, 34): Van alle groepen uit een Menge van zekere machtigheid kan ik niet spreken.
Eerst als ik een zekere ordening heb gegeven, b.v. de ordening der punten van het platte vlak,
kan ik sommige groepen aangeven, maar toch nooit alle.

Zo kan ik sommige reële getallen aangeven (...), en zo veel als ik wil, maar nooit alle (...)
Wel kan ik ieder reëel getal aanwijzen (met een eindig aantal gebaren of klanken n.l.) door

gebruik te maken van de continuüm-intüıtie, en daarop een punt ‘aan te wijzen’.
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like a choice sequence at every stage of its ‘becoming’ is only an approximation
of its continuation, the actual ‘pointing to’ a real number can only be a rough
approximation of what is intended with the gesture, however accurate that is.

Not all arguments in the notebooks seem to be, at first sight, of equal co-
gency, since in the following phrase the conclusion seems not to follow from the
argument; after all, the premise also apply to the rational scale alone:

(VI–34) The fact that the intuition of the continuum consists of more
than the rational scale, follows from this, that you know you cannot
jump from zero directly to a point of that scale, however large its
denominator may be!

Apart from this, never defend your intuition with the help of a logical
suggestion like that.75

In order to make sense of the content of this quote, we may suppose that
Brouwer most likely meant to say that on the rational scale, constructed on the
intuitive continuum, when jumping from zero to any rational number, there are
of course always other rationals between zero and that number, but that there is
also necessarily a continuum between any two rationals, however close together
they may be. This interpretation agrees with the last phrase of the last quote.

At the bottom of that same page Brouwer argued:

(VI–34) I need the continuum; I cannot say: I choose ω times 1 or
2, since the intuitive induction only applies to equal things, not to
varying (and ω chances are equal things).76

This means that the continuum can in no way be constructed or fully de-
scribed as a scale of dual fractions of infinite length, for lack of a suitable
algorithm; that is, the vast majority of its elements cannot be named or written
down or algorithmically defined. Hence the only way to have the continuum at
our disposal is, that it is presented to us in its entirety.

We also have intuitively the process of mathematical induction which is
mentioned in the last quoted passage; it is not an axiom, nor a theorem, but it is
the natural mathematical act of repeatedly applying the same rule or algorithm
in order to reach the nth term of a sequence governed by some law, or to prove a
formula, not ‘for all natural numbers n’, but for any given finite natural number
n. A theorem of the form ∀xP (x) has therefore to be interpreted in its potential
meaning: for every n you give me, I can prove P (n) by the iterating process
P (1) → P (2), P (2) → P (3), ..., according to the rule P (1) ∧ ∀m(P (m) →
P (m+ 1)) up to P (n).

75Dát de intüıtie van het continuüm bestaat uit meer dan de rationale schaal, volgt wel
hieruit, dat je weet, dat je van 0 niet direct op een punt van die schaal, met hoe grote noemer
ook, kunt springen!

Overigens roep nooit zo’n logische suggestie te hulp, om je intüıtie te verdedigen.
76Ik heb het continuüm nodig; kan niet zeggen: ik kies ω maal 1 of 2, want de intüıtieve

inductie is alleen voor gelijke dingen, niet voor wisselende (en ω kansen zijn gelijke dingen).
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Hence we can construct a decimal expansion of any finite length, as long as
the expansion is governed by a law (or the ‘chance of some outcome’ is governed
by a law; that chance will then always be 1 for one specific outcome and 0 for
the rest); ω times a free choice is not possible, that is, it is only a potential
possibility.

Note that in the last quote Brouwer is, again, far removed from the choice
sequences (where an unlimited but finite number of free choices is allowed,
even though the sequence never terminates, is never finished and may not be
conceived as such) as a method to handle the continuum, (but which then
additionally requires the continuity priciple, which states that the outcome of
P (α), P being a function with choice sequences as argument and α being a choice
sequence, is determined by an initial segment of α). But shortly after this quote,
as well as in earlier ones, we can already discern ideas in that direction. And
even in this last quote the concept of choice is present.

3.4.8 The continuum; is there a way to get more grip on
it, apart from a constructed scale on it?

In notebook six Brouwer is very much occupied with the continuum and the per-
fect set; in VI–35 there is a reference to the ‘Cantor set’,77 which is constructed
on the continuum in the following way:

Trisect the closed interval [0, 1] at the points 1
3 and 2

3 and then delete the
open interval ( 1

3 ,
2
3 ), called the ‘middle third’. What remains is the union of

two closed intervals T1 = [0, 1
3 ]∪ [ 23 , 1]. Now trisect each of the two segments of

T1 at 1
9 and 2

9 , respectively at 7
9 and 8

9 and again delete the middle third from
each segment, giving T2 = [0, 1

9 ] ∪ [ 29 ,
1
3 ] ∪ [ 23 ,

7
9 ] ∪ [ 89 , 1]. Continuing in this way

ω times results in a descending sequence of sets T1 ⊃ T2 ⊃ T3 ⊃ ..., where Tm

consists of the segments in Tm−1 excluding their middle thirds. The Cantor set
is now defined as the intersection of these sets, i.e. TCantor =

⋂
{Ti|i ∈ N}.

Observe that Tm consists of 2m disjoint intervals and that we can speak,
when the intervals are numbered from left to right, of the odd and the even
intervals of Tm.

If we now define a function f on T as follows:
f(x) = 〈a1, a2, ...〉, where
am = 0 if x belongs to an odd interval of Tm, and
am = 2 if x belongs to an even interval of Tm,
then the sequence 〈a1, a2, ...〉 corresponds to the ternary expansion of the

elements x of T , i.e. the expansion of x to the base 3:

x =
ω∑

i=1

ai

3i
(ai = 0 or 2)

77Brouwer referred, in a rather obscure paragraph about infinite dual fractions, to ‘Cantor
Grundlagen page 46 note 11’. This concerns a ‘note by the author’ (one of the ‘Anmerkungen
des Verfassers’), to Cantor’s Grundlagen paper; see [Cantor 1932], page 207.
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It is in this form that Cantor defined this set in note 11 of the Anmerkungen
des Verfassers to his Grundlagen:

Als ein Beispiel einer perfekten Punktmenge, die in keinem noch so
kleinen Intervall überall dicht ist, führe ich den Inbegriff aller reellen
Zahlen an, die in den Formel

z =
c1
3

+
c2
32

+ ...+
cν
3ν

+ ...

enthalten sind, wo die Koeffizienten cν nach Belieben die beiden
Werte 0 und 2 anzunehmen haben und die Reihe sowohl aus einer
endlichen, wie aus einer unendlichen Anzahl von Gliedern bestehen
kann.

The Cantor set T has the following properties:
– It is non-denumerable, since at every step the number of segments in which

certainly a point of the set will be present, doubles; it has the cardinality 2ℵ0 = c.
– It does not contain any open set.
– It is perfect, since it coincides with its derivative.
– It is dense in itself and closed (follows from it being perfect).
– It has measure zero.

We emphasize the fact that T is in no interval of the continuum [0, 1] eve-
rywhere dense, but it is dense in itself and even perfect. It is not equal to the
continuum on which it is constructed, but it is equivalent to the continuum. In
fact, it pictures a perfect set in dual representation. Cantor just mentioned it
as an example of a perfect set; indeed it is a remarkable and extremely clever
example.

Brouwer noticed, in a deleted fragment in VI-36, about Cantor’s perfect set:

(VI–36) Now it seems that, after all, I cannot speak of all elements
of that set, hence the set is not real, since I can never say with cer-
tainty in a finite time whether a point, indicated on the continuum,
belongs to it (sometimes I can say that it does not belong to it).
But nevertheless I can speak of the reality of that set, and of all its
elements;78

Why is this fragment deleted? Of course one cannot speak of all its elements,
not even potentially since their number is non-denumerable. But may one nev-
ertheless speak of the reality of the Cantor set? Brouwer answers this in the
affirmative since it is defined by the clearly given rule of repeatedly trisecting
every segment and deleting the middle third, but after any finite number of

78Nu schijnt het, dat ik toch niet kan spreken van alle elementen dier Menge, dus die Menge
toch niet reëel is, want ik kan nooit zeker zeggen binnen eindige tijd van een op het continuüm
aangegeven punt of het er toe behoort (wel soms, dat het er niet toe behoort). Maar toch kan
ik spreken van de realiteit der Menge, en van alle elementen ervan.
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steps no single element of the set is isolated yet, and therefore no single element
can be isolated in a finite time. Therefore it is not constructed and cannot be
constructed. But if I indicate a point on the continuum, then, contrary to what
Brouwer wrote, I can sometimes say that that point does belong to it (or will
eventually belong to it), since the boundaries of each new segment will, after ω
steps, become an element of the set. But there is no law or rule that decides
in a finite time whether or not an arbitrary indicated point belongs to the set.
In that sense the set is not real, no more than a set of which the elements are
determined by free choice from a given set is a real and well-defined set.79 It
seems as if Brouwer had in some way this choice concept in mind when rejecting
the reality of the Cantor set.

Immediately after this deleted fragment the next paragraph continues with
the following fragment, this time not deleted:

(VI–36) One might say: the continuum is intuitive and the rational
numbers are denumerable, hence intuitive, therefore also the contin-
uum with the rational scale on it.

Indeed, but if I indicate a point on the continuum, I cannot say
whether it belongs to the scale or not.80

It is obvious that the continuum is intuitive. The rational scale is intuitive
in a derived and indirect sense: the natural numbers come into being out of
the ur-intuition of mathematics, and the rational scale from the repeated in-
tercalation of elements on the connecting medium between any two consecutive
earlier constructed elements. In that sense the combination may be seen as
‘derivatively’ intuitive.

The last remark of the last quote (VI–36) seems obvious, but Brouwer gave
a physical illustration of it, with the help of ‘barycentric coordinates’:

(VI–36) (...) first I put one mass point at each end, next 1 at one
end and 3 at the other, then 3 at one end and 5 at the other, or 1
at one end and 7 at the other, and so on, thus approximating what
is required, with the help of natural numbers.81

This means that I approximate the indicated point in a decimal expansion,
each time filling in a next decimal place (supposing that, e.g. at each next

79Compare this with Borel, for whom a set as a totality may be well defined, without being
able to define any of its elements individually. See e.g. [Borel 1914], also in [Borel 1972], vol.
IV, page 2137. See also page 298 ff. where Hilbert’s Heidelberg lecture ([Hilbert 1905]) is
discussed. Rule III for the expansion of the laws of mathematical thought admits the concept
of ‘set’ before that of its elements.

80Je zou zo zeggen: het continuüm is intüıtief en de rationale getallen zijn aftelbaar dus
intüıtief, dus ook het continuüm met een rationale schaal er op.

Ja juist, maar als ik een punt op het continuüm aanwijs, kan ik niet zeggen of het tot de
schaal behoort.

81(...) eerst leg ik in elk der uiteinden één massapunt, dan in ’t ene 1 en ’t andere 3, dan
in ’t ene 3, ’t andere 5 of in ’t ene 1 en ’t andere 7 enz: zo benader ik, werkend met gehele
getallen, wat moet.
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addition of mass points, the masses are smaller by a factor 10). If I ‘reach’ the
point in finitely many steps, then the point belongs to the rational scale; if not,
it is not a scale point.

The sketched method is an idealized situation, and the question is of course:
how can it be decided that the point will be reached in finitely many steps;
this can only sometimes be decided afterwards if we accidentally ‘hit’ a rational
number. But then another problem arises: even the rational scale cannot be
seen as finished and therefore my ignorance remains complete:

(VI–36) Only that continuum is intuitive, on which, when selecting
a point, I am still completely ignorant of its approximation, so I am
neither observing the rational scale on it as finished and individu-
alized. Because I cannot perceive ℵ0 things as being finished, I can
only imagine them to be growing, and simply let that continue and
turn away from it; in the same way for the rational scale.82

A similar remark was made on VIII-24. The problem whether or not a well-
defined algorithmic sequence or set may be viewed as finished, will be discussed
in chapter 8 of this dissertation, on page 322. It was already touched upon in
chapter 2, page 50, and under item 5 on page 78 of this chapter.

The given quote expresses the fact that the continuum is dense to the extent
that, however far we succeed in the construction of an everywhere dense scale,
the approximation of the vast majority of points remains unknown.

We see that in this sixth notebook Brouwer was ‘brainstorming’ on the ques-
tion of the perfect set, whether it can be defined as a set and how the continuum
can possibly be approached and treated as more than just the ‘mysterious ma-
trix of all point sets’ (VII–3). The next quotation is another experimental move
in this direction:

(VI–37) All algebraic numbers minus the rationals makes sense.

All real numbers minus the rationals only makes sense in the follow-
ing way: I imagine this set to be mapped on the continuum; make an
arbitrary choice from the continuum and then I have, when mapping
this choice, only a chance of a point of our set.

(...)

I cannot speak of the cardinal number of the continuum (that is
not included in its intuition); no more can I speak of that of the
infinite decimal fractions, since the all of it makes no sense in itself,
neither via the continuum since neither the continuum possesses ‘all
points’.83

82Alleen dát continuüm is intüıtief, waarbij ik, een punt kiezend, nog niets van de benadering
weet, dus ook de rationale schaal niet af en gëındividualiseerd erop zie staan. Want ℵ0 dingen
kan ik niet af zien staan, ik kan me alleen denken, dat ze groeien, en dan dát rustig zijn gang
laten gaan en mij afwenden; zo ook met de rationale schaal.

83Alle algebräısche getallen min de rationale heeft zin.
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The first part of this extract again alludes to the choice aspect, just as we
saw that in VI–36. It even alludes to the perfect spread, i.e. the set C, as a
representation of the reals, as we met this on page 71. One cannot indicate
a point of it, there is only the ‘chance of being an element’ for each indicated
point. Hence ‘all real numbers minus the rationals’ hardly makes any sense, if
one holds on to Brouwer’s view that ‘chance’ or ‘choice’ cannot determine a set.

One can only, the text continues, speak of the ‘reductible’ sets, which are, as
stated in VI–37, the sets which may be built intuitively from a finite number and
induction, without the continuum principle, thus resulting in the denumerable
sets.84

But in the first part of this quote we still perceive an attempt in the direc-
tion of the notable third construction possibility for sets, mentioned on page 66
of Brouwer’s dissertation, and which will be discussed further on page 122 of
our dissertation. In Brouwer’s dissertation it is stated in the following terms:
removing a rational constructed scale from the continuum results in a infinite
possibility of approximating sequences, which are expressed in the withdrawn
points. Such an approximating sequence then stands for a ‘point’ of the remain-
ing part.

3.4.9 The second number class does not exist as a finished
totality

In VIII–36, in which the possible denumerability of the second number class is
discussed, it is said that this question cannot be answered by yes or no, but
that, instead, it has to be considered as a meaningless question. In the logical
sense something can be said about it, but not in the mathematical sense. This
returns in Brouwer’s dissertation in chapter 3: in the logical sense only negative
statements can be made about this number class.

The cardinality of the second number class can (classically) be proved to be
ℵ1, the next higher cardinality after ℵ0, and the impossibility of ℵ1 (according
to Brouwer) is expressed for the first time in notebook six:

(VI–37) I shall thus have to demonstrate that Cantor’s Aleph-one
makes no sense;85

and, as a correction on this last phrase:

Alle reële getallen min de rationale heeft alleen zin als volgt: ik denk mij deze Menge op
het continuüm afgebeeld; kies dan willekeurig uit het continuüm, en heb dan de afbeelding
daarvan nemend alleen kans op een punt uit onze Menge.

(...)
Ik kan niet spreken van het cardinaalgetal van het continuüm, (zo iets ligt niet in de intüıtie

er van); evenmin van die der oneindige decimaalbreuken, omdat op zichzelf het alle daarvan
geen zin heeft, en via het continuüm evenmin, omdat ook het continuüm geen ‘alle punten’
heeft.

84Brouwer referred (in VI–37) to Cantor’s ‘reduktibele Punktmengen’, which are sets ‘von
der ersten Gattung’ (Cantor, Grundlagen, page 31). See section 1.1.3 and 1.1.4. See
[Cantor 1932], page 193 and [Schoenflies 1900b], page 68, 69.

85Ik zal dus moeten kunnen aantonen, dat Cantors Alef-eins zinloos is.
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(VI–37) No, his higher numbers certainly exist; only I just know
certain defined individuals among them, and the few defined, which
I can indicate, are denumerable.86

This is indeed Brouwer’s view in the dissertation: Cantor’s second number
class is, as a result of the two generation principles, certainly not empty, but it
does not exist as a finished totality; we can only know certain specified individ-
uals from that class. We can always extend the quantity of known individuals,
but the lack of one simple algorithm for the construction of all its elements
limits the result to a denumerable amount, even if, instead of one simple algo-
rithm, denumerably many different algorithms are allowed. Brouwer called the
cardinality of this ever extending set denumerably infinite unfinished (see at the
end of this section).

Nevertheless the idea of a third number class turned up, be it only once, but
in fact it was already rejected in the previous quote:

(VI–38) Does ωωω..
infinitely many times

still belong to the second num-
ber class?

Certainly: the and so on (in relation to a number or operation, de-
finable with known things from the second number class, as unit)
generates the second number class. I call the totality of those con-
struction methods etc2; and I define the 3rd class as the totality,
which can be obtained from earlier constructed numbers of that class
with the help of etc2.87

The number ωωω..
infinitely many times

is still in the second number class, that
is, it is an ordinal number, greater than ω, but still denumerable, but the to-
tality of the second number class is of course never generated.88 Brouwer never
returned, neither in the notebooks nor in any other work, to the idea of a third
number class which is, even in the last quote, already a rather vague concept.
Its rejection immediately follows from the fact that the second number class
cannot be finished.

In the seventh notebook the ideas are further developed in the direction of
the result in the dissertation. Nevertheless old topics regularly return, like the
possible constructibility of the continuum and its possible equivalence to the

86Neen, zijn hogere getallen bestaan zeker; alleen: ik ken niet anders, dan bepaalde indi-
viduen er uit, en de enkele bepaalde, die ik kan aanwijzen, zijn aftelbaar.

87Behoort ωωω..
oneindig maal

nog tot de tweede getalklasse?
Natuurlijk: het enzovoort (t.o.v. als eenheid een getal of bewerking, die met reeds bekende

dingen uit de tweede getalklasse zijn te definiëren) is de generering der tweede klasse. Het
geheel van die vormingswijzen noem ik enzovoort2; en definieer de 3e klasse als het geheel
wat te krijgen is uit reeds gevormde getallen dier klasse met behulp van het enzovoort2.

88See [Rucker 1983], page 74 and 244.
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second number class. In the next fragment such a possibility is considered, with
the correct conclusion that one can commence the construction of the second
number class, but that this process, by definition, cannot be conceived as being
terminated:

(VII–4) I can say that I build the continuum out of the point set,
but I cannot speak of its ‘cardinality’, since this set, in its construc-
tion from individuals, simply is the second number class, and then
‘denumerable’ and ‘not finished’.89

We indeed observe here the appearance of the term unfinished (‘nicht fertig’)
as the possibly maximum attainable cardinality of a set. And also we see that at
this place it is stated that one can commence the construction of the ‘continuum’
in the sense of the totality of points on the continuum, or the totality of all
irrational numbers, but that one never succeeds in going beyond the second
number class. This class remains, on principle, unfinished.90

3.4.10 Attempts to introduce the ‘in practice unmeasur-
able numbers’

In the eighth notebook attempts are made to introduce the, qua definition, most
difficult type of numbers, the ones that are ‘in practice unmeasurable’ on the
continuum; these are the infinite decimal fractions without an algorithm (hence,
in fact, choice sequences). Brouwer searched for alternatives for the intuitive
continuum:

(VIII–1) Denumerable ordering is my only means to individualiza-
tion. That is the only way to specify a certain point of the con-
tinuum; (since I have there at my disposal a finite number of signs
and a denumerable number of digits); and without that I only can
operate with an ‘arbitrary point’ thereof.91

Hence the only points we can know and specify are the algorithmically de-
fined ones, and their number is limited to denumerably many and can therefore
be well-ordered. Arbitrary points cannot be specified.

The next two quotes clearly demonstrate that Brouwer was not satisfied with
only the intuitive nature of the continuum:

89Ik kan uit de Punktmenge wel zeggen, dat ik het continuüm opbouw, alleen kan ik niet
spreken van de ‘machtigheid’ er van, want deze Menge is in haar opbouw uit individuen gewoon
de tweede getalklasse, en dan ‘abzählbar’ en ‘nicht fertig’.

90See page 266 for this type of cardinality.
91Aftelbare ordening is mijn enig middel tot individualisering. Van het continuüm kan ik

ook zó alleen een bepaald punt aangeven; (immers heb daar tot mijn beschikking een eindig
aantal tekens en aftelbar aantal cijfers); en zonder dat kan ik alleen werken met ‘een willekeurig
punt’ er van.
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(VIII–11) Just as we cannot imitate the construction of nature, we
cannot logistically imitate the construction of the intuitive contin-
uum: But we can – obviously – imitate from both that, which we
do with it ourselves.92

and therefore a first attempt is made to, what will be called later, the concept
of choice sequences:

(VIII–13) We can only ground the intuition of continuous:

1st to view it as counterpart of discontinuity, which is our external-
ization.

2nd as a probability theorem, which always gives equal chances for
each digit at every next decimal place. But we gaze at the system,
which has that as a result, as a phenomenon of nature, we cannot
construct it with our externalization of discontinuity.93

These last three quotes from the eighth notebook indeed show us Brouwer’s
attempts to analyze the continuum beyond its role of the ‘mysterious matrix’
on which points can be constructed.

The first quote (from VIII–1) summarizes the gist of the dissertation: the
rational scale points, and the irrational points which are constructed with the
help of an algorithm, and which are expressed in terms of infinite sequences
of rationals, are the only definable points and the result is a denumerable but
unfinished quantity.

The second quote (VIII–11) expresses and emphasizes the intuitive nature
of the continuum, and the same is expressed in the first item of the last quote
(in which the continuum is the inseparable counterpart of two discrete and not
coinciding events). In the second item of VIII–13, however, we discern attempts
to move beyond the intuitive continuum and beyond any restriction, to approx-
imating sequences of a stochastic nature that stand for irrational numbers: at
each next decimal place all digits (that is, from zero to nine in case of a deci-
mal representation) have an equal chance, resulting in a representation of the
continuum, in the form of the ‘set of all real numbers on the unit interval’. But
Brouwer still ‘gazes at the system as a phenomenon of nature’ and not yet as
a useful and successful medium to have at one’s disposal arbitrary elements of
the continuum of the real numbers, thus opening the way to a real analysis.94

For a further discussion about choice sequences see page 148.

92Zo min als wij de natuur kunnen nabouwen, zo min kunnen wij logistisch het intüıtieve
continuüm nabouwen: alleen kunnen we –natuurlijk– van beide nabouwen dát, wat we er zelf
mee doen.

93Te begründen is de intüıtie van continu niet dan:
1e te bekijken als tegenhanger van discontinüıteit, die onze veruiterlijking is.
2e als de waarschijnlijkheidsstelling, die steeds weer bij elke volgende decimaal voor elk cijfer

gelijke kansen geeft. Maar het stelsel, dat dat geeft, staren wij aan als natuurverschijnsel,
kunnen het niet opbouwen met onze discontinüıteitsveruiterlijking.

94Brouwer still speaks here in terms of ‘chance’ instead of ‘choice’, probably under Borel’s
influence.
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The intuitive continuum still remains primal (which is, as we saw, still ex-
plicitly expressed in the first Wiener Gastvorlesung ([Brouwer 1929]):

(VIII–20) But the unbounded open continuum is primal ([in the mar-

gin:] This exists before mathematics, but only in mathematics it
comes into the open as the genetrix of limit points) (just like time,
but not time itself). It is different from its points (viz. point ma-
trix): but I can construct points on it, add points to it as limits.
A limit point gives the possibility to split the continuum into two
parts (...) I obtain the closed continuum by putting together the
lower and the upper bound (as I do when glueing together a dis-
sected continuum).95

This last phrase, in which an open continuum can be split into two open ones,
and in which the closed continuum is formed out of an open one, shows up in
Brouwer’s dissertation in a footnote on page 11 (cf. page 83 of this dissertation).

In VIII–18 the ur-intuition of mathematics and the twin-concept of discrete
and continuous is applied to physics:

(VIII–18) Should matter consist of points alone? But why then re-
main these points separated? By the tension of ‘something’ between
them: but that ‘something’ should then be continuous. And if a
gas just consisted of flying points, how could they act on each other
as solid bodies, if nothing was between them? Anyway, Maxwell’s
theory directly explained the theory of action at a distance.96

In Brouwer’s opinion the physical world of discrete objects follows the pat-
tern of the mathematical continuum: they are connected by a continuous medium.
Brouwer’s view on mathematics and its applications was a coherent one, his
philosophy is global and not restricted to mathematics alone, and therefore our
ur-intuition of mathematics applies equally well to the description of the phys-
ical world. This is of course in agreement with the dissertation, since also the
observation of two separated ‘flying points’ can be seen as the experience of two
well-separated events, connected by a ‘medium of cohesion’, and taking place in
time.

The discussion about the continuum returns time and again. In the following
passage we can observe Brouwer’s attempts to ‘operate on’ the continuum: all

95Primair is het onbegrensde open continuüm. ((met in de kantlijn) Dit staat al vóór de
wiskunde: maar in de wiskunde komt het alleen naar buiten, als genetrix van grenspunten)
(zoals de tijd, maar niet de tijd zelf). Het is iets anders als zijn punten (n.l. puntenmatrix):
maar ik kan er punten opzetten, er bij voegen als grenzen. Een grenspunt geeft de mogelijkheid
tot verdeling van het continuüm in tweeën. (...) Het gesloten continuüm krijg ik door een
begin- en eindgrens samen te koppelen (zoals ik ook doe, als ik een verbroken continuüm weer
samenlijm).

96De materie zou alleen uit punten bestaan? Waarom blijven dan die punten gescheiden?
Door de spanning van ‘iets’ er tussen: maar dat ‘iets’ is dan toch continu. En was een gas
alleen vliegende punten, hoe zouden die dan als vast lichaam toch op elkaar werken, als er
niets tussen was? Trouwens de theorie van Maxwell verklaarde direct de Fernwirkungstheorie.
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indicated points on the continuum can be ‘reached’, that is, arbitrarily closely
approximated:

(VIII–19) Since I cannot speak of all points of the continuum, I
do not express continuity as: all intermediate values are reached,
but as: if I give an intermediate value, then it will be reached (the
exact location can be found by means of consecutive approximating
measurements.97

In the eighth notebook, on page 21 and 22, Brouwer speaks in a deleted
fragment about the possible ordering of the continuum. The first half of this
quote consists of a fragment in which the continuum and the second number
class are compared. The reason for deleting this fragment is clear from the
outcome of the comparison:

(VIII–21, 22) The continuum can be ordered in a natural way as a
sequence of all integers with finitely many or ω digits. (The next
integer is approximated together with the integer itself.) Likewise
T can be ordered as a sequence of ω arbitrary numbers of the first
cardinality.

(...)

It thus appears that the cardinality of T certainly exceeds that of c.
(...). 98

The main point we want to emphasize here is, that in Brouwer’s opinion the
continuum of the real numbers is an ordered set, the order being the ‘natural’
one. This is of course the generally accepted view, but we must now be aware of
the fact that Brouwer is, in this notebook, referring to the continuum of the real
numbers and not to the intuitively given continuum of the connecting medium
between two events, on which always more points can be constructed. Brouwer
is in fact referring to, what he called in the first Begründung paper, the set C of
the ‘unbeschränkt fortgesetzten Folgen von zu ζ gehörigen Ziffernkomplexen’,
which can be interpreted as a representation of the real numbers between zero
and one.99

We noted already that in 1918 Brouwer was still of the opinion that the
continuum as the set of the real numbers is an ordered set (but he contested
Zermelo’s proof of the well-ordering of the continuum).

In 1923, however, he proved by means of a counter example that the theorem

97Omdat ik niet kan spreken van alle punten van het continuüm, zeg ik voor Stetigkeit niet:
alle tussenwaarden worden bereikt, maar: als ik een tussenwaarde geef, wordt hij bereikt (de
plaats waar, is door opvolgende benaderingsmeting te vinden.

98Het continuüm is lopend te ordenen als rij van alle gehele getallen met eindig of ω aantal
cijfers. (Het eerstvolgende getal wordt benadered tegelijk met het getal zelf.) Evenzo is T te
ordenen als rij van ω willekeurige getallen der eerste machtigheid. (...) Zo blijkt dan T van
zeker groter machtigheid dan c. (...)

99See page 71.



3.4. THE NOTEBOOKS AND THE INTUITIVE CONTINUUM 105

Die Punkte des Kontinuums bilden eine geordnete Punktspezies.100

is wrong, hence not only Zermelo’s claim of a well-ordered continuum is incor-
rect, but even the generally accepted opinion that the continuum is ordered.
Note again that the term ‘continuum’ refers to the set C from the Begründung
paper which can represent the set of the real numbers on the open interval (0, 1),
and not to the intuitive continuum from the dissertation.

3.4.11 Pro and contra the pure and intangible continuum

A surprising question, asked by Brouwer in the seventh notebook (in a crossed
out fragment), is the following, almost rhetorical one. After all, the answer was
supposed to be known and familiar to all mathematicians:

(VII–4) It is the question, whether the ‘fertige’ intuitive two-dimensional
continuum is equivalent to that of one dimension; most likely not.101

This statement should by all means come as a surprise to the reader, as Can-
tor gave a proof of their equivalence thirty years earlier (in 1874, cf. page 5).
Apparently Brouwer had his doubts about Cantor’s theorem and, for that rea-
son, deleted the paragraph; however, he did not follow up his view. His doubts
were fully vindicated by his later intuitionistic mathematics: the equivalence
is only valid if we accept a discontinuous mapping, based on a total function,
whereas every total function in intuitionistic mathematics is continuous.

Despite earlier exploratory attempts in the direction of spreads and choice
sequences (in VIII–13, he spoke of ‘sequences of chance’), Brouwer returned to,
and remained of the opinion that the continuum is an entity that exists on its
own; the only way to discuss and study it, is by means of an everywhere dense
‘scale’, that is constructed on it (VIII–22). In this way one can approximate
a point which is indicated on the continuum, and is one able to determine the
cardinality of a set, defined on it (cf. Brouwer’s Rome lecture Die mögliche
Mächtigkeiten [Brouwer 1908b]; see also page 170).

But immediately following this conclusion, Brouwer distinguished between
the ‘known point’ for which one can give an algorithmic approximating sequence,
and the ‘unknown point’:

(VIII–28) The unknown irrational point is rather the limit of a seg-
ment (‘the intuitive continuum’ or ‘the alter ego of the point on the
continuum’ or ‘the relation between two points of the continuum’)
than of a point. But the known irrational point, e.g.

√
2 is definitely

a point.102

100[Brouwer 1923a], page 3, or [Brouwer 1975], page 270.
101Het is de vraag, of het ‘fertige’ intüıtieve continuüm van twee dimensies gelijkmachtig is

met dat van één dimensie; waarschijnlijk niet.
102Het onbekende irrationale punt is meer de limiet van een Strecke (‘het intüıtieve con-

tinuüm’ of ‘het andere van het punt van het continuüm’ of ‘de relatie van twee punten van het
continuüm’), dan van een punt. Maar het bekende irrationale punt, bv.

√
2, is wel degelijk

een punt.
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The unknown point is the ‘limit of a segment’; this has to be interpreted
as the definition of an ‘algorithmless’ irrational number in the form of a set of
nested intervals, as Brouwer presented this in the second Begründung paper.103

In this definition the unknown point is the infinite choice sequence, and not its
limit. Weyl described it in a similar way in the second part of his Über die neue
Grundlagenkrise der Mathematik,104 in which he distinguished between a known
point in the form of a ‘bestimmte Folge’ which can only be defined by a law,
and a ‘werdende Folge’, determined by free choice; similar to Brouwer, Weyl
stated that in order to operate with such a ‘werdende Folge’, a certain property
has to be determined by an initial segment of this sequence. At any stage of the
development, the segment reached so far is symbolic for the ‘werdende Folge’
(the genetic point). In fact the segment represents the infinity of ‘points’ on it
(i.e. it represents all sequences of nested intervals, lying in that segment), since
there is an infinity of different sequences of intervals possible on that segment,
standing for ‘infinitely many points’; Brouwer could very well have shared the
same opinion.

But in view of the fact that the last two mentioned publications are from
1919 and 1920, and Brouwer’s fragment VIII–28 from 1906 or 1907, it is obvious
but surprising that the concept of ‘sequence of free choices of nested intervals’
was in his mind at such an early stage.
See also VIII–38:

(VIII–38) (...) One defines (on the basis of those algorithms) the
known irrational numbers (...) as limits of known sequences. (...)105

In the same paragraph the question is raised whether the unknown irrational
numbers can be defined as the limits of unknown sequences, but according to
VIII–41 one cannot give any relation between the known and the unknown
irrational numbers:

(VIII–40/41) One constructs, completely independent of each other,
the everywhere dense scale and the unknown irrational points. One
cannot give any relation between the two groups, never determine
of an element of the second group, whether it belongs to the first
group.106

Compare this again with Weyl,107 when he stated that ‘zwischen dem Kon-
tinuum und einer Menge diskreter Elemente eine absolute Kluft befestigt, die
103See [Brouwer 1919a], page 3 or [Brouwer 1975], page 191. In fact Brouwer defined here

‘points on a plane’ by means of λ-squares, but the definition applies to any number of dimen-
sions.
104[Weyl 1921], page 49 ff.
105Men definieert nu (op grond van die bewerkingen) de bekende irrationale getallen (...) als

limieten van bekende reeksen. (...).
106Men bouwt geheel onafhankelijk van elkaar op, de überall dichte schaal en de onbekende

irrationale punten. Men kan tussen deze beide groepen geen verband brengen, nooit van een
element van de tweede groep etwa uitmaken, dat het tot de eerste groep behoort.
107op. cit. page 51.
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jeden Vergleich ausschliesst’, and therefore no comparison between the two is
possible. (The reader will recognize that Brouwer’s view as expressed in the last
quote is rather sophisticated for the year 1906.)

In the last quote, Brouwer in fact stated that nothing can be said about
unknown approximating sequences. ‘Every’ in e.g. ‘every element of a set’ can
only refer to constructed elements, and unknown limit points are never like
known ones.

About Couturat’s definition of a perfect set,108 Brouwer commented in this
notebook:

(VIII–41) I cannot say: ‘every fundamental sequence has a limit’,
since I cannot consider a general fundamental sequence because it is
never finished.

(...)

And neither can I say: ‘every term A has between itself and another
term B at least one term’; this applies only to well-defined sets.

(...)

In general I cannot say anything about sets of greater cardinality
than ω; their elements are not definable; hence I can say nothing
about every element.109

We again recognize the term ‘finished’ with its two possible interpretations:
finished in its literal meaning and in its potential meaning. This discrepancy is
not of too great importance here, not only because it occurs ‘only’ in a notebook
and not in some published text, but also (and especially) because the meaning
here is clearly ‘never finished on principle’, since it concerns a choice sequence
(which of course in later time is a point). And since the continuation of such a
sequence is unknown on principle, one cannot speak of its limit.

In modern terminology the content of VIII–41 comes down to the impos-
sibility of quantification over unknown points. The problem of quantification
over choice sequences was only much later successfully tackled by Brouwer in
his continuity principle.110

108[Couturat 1905], chapter IV, § B: ‘(...) on dit qu’un ensemble est parfait, si toutes ses suites
fondamentales ont des limites, et si tous ses termes sont des limites de suites fondamentales’.
Couturat obviously means here convergent fundamental sequences. Note the difference with
Brouwer in regard to this concept. For Brouwer a fundamental sequence is (usually) any
lawlike sequence of order type ω.
109Ik kan niet zeggen: elke fundamentaalreeks heeft een limiet, immers ik kan niet een

algemene fundamentaalreeks beschouwen, want hij is nooit af.
(...)
En ik kan ook niet zeggen: ‘elke term A heeft tussen zich en een andere term B nog minstens

één term’; anders dan in de zin voor een welgedefinieerd ensemble.
(...)
In ’t algemeen kan ik van ensembles groter dan ω niets zeggen; hun elementen zijn niet

definieerbaar; ik kan dus niets zeggen van elk element.
110See our chapter 4.
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An unexpected argument for the intuitivity of the continuum is the following
one, which reminds us of the quote from II–1 from page 86 (which, in its turn,
reminded us of Borel’s view on the continuum).

(VIII–38) The strongest proof that the continuum is intuitive, must
be, that a child does not understand all the relevant reasoning about
it, but nevertheless applies it immediately without hesitation in the
proper way.111

The cardinality of the continuum is, for the first time, mentioned as an
individual cardinality in VIII-43: here it is stated, that the cardinality c of the
continuum can be understood in the following way:

(VIII–43) The cardinality c means: that cardinality, of which the
individuals can be approximated by a denumerable sequence, and
can be thought as such.112

This quote must be understood in the sense that c is a cardinality of its
own, with, as the most conspicuous property, that ‘individuals’ can only be ap-
proximated. Brouwer is venturing here into unknown territory. No specification
is given of how exactly to approximate an individual, even the concept of ‘in-
dividual’ remains unspecified, just as it remains unspecified how exactly equal
cardinality has to be defined for two sets with that cardinality. The method of
approximation will eventually turn out to be the one of choice sequences, lawlike
for the ‘known’ and non-lawlike for the ‘unknown’ elements.

We are inclined to assign to a set a cardinality of one of Cantor’s aleph’s
as a measure for its size, but the reader must be aware of the fact that for
Brouwer only ℵ0 exists as an aleph: the denumerably infinite cardinality. The
next higher cardinality is the ‘denumerably infinite unfinished’113 and the only
higher one after that is c.

But a set with cardinality c, that is, the continuum, does not have individuals
by itself, one can only construct individuals on it; and a constructed set of
individuals on the continuum can subsequently be considered as a finite or
denumerable subset of the continuum.

This characterization is not easily interpreted. Evidently, c presupposes the
intuitive continuum, and refers to elements that can be approximated. The fact
that Brouwer considered individuals, suggests that the elements have a descrip-
tion of some sort. If one takes that point of view, then c refers to an unfinished
set (cf. page 266). But it is equally possible, and in harmony with other state-
ments, that he was willing to grant individuality to non-lawlike sequences, and
that thus c is the cardinality of the choice reals avant la lettre, or in terms of

111Het beste bewijs dat het continuüm intüıtief is, is wel, dat een kind over al de erop
betrekking hebbende redeneringen heen hoort, maar ze toch zonder aarzelen direct zuiver
toepast.
112De machtigheid c wil zeggen: die waarvan de individuen door een aftelbare reeks zijn te

benaderen, en kan als zodanig worden gedacht.
113This cardinality will be discussed in chapter 7.
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the dissertation and of the notebooks, the ‘unknown reals’.

However, the same paragraph on VIII–43 continues, the cardinality f which
is the cardinality of all functions defined on c, is contradictory, since one can
make a free choice ω times114 (that is, continue indefinitely in making free
choices, thereby, again, cautiously referring to a possible choice sequence), but
not c times:

The cardinality f is contradictory. After all one can imagine that
the game of chance makes a free choice ω times (that is, indefinitely
continuing); but not c times. The fact, that one cannot conceive this
is, on being asked, told us immediately by our intuition.115

Brouwer’s conclusion was that c is an individual cardinality, not expressible
in some sequence of aleph’s. In fact Brouwer did not recognize such a sequence
and he used Cantor’s term ℵ0 just for convenience to express the denumerably
infinite cardinality. But he already attempted to express the cardinality c in
terms of choice sequences: for an arbitrary element of c, one can make a free
choice ω times; this has to be interpreted as an indefinitely continuing choice for
the next decimal place. The concept ‘c times a free choice’ is absolutely mean-
ingless, since potentially an individual can make a free choice ‘only’ ω times,
which stands for the always continued possibility of making a choice.

We can make a comparison with Borel, who made the same observation in
his Leçons sur la théorie des fonctions, where he wrote in an added note:

Il me parâıt ressortir clairement de ce qui précède que l’ensemble
des points d’une droite qui peuvent être effectivement définis d’une
manière individuelle est un ensemble dénombrable, mais non effec-
tivement énumérable.

Il n’est pas possible d’indiquer le moyen de fixer sur la droite un
point unique et bien déterminé qui n’appartienne pas à cet ensemble;
la proposition après laquelle il y a de tels points est vraie ou fausse
suivant qu’on admet ou non la possibilité d’une infinité dénombrable
de choix succesifs.116

Note the mention of successive choices in Borel’s text.

114Note that here ‘ω times a free choice’ is possible, whereas in VI-34 (see section 3.5.7) this
possibility is denied. This should not immediately be seen as a contradiction in Brouwer’s
work; the notebooks remain a collection of thought experiments, a ‘laboratory’ for his present
and future mathematics.
115De machtigheid f is contradictoir. Immers men kan zich denken, dat ω maal achtereen

(d.w.z. steeds maar door) het kansspel een vrije keus doet, maar niet c maal. Dat men dit
niet kan denken, antwoordt ons, desgevraagd, direct onze intüıtie.
116[Borel 1950], page 164; which is ‘Note IV’ of the said work, Les polémiques sur le transfini

et sur la démonstration de M. Zermelo, a collection of earlier published papers in several
journals. The relevant quote is from the sixth paper of Note IV, Les ‘paradoxes’ de la théorie
des ensembles from 1908, published in the Annales de l’École Normale.
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To conclude this survey of the continuum according to the notebooks, some
quotations:

(VIII–48) The continuum is the means to preserve the everywhere
dense scale of one transformation group also for another, and can
be defined with the help of the continuity axiom, which is therefore
inseparably linked to the continuum.117

That is, Dedekind’s continuity axiom118 is required as a heuristic principle to
include the otherwise missing elements in the continuum. If, then, we map an
everywhere dense scale A, as subset of a continuum which is defined by means of
Dedekind cuts, onto another continuum of the same kind, such that the image
of a cut on the first continuum which defines an element a of A, is a cut on the
second continuum, defining the image of a as element of the image of A, then
this mapped scale is also everywhere dense.
About the limited role of symbolic logic for mathematics:

(VIII–55) One can probably prove by means of symbolic logic, that
it is not contradictory to state that c and T are equivalent. For,
under a mapping, I can only construct c individually; hence c is
denumerably unfinished.119

This means that in symbolic logic the most one can perform is the proof of
negative statements, in this case the non-contradictority of the equivalence of
the continuum and the second number-class, both then of course viewed as de-
numerably unfinished sets. Brouwer elaborated this idea in the third chapter of
his dissertation (see our chapter 7, page 266).

The next two phrases relate to the ‘spread-concept’ on the continuum:

(VI–34) The cardinality of all groups from ω is of course 2ℵ0 ; (...)120

The continuum hypothesis, according to Cantor, claims that this should be
equal to ℵ1, but for Brouwer, as he expressed it already in several notebooks,
ℵ1 is not a cardinality, since we cannot define with the help of some algorithm
the elements of a set having that cardinality.

117Het continuüm is het middel, om de überall dichte schaal van één transformatiegroep ook
te kunnen behouden voor een andere en is te definiëren door middel van het Stetigkeitspostulat,
dat dus aan het continuüm onafscheidelijk is verbonden.
118This axiom was published by Dedekind in 1878 in his Stetigkeit une irrationale Zahlen,

[Dedekind 1912], page 10: ‘Zerfallen alle Punkte der Geraden in zwei Klassen von der Art, daß
jeder Punkt der ersten Klasse links von jedem Punkte der zweiten Klasse liegt, so existiert ein
und nur ein Punkt, welcher diese Einteilung aller Punkte in zwei Klassen, diese Zerschneidung
der geraden in zwei Stücke hervorbringt.’
119Met symbolische logica zal waarschijnlijk wel zijn aan te tonen, dat het niet contradictoir

is, om c en T gelijkmachtig te stellen. Immers bij afbeelding kan ik c niet anders, dan
individueel opbouwen; c is dus aftelbaar onaf.
120De machtigheid van alle groepen uit ω is natuurlijk 2ℵ0 ; (...)
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(IX–25) The continuum as a never terminating sequence of chances
is nonsense, since with an always continuing source of chances I just
get 2ω, never 2ℵ0 .121

ω is the ordinal number of the (ever unfinished) set of the natural numbers,
and ℵ0 is the cardinality of every denumerable set; Brouwer makes here a clear
distinction between 2ω and 2ℵ0 .

Both citations (VI–34 and IX–25) seem to express in a binary representation
2ℵ0 as the finished and completed totality of all infinite choice sequences, hence
as the completed set of the reals, and such a completion is of course never reached
and is unthinkable. 2ω, then, is representing the indefinitely continuing process
of free choices (Brouwer still used the Borelian term of ‘chance’), so it represents
the denumerably infinite unfinished process (see page 266). Therefore 2ω should
be interpreted as the continued process of the construction of all finite sequences
of free choice.122 We might put this as 2ω = 20∪21∪22∪23... According to the
last quote, this always growing totality of the increasing number of finite choice
sequences is all we can obtain in our attempt to represent the continuum. In
the last quote Brouwer was referring to the intuitive continuum, onto which a
denumerably infinite unfinished number of points can be constructed.

3.5 Summary and conclusions

The continuum is intuitive, and yet ... and yet. (VIII–18)

Brouwer’s continued occupation with this subject, which is of fundamental
importance for him, can be concluded from his notebooks, rather than from the
dissertation. The notebooks witness his ‘thinking aloud’ and his doubts, even
his doubts about the final results in the dissertation.

Brouwer’s fundamental concept is a continuum in the proper sense: a purely
flowing medium of connection between well-separated events, not composed of
points, but on which an everywhere dense scale without ‘gaps’ turned out to be
constructible, as we showed in the present chapter.

On such a scale, or with the help of such a scale, non-terminating sequences
could be defined, of which the terms, under a certain interpretation, had to be
viewed as ‘partially unknown’. This term turned out to ask for interpretation.

In later years the concept of the continuum developed further. In the
Begründung papers,123 Brouwer was able to speak of ‘arbitrary elements’ of
the ‘continuum of the real numbers’, represented by non-terminating sequences
of natural numbers or of nested intervals defined by rationals. After that he

121Het continuüm als oneindig voortlopende kansenrij is onzin, want als oneindig voort-
lopende kansenbron krijg ik alleen 2ω , nooit 2ℵ0 .
122In a modern notation this totality of all finite sequences is written as 2<ω .
123[Brouwer 1918] and [Brouwer 1919a].
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proved that the continuum is not linearly ordered: one can define a real num-
ber, of which it is impossible to prove whether it is positive, negative or equal
to zero. Also one can prove that not every definable real number has a dec-
imal expansion, and that one cannot split the continuum into two non-empty
parts.124

It will be clear that a dissertation should represent a concluding position,
and, in case that position is one of doubt, that too has to be expressed. Ap-
parently, during the time of his academic promotion, the doubt had not yet
materialized into a fundamentally new approach to mathematics.

In this chapter we have attempted to systematize the developments of Brou-
wer’s ideas and viewpoints on the topic of the continuum, from the notebooks
as well as from the dissertation, but despite this attempt the result might look
somewhat confusing, since the many quoted paragraphs in this section are rather
chaotically spread over the several notebooks in the form of short notes or con-
cise discussions. Also (seemingly) mutually conflicting opinions and statements
are a frequently occurring phenomeneon. However, as a conclusion we can state
that the dissertation presents a clear point of view regarding the intuitive con-
tinuum with its own specific cardinality, not comparable to any other. Points
can always be constructed on the continuum, according to an algorithm given in
advance in finitely many terms, resulting in sets with the cardinalities of finite,
denumerable and denumerably unfinished. See chapters 4 and 5 for more detailed
discussions on this. Every subsegment of the continuum is again a continuum,
it has no atomic constituent: a line is not composed of points.

But the doubt whether the result as published in the dissertation was to be
his ultimate viewpoint, remained until his last notebook: the ‘and yet, ... and
yet ...’, his frequently deleted ‘thought experiments’ on free choices of nested
intervals and on branching, these experiments can only be found in the note-
books and not in the resulting dissertation; they are a clear indication that the
process of studying and investigating the character of the continuum continued.
His rejection of the Cantorian continuum was one of principle and a permanent
one. The concept of the ur-intuition as the ultimate foundation of mathematics
was to remain. Still, Brouwer was not satisfied with his result. It is certainly
worth observing that his later ideas, which turned out to be of paramount im-
portance, were already present in the notebooks in the years 1905 through 1907,
albeit often ‘in statu nascendi’.

124See further under chapter 4.



Chapter 4

The possible point sets

4.1 Introduction

The nine notebooks that Brouwer filled with his thought experiments, his new
ideas and his comments on these ideas, as well as on those of others, are for
us a rich source of information in our attempts to trace the development of his
views on the ur-intuition of mathematics and on the continuum. Also Brouwer’s
notions on possible point sets, and especially the development of these notions
to the ones that we meet in his dissertation and even beyond, can be recognized
in the notebooks from the first one onwards: the formation of a set is completely
governed by the algorithm for the construction of its individual elements.1 For
that reason the totality of the elements of the second number class does not
exist, since the two generation principles that Brouwer admitted enable us to
construct always more elements for this set, but does not give a closure for it.
The number of possible cardinalities of sets, however, is not univocally stated
from the beginning; we will see in chapter 7 that this number gradually in-
creased from two (finite and denumerably infinite) to four (finite, denumerably
infinite, denumerably infinite unfinished and the continuum), which was to re-
main Brouwer’s final number.

In the next sections of this chapter we will investigate the set concept as
it appears to us from several of Brouwer’s writings, in the first place from his
dissertation. We will see that fundamentally new and revolutionary notions will
appear in print only in 1919, so well after 1907, the year of his doctoral degree,
but we can identify many traces, leading to these later developments, already
in the notebooks. We will also meet several concepts in connection with the set
concept, in the dissertation as well as in the notebooks, that require a thorough
interpretation.

1Note that this changes with the introduction of the concepts of spreads and species in
1918.

113
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It should not come as a surprise to the reader that there is one strict require-
ment which, according to Brouwer, every set has to satisfy, and that is that,
ultimately, its elements have to be developed out of the ur-intuition, and are
constructed with the help of some algorithm.

In the preceding chapter we entered at length into the construction of the ω-
and the η scale on the intuitive continuum, and this will form the basis for the
construction of all sets. In his dissertation Brouwer distinguished three modes
of set construction: 1) the just mentioned basic constructions, which, in every
combination, can be put together into one set; 2) an everywhere dense set, which
can be completed to a continuum; 3) deleting from a continuum a constructed
dense scale.

All three modes require an analysis and a discussion; especially the third
mode will turn out to be problematic, and Brouwer will eventually drop it. We
will argue that this mode originates from Cantor and that Brouwer in his early
days simply could not get around Cantor, his influence being too great.

In 1914 a new development set in when non-terminating sequences of free
choice could become elements for sets. This enabled Brouwer to handle the
continuum of the real numbers by means of its representing ‘perfect spread’, and
this allowed him to prove the non-denumerability of the reals in a surprisingly
simple way with the help of his ‘continuity principle’.

We will also see in this chapter that Brouwer’s new development reached full
maturity in 1918 with the publication of his Begründung papers.

The notebooks are a rich source to trace the growth of his ideas from sim-
ple and relatively primitive concepts to notions that went already beyond the
results in the dissertation: We will show that the notion of choice sequence is
slowly developing and is becoming demonstrably present in the eighth and ninth
notebook.

In order to get a clear picture of the concept of point set in the year 1907,
but also to recognize where this concept eventually was leading, the discussion
of the relevant parts of the dissertation will be alternated with that of some of
Brouwer’s papers from later years.

4.2 Set construction

On page 62 of Brouwer’s dissertation, after having completed the discussion on
the foundational aspects of geometry, the thread of the treatment of the con-
tinuum and the construction of points on it is resumed. In his first chapter,
Brouwer had shown the construction of two different point sequences, viz. the
order types ω of the positive ordinal numbers (or the reversed order type ∗ω),
and the in itself everywhere dense denumerable sequence of the rational num-
bers, i.e. the order type η. As a result of the construction of the everywhere
dense sequence we were able to turn the continuum, after the selection of an
arbitrary point as zero-point, into a measurable continuum, on which points can
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be approximated in a dual scale. The continuum as a whole, however, is not
composed of points and cannot be constructed; it is intuitively given to us in
its entirety.

The set construction, as presented in the dissertation, which we will analyze
in this chapter, certainly did not yet meet the standards of later years. During
the years 1916 – 1918, when lecturing on set theory at the University of Am-
sterdam, his mature ideas developed. We know this thanks to a few short notes
in the margin of his lecture notes on that topic, and at this place we are witness
to the birth of the intuitionistic ideas on spreads and species. On page 128 we
will devote a discussion on this foundational development.2

A few years before this turning point in his development, in 1912, Brouwer
was appointed professor at the University of Amsterdam, and his Inaugural
address, Intuitionism and Formalism, was still written in the spirit of his ‘first
intuitionistic period’, in which he was firmly embedded at that time. It sums
up his views on sets and their construction, departing from his constructivistic
position:3

From the present point of view of intuitionism therefore all mathe-
matical sets of units which are entitled to that name can be devel-
oped out of the ur-intuition, and this can only be done by combining
a finite number of times the two operations: ‘to create a finite or-
dinal number’ and ‘to create the infinite ordinal number ω’; here
it is to be understood that for the latter purpose any previously
constructed set or any previously performed constructive operation
may be taken as a unit. Consequently the intuitionist recognizes only
the existence of denumerable sets, i.e., sets whose elements may be
brought into one-to-one correspondence either with the elements of
a finite ordinal number or with those of the infinite ordinal number
ω.4

This view is not essentially different from the one in the dissertation, as we
will see now.

2The original notes, including the remarks in the margin, are kept in the Brouwer archives.
3We can roughly put Brouwer’s first intuitionistic period between 1907 and World War

I. During this period Brouwer is struggling with the continuum concept and the unknown
rationals. We can date the beginning of his mature intuitionism in 1916, when he wrote the
annotations in the margin of the lecture notes for his course ‘set theory’; see further page 128.

4[Benacerraf and Putnam 1983], page 81: Van het tegenwoordige standpunt van het
intüıtionisme zijn dus alle wiskundige verzamelingen van eenheden, die die naam verdienen,
uit de oerintüıtie op te bouwen, en kan dit uitsluitend geschieden door de beide operaties:
‘schepping van een eindig ordinaalgetal’ en ‘schepping van het oneindige ordinaalgetal ω’, een
eindig aantal malen met elkaar te combineren, waarbij als aan het oneindige ordinaalgetal ω
ten grondslag liggende eenheid natuurlijk elke tevoren opgebouwde verzameling of elke tevoren
uitgevoerde constructieve operatie fungeren kan. Dientengevolge bestaan voor de intüıtionist
slechts aftelbare verzamelingen, d.w.z. verzamelingen, wier eenheden in éénéénduidige corres-
pondentie zijn te brengen met de eenheden ener deelverzameling van het oneindige ordinaal-
getal ω.
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Set construction in Brouwer’s dissertation

On page 62, in the introduction to the possible point sets, it is once more em-
phasized that the mathematical intuition can only construct individually the
elements of a denumerable quantity according to a fixed algorithm. Brouwer
added in his own copy of the dissertation a handwritten remark, that this algo-
rithm has to produce each element in finitely many steps.

Furthermore, the text continues, mathematical intuition can construct a
scale of order type η and we can then imagine this to be covered by a continuum:

But it [i.e. the mathematical intuition] is able, after having created
a scale of order type η, to superimpose upon it a continuum as a
whole, which afterwards can be taken conversely as a measurable
continuum, which is the matrix of the points on the scale.5

At first sight this last phrase seems to involve a superfluous act, since we
needed the intuitive continuum (between two well-separated events) for the con-
struction of a (dual) scale of order type η. Hence we seem to be covering with a
continuum something that is already built on a continuum. However, if the scale
of order type η is not constructed by repeated splitting of an intuitively known
continuum, but is generated in the way as was explained on the first pages of
Brouwer’s dissertation, hence if we have the set N of the natural numbers by
intuition (Brouwer’s page 3), then a proper interpretation of ‘superimposing
a scale η with a continuum’ becomes feasible as follows: On the basis of the
intuitively known natural numbers the rationals were defined as ordered pairs
of natural numbers (page 5 and 6 of Brouwer’s dissertation), followed by the
definition of the order relations and the basic operations on those numbers. As
a result we have the order type η, without an underlying continuum, defined in
the ‘classical’ way on the basis of the intuitively given set N.6 This order type
can then be covered by a continuum afterwards, as will be described now.

Brouwer did not explain how this ‘covering by a continuum’ could be exe-
cuted, but we can imagine it in the following way: if we have a scale of order type
η without an underlying continuum, and, in addition, we have a continuum with
a scale of order type η constructed on it by ω-times splitting, then there exists
a one-to-one mapping of both η-scales onto one another under preservation of
order and, because of this possible mapping, we may imagine the continuumless
scale as ‘lying on’ the scale on the continuum, thus picturing the continuum to
cover the continuumless η-scale, since, because of their similarity, the two scales
are ‘identical up to isomorphism’.

An arbitrary point of that continuum can then be identified with the limit
point of its approximating sequence (or, in modern terms, with the sequence

5Maar wel kan zij, eenmaal een schaal van het ordetype η opgebouwd hebbend, er een
continuüm als geheel overheen plaatsen, welk continuüm dan achteraf weer omgekeerd als
meetbaar continuüm als matrix van de punten der schaal kan worden genomen.

6Another way to have at one’s disposal a scale of order type η without an underlying
continuum, is to depart from a continuum with a scale of this order type constructed on it,
and subsequently define a copy of this scale in the form of a similar set, which then needs no
underlying continuum for its definition.
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itself) of rational numbers on the everywhere dense scale of order type η. This
interpretation fits with page 63 of Brouwer’s dissertation: ‘In this way we can
state: the points of the second continuum are a part of those of the first’.

All this resulted in three modes for the construction of point sets on the
continuum, of which the first two will be discussed in this section (the third one
will follow on page 122). Brouwer put it, as usually, very briefly worded in his
dissertation, almost without further comment:

1. we can construct on the continuum discrete, individualized sets
of points which are finite, of order type ω, of order type η, or can be
obtained from such sets of points by alternation or subordination.
(...)7

This first mode refers to the construction of points on the continuum, one
by one, each point in finitely many steps according to some algorithm, as this
was explained in the preceding chapter (see page 75). The result is, Brouwer
continued, a finite or a denumerably infinite set of points and, consequently,
finitely many or denumerably many intervals:8

The number of these points is always denumerable, and likewise the
number of the intervals determined on the continuum by pairs of
points from the set is denumerable. In each of these intervals, and
also in its totality, the set may be dense or not (by dense we mean:
of the order type η after every well-ordered or inversely well-ordered
subset has been contracted to a single point).9

In order to be able to specify whether or not a resulting point set is dense
in an arbitrary segment, Brouwer introduced on page 65 the branching method
to characterize the points of the set by means of an arbitrary, everywhere dense
dual scale on the relevant segment. Brouwer specified here ‘dense’ as the condi-
tion that the first derivative of the set has a perfect subset on the interval; hence
dense does not mean ‘everywhere dense on the complete interval’, but ‘dense in
itself on parts of the interval’.10

This branching method proceeds as follows: since the segment to be investi-
gated may be considered as a unit segment, we verify whether there are elements

7(page 63): (...) kunnen we er volgens eindige getallen of de ordetypen ω of η, of ook in
afwisseling of onderschikking aan elkaar van deze drie, discrete, gëındividualiseerde puntverza-
melingen op bouwen; (...)

8This last expression (‘finitely or denumerably many intervals’) is of importance in Brou-
wer’s solution to the continuum problem, especially in his proof in the notebooks; see chapter
5, page 175

9(page 63): het aantal dezer punten is steeds aftelbaar, en evenzo het aantal der door
puntenparen daaruit op het continuüm bepaalde intervallen; in elk van haar intervallen, en
evenzo in haar geheel is de puntverzameling al of niet dicht (hieronder verstaan we: van het
ordetype η, nadat alle welgeordende of omgekeerd welgeordende verzamelingen erin tot een
enkel punt zijn samengetrokken.

10See section 1.1.6 for these notions.
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of the set that begin, in their representation in dual expansion, with 0.1.11 Next
we check if both ways of branching to 0.11 and 0.01 also occur, that is, we check
if there are elements that begin with 0.11 and 0.01. After that we check for 0.11
and 0.01 separately if both ways of branching occur for each of them, that is for
the case 0.11 whether or not there are elements in the segment that begin with
0.111 and 0.101; likewise for the case 0.01 whether or not there are elements
beginning with 0.001 and 0.011. If, at any stage, only one of the two is present,
this one is then fully determined by the previous step.12

Continuing in this way, that is, checking at every stage if the splitting into
two branches occurs in the approximation of the points of the set, we cut off
every branch that does not split anymore in any later stage of this procedure.
Note that the removal of branches that do not split anymore amounts to the
same as ‘contracting every well-ordered subset into a single point’. The result is
either nothing or a branch which does not terminate in the proces of splitting.
In the latter case the set is dense in itself in a certain interval.

However, the given procedure does not meet the standards of Brouwer’s
later intuitionism. First, the ‘principle of the excluded third’ is applied in the
argument given above (as it was applied elsewhere in the dissertation). This
principle will be rejected later as non-constructive.13

A second item of criticism is that a point, ‘indicated on the continuum’ can,
as Brouwer stated, either be given as a dual fraction or can be approximated by
an infinite sequence of dual fractions via the branching method. However, if it
is not already known in advance which of the two applies and if there exists no
algorithm to decide that, then, strictly speaking, this statement is in Brouwer’s
views without meaning. How can it be decided that no splitting will occur in

11Since the segment concerned will not be empty, its elements will either begin with 0.0 or
0.1; there are no other possibilities.

12We notice that Brouwer employed, at this place in the dissertation, the concept ‘choice’,
albeit not yet in the sense of free choice:

in determining each dual digit the preceding ones either determine it or they
leave open the choice between two digits;

(bij bepaling van elk volgend duaalcijfer is dat òf bepaald door het vorige òf laat
de keus tussen twee).

13See The unreliability of the logical principles, [Brouwer 1908a], in English included in
[Brouwer 1975], page 107 – 111. See also the next section for a short discussion about this
principle.

Additionally, in a marginal note added to a phrase in the earlier mentioned lecture notes
on set theory (1915/1916), Brouwer stated:

From an intuitionistic point of view (even though I frequently applied the prin-
ciple of the excluded third in my own work) which then probably did not give
correct results, but merely non-contradictory results.

(Van intüıtionistisch standpunt (ofschoon ik in mijn eigen werk ook dikwijls het
principium tertii exclusi heb toegepast) wat dan waarschijnlijk geen juiste, doch
alleen niet-contradictoire resultaten heeft gehad.)

On page 131 in the second chapter of his dissertation Brouwer merely judged it as empty, with-
out yet rejecting it on principle. Also in Brouwer’s own corrected version of the dissertation
the principle was not yet rejected ([Dalen 2001], page 111).
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any later stage of a branch? This aspect of decidability is apparently taken for
granted in the dissertation. It is, however, stated explicitly by Brouwer in the
Addenda and Corrigenda to the dissertation from 1917. See below on page 130.

Also in a handwritten correction in his own copy of the dissertation we
find, in an extended footnote on page 65, a remark, indicating that Brouwer
realized the insurmountable problems in regard to this procedure and principled
objections to it. The short and clarifying footnote in the original edition is
extended to a rather long one in the corrected edition, ending as follows:

According to my later views it is, though, very well possible that,
in a well-defined branching conglomerate, the intended process of
cutting off cannot be performed.14

The idea of splitting will play a major role in the later definition and construc-
tion of sets as spreads.15 At first sight it seems obvious that in his dissertation
Brouwer employed the branching method only as a way to characterize the el-
ements of a point set in order to determine whether or not the set is dense,
and not yet as a means to define elements of spreads (Mengen) by means of
choice sequences. However, in a letter to Fraenkel, dated 12 January 1927, and
to which we referred on page 74, Brouwer wrote the following:

Dass das Cantorsche Haupttheorem für die vollstandig abbrechbaren
Punktmengen ‘selbstverständlich’, für allgemeinen Punktmengen aber
‘falsch’ ist, hat nichts mit ‘allmähliche Verschärfung’ der Grundbe-
griffe zu tun, sondern nur damit, dass die intuitive Ausgangskon-
struktion der Mathematik (welche, wo sie bei meinen Vorläufern
vorkommt, nirgends über das abzählbare hinausgeht) von mir zuerst
(1907) als vollständig abbrechbare, finite Menge, so dann als voll-
ständig abbrechbare (nicht notwendig finite) Menge und schliesslich
als Menge ohne weiteres erklärt wurde, aber immer im Stadium ihrer
Einführung kurz als ‘Menge’ bezeichnet wurde.16

The expression ‘intuitive Anfangskonstruktion der Mathematik’ refers to the
construction of spread elements.17 So, according to what Brouwer wrote in 1927,
he certainly had in 1907 the possibility of free choices and ‘choice sequences’
in mind, but, according to the text on pages 64 and 65 of his dissertation, at
that time not yet sequences of free choices as a representation of the continuum,
but only sequences to characterize the elements of a given set. Towards the
end of the first chapter of his dissertation Brouwer is checking, by means of
the technique of sequences, whether or not a given set is dense (by inspecting
if its derivative is perfect). The fact that sequences of free choice, unfinished

14(dissertation, page 65, corrected edition [Dalen 2001], page 77): Naar mijn latere inzichten
kan het overigens zeer goed zijn, dat van een welgedefinieerd vertakkingsconglomeraat het
bedoelde afbrekingsproces onuitvoerbaar is.

15see page 133.
16See for English translation [Dalen, D. van 2000], page 289.
17See page 74.
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on principle, and known only in as far as the choices are made, can be used to
represent arbitrary real numbers and, in combination with the continuity prin-
ciple, made intuitionistic analysis possible, must have occurred to him in 1916.18

Brouwer described, as we saw on page 117, in his first rule the construction
of a finite or denumerably infinite set. This set can then be of order type ω or
η or combinations thereof, but the result need not be everywhere dense; it may
even be nowhere dense or only dense on one or more subintervals. The second
mode of construction may, under conditions, result in a set which is everywhere
dense:

2. in intervals, where the previous set is dense, we can transform
it by the contractions described above into an everywhere dense
set, and then apply to this set the operation of ‘completion to a
continuum’; the selected intervals are always clearly definable since,
as their number is denumerable, they are individualized.19

Hence, after having contracted a set on a selected segment into a set which
is everywhere dense, we can ‘complete it to a continuum’ by covering it with
a continuum as a matrix for the existing points of the set, but also for points
that can eventually be constructed on it afterwards. How this covering may be
performed was sketched above. This matrix is then an inexhaustible source for
more points, again and again. Every point which we are able to specify on the
continuum, is either a finite dual fraction of the scale, or can be approximated
arbitrarily closely by a sequence of rational dual fractions.

The reason why the operation ‘completion to a continuum’ has to be per-
formed in this second mode is twofold:
1. By this operation the continuum, as the inexhaustible source, becomes itself
one of the possible sets.
2. The third construction mode (see below) needs an underlying continuum for
its definition.

The second possibility of set construction was elucidated by Brouwer in the
Rome lecture Die Mögliche Mächtigkeiten20 as follows:

Man kann das mit dem discreten gleichberechtigten Continuum als
Matrix von Punkten oder Einheiten betrachten, (...). Man bemerkt
dann, dass das in dieser Weise definierte Continuum sich niemals als
Matrix von Punkten erschöpfen lässt, und hat der Methode zum Auf-
bau mathematischer Systeme hinzugefügt die Möglichkeit, über eine

18See page 128.
19(page 65) 2. kunnen we in intervallen, waarbinnen de laatste puntverzameling dicht is,

haar eerst door de boven beschreven samentrekkingen maken tot een overal in zich dichte
verzameling, en dan daarop de operatie ‘completering tot een continuüm’ toepassen; de in-
tervallen, die we daartoe uitkiezen, zijn steeds duidelijk te definiëren, want, daar hun aantal
aftelbaar is, zijn ze gëındividualiseerd.

20[Brouwer 1908b], also in [Brouwer 1975], page 102 – 104.
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Skala vom Ordnungstypus η ein Continuum (im jetzt beschränkten
Sinne21) hinzulegen.

The lecture Die mögliche Mächtigkeiten will be discussed more extensively
in chapter 7.

4.3 The principle of the excluded middle

We know that at this stage the ‘tertium non datur’ was not yet rejected as
not valid, but that in later work Brouwer constructed, with the help of sim-
ple algorithms, well-defined real numbers with remarkable properties, which
demonstrate that this principle is not generally valid.

Brouwer’s first formulation of the incorrectness of the ‘principle of the ex-
cluded third’ or ‘principle of the excluded middle’ (PEM) appeared in his paper
The unreliability of the logical principles, where the term ‘principium tertii ex-
clusi’ was used.22 The incorrectness (or, at this stage, the unreliability) of PEM
and of other classically accepted principles and theorems is usually demonstrated
by means of counterexamples, and indeed in this paper the first counterexample
is given. Since this paper is comprehensively discussed in our seventh chapter,
The role of logic, the reader is referred to page 247, where also this counterex-
ample is worked out. For now we stress that this one, as well as the next, is a
weak counterexample, that is, we have no evidence for a given problem (like the
possible existence of a certain number, or of a property of that number) as long
as some other outstanding mathematical problem remains unsolved.23 Whereas
Brouwer’s counterexample in the unreliability paper is still rather ‘vague’ in the
sense that it is not likely to convince the ‘hesitating’ mathematician, the next
one is, although still ‘weak’, more realistic and deserving the name ‘counterex-
ample’ in its literal sense.

It can be found in Brouwer’s lecture Über die Bedeutung des Satzes vom aus-
geschlossenen Dritten in der Mathematik, insbesondere in der Funktionentheo-
rie.24 The counterexample, presented in this lecture, shows that the generally
accepted theorem that the points on the continuum of the reals form an ordered
set, is incorrect. It proceeds as follows:

Sei dν die ν-te Ziffer hinter dem Komma der Dezimalbruchentwicke-
lung von π und m = kn, wenn es sich in der fortschreitenden De-
zimalbruchentwickelung von π bei dm zum n-ten Male ereignet, daß
der Teil dmdm+1...dm+9 dieser Dezimalbruchentwickelung eine Se-
quenz 0123456789 bildet. Sei weiter cν = (− 1

2 )k1 , wenn ν ≥ k1,

21that is, as just a source for always more points.
22[Brouwer 1908a].
23This attitude was quite a disturbance for a large part of the mathematical community,

since it introduced a time element in a theorem: a theorem should be either true or false,
independent of our knowledge of which is the case.

24[Brouwer 1923c]. The lecture was held in August 1923 in Belgium in the Dutch language
and it was held in German in September of the same year. The German text appeared in
Brouwer’s collected works; see [Brouwer 1975], page 268.
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sonst cν = (− 1
2 )ν , dann definiert die unendliche Reihe c1, c2, c3, ...

eine reelle Zahl r, für welche weder r = 0, noch r > 0, noch r < 0
gilt.25

We remind the reader that Brouwer considered already in the notebooks,
albeit on different grounds, the impossibility to represent an arbitrary point on
the continuum by an infinite decimal fraction. See the relevant quote in VI–21
on page 92, which was discussed in the section about the continuum in our third
chapter.

4.4 The third construction rule

There is yet one more rule for set construction. The dissertation continues on
page 66 with this third possibility:

3. we can construct a set of points by deleting from a continuum a
dense scale, constructed on it on some interval.26

This is, from a constructivist’s point of view, a remarkable rule for the con-
struction of a set indeed. Compare this also with the quotation from page 37 of
notebook VI (see page 98), where ‘all real numbers minus the rationals’ form a
‘set of chances’: if it is mapped on a continuum, then an arbitrary ‘choice’ on
the continuum gives, relative to the set, a chance to hit one of its elements. In
the dissertation Brouwer presented this third construction rule without any fur-
ther comment or explanation. We have a continuum, which is not constructed
but intuitively given, and which is not composed of points. A scale can be
constructed on that continuum and the ‘scale elements’ can be considered as
points (elements of a denumerable set). Now by taking away that scale there
remains the third kind of set. But does this set then consist of points, is it
composed of elements which are the result of a finite construction according to
some algorithm? This rule seems to be in conflict with his principle to construct
individually, one by one, the elements for a set, each according to a finite algo-
rithm. A few remarks have to be made here:

On page 67, when discussing his solution to the continuum problem (see
chapter 5), Brouwer noted the following:

One can only speak about a continuum as a point set with respect
to a scale of order type η.27

25The existence of the sequence 0123456789 in the decimal expansion of π is Brouwer’s
standard example. It was unknown to exist in Brouwer’s days, but it was shown in 1997
that the 17,387,594,880th decimal is the beginning of this sequence. In the announcement
of this result it was added that several of Brouwer’s proofs now lost their validity, which is
of course not true: we simply change the requirement of the sequence 0123456789 into the
uninterrupted succession of two, three or n times the sequence for some fixed n.

26(page 66) 3. kunnen we een puntverzameling scheppen, door aan een continuüm in een
zeker interval een er op geconstrueerde dichte schaal te onttrekken.

27over een continuüm als puntverzameling kan niet worden gesproken, dan in betrekking
tot een schaal van het ordetype η.
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Of course the meaning of this phrase is not that the continuum has, after
all, turned into a point set; it means that we can always define more points on
a continuum with an everywhere dense scale constructed on it, and add them
to a given set; the new points then have to be defined with the help of infinite
approximating sequences of elements from that scale, which then has to be of
the order type η. In this interpretation a continuum might indeed be viewed as
a ‘point set relative to an everywhere dense scale’.

A set, constructed according to the third rule, is the remainder of a contin-
uum after taking away a dense denumerable scale, and ‘points’ of this remainder
can indeed be defined in relation to the removed scale of order type η. But one
still cannot imagine this set, in the form of a ‘remainder’, to be a ‘point set’.
Moreover, the vast majority of the remainder of the continuum cannot be de-
fined by approximating sequences in a lawlike way. Hence in order to let the
result be a set in the proper sense, i.e. composed of individual elements, the
acceptance of lawless approximating sequences as individual elements seems to
be the only way, which is not very satisfactory either, since in that case the
algorithmic character of the elements is lost.

Now, one important and possibly surprising peculiarity has to be noted here,
viz. that the same idea of set-construction can be found with Cantor in the first
part of his earlier discussed article Über unendliche lineare Punktmannigfaltig-
keiten.28 In this paper Cantor discussed possible classes of infinite sets; the first
class contains the countable sets, the second class consists of those sets that
can be represented by an arbitrary continuous interval. Cantor then remarked
about this class:

In diese Klasse gehören beispielsweise:

1) Jedes stetige Intervall (α...β).

2) Jede Punktmenge, die aus mehreren getrennten, stetigen Inter-
vallen (α...β), (α′...β′), (α′′...β′′)... in endlicher oder unendlicher An-
zahl besteht.

3) Jede Punktmenge, welche aus einem stetigen Intervalle dadurch
hervorgeht, daß man eine endliche oder abzählbar unendliche Man-
nigfaltigkeit von Punkten ω1, ω2, ...ων , .. daraus entfernt.29

There is little doubt that Brouwer was familiar with Cantor’s 1879-paper.
But for Cantor the continuum consists of points, so for him it was all right. For
Brouwer things were different.

A possible interpretation of this method of set construction could be the one
we just alluded to: Brouwer recognized here as a set the collection of all possible
Cauchy sequences that can be represented by means of the constructed dense
scale on the continuum. The only way to express on the continuum arbitrary
points not belonging to a dense scale, is by means of approximating sequences of

28[Cantor 1879a], cf. our page 6 ff.
29See [Cantor 1932], page 142.
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points of the dense scale, where sequences of free choice then have to be admit-
ted. After removal of the dense scale there remain the approximating sequences
as elements of the third set. The removed elements are no longer elements of
the set, but serve only for the composition or definition of a new element. They
appear as elements in the defining sequences for the set-elements, but are no
longer elements themselves. Brouwer thus indeed satisfied the mentioned con-
dition, that one can only speak of the continuum as a point set in relation to a
scale of order type η.

However, in this interpretation there still remains the possibility to express a
removed rational number a by means of the Cauchy sequence a, a, a, a, .... One
could, of course, still define the rational a to be no element of that set, whereas
the sequence a, a, a, a, ... is an element, or, more likely, add the condition that
a sequence should not converge to a point of the removed scale. But a more
serious objection is the one we mentioned above, viz. the necessary admittance
of sequences of free choice. By admitting this kind of sequence, there cannot
be any longer the condition that every element should be given according to a
known and fixed law in finitely many steps. In hindsight we know that choice
sequences as elements for sets had to wait for at least another ten years.

Therefore the last objection is a very good candidate for the possible rea-
son why in the Addenda and Corrigenda on the Foundations of Mathematics30

under point 3 this third possibility was withdrawn: no algorithm can be given
according to which a set, in compliance with rule 3, can be constructed (see
page 131). It cannot be generated with the help of one mental act.31

Nevertheless, there still is a different but also possible explanation: Cantor’s
authority on the field of sets. Brouwer simply could not get around Cantor, and
could not leave unnoticed the set-constructions that Cantor allowed. Brouwer
was a newcomer in mathematics and he had to mature for some more years.
The fact that his authority eventually had matured can be concluded from the
extra text, in later time added to the footnote on page 65 of his dissertation and
which we discussed in the previous section (see page 119); the addition to the
footnote makes also this interpretation a good candidate. It shows his authority
and independence in set theory in that period.

But one can only guess whether there is only one single reason for Brouwer
to drop the rule, or that a combination of arguments led him to its rejection.

On a loose sheet, dated 1 November 1912, inserted on page 67 and added to
the text of the 2001-republication of his dissertation,32 Brouwer remarked the
following about ‘negative definitions’ of sets by the exclusion of elements or of
denumerable sets:

30[Brouwer 1917a], also in [Dalen 2001], page 195 ff.
31In this third item of the Addenda and Corrigenda, Brouwer referred to the ‘soon to be

published work’ (the Begründing papers), in which new methods for set construction will be
explained. Probably he had noticed already that a set, defined by the removal of a dense
scale, is not a spread.

32[Dalen 2001], page 77.
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The best is, to recognize a point set on the linear continuum as
defined only then (we may do so, as long as the possibility of unsolved
problems exists) if we have constructed it by placing points one
by one in a well-ordered way, whether or not under the addition
of the fundamental sequence of free choices of digits. Every non-
denumerable point set contains then a perfect subset.

We only recognize as adequate a definition by the exclusion of points,
if it can be translated into a new definition in the form given above.

For instance ‘all points between 0 and 1, except those ending in an
infinite number of consecutive digits 4’ can be translated into ‘free
choices of fundamental sequences of digits, not being 4, and between
every two of those digits a free choice of an arbitrary finite number
of digits 4’.33

In 1912 the concept of choice played already an important role (a role that
we can in fact already observe in the notebooks), but only after 1918 this choice
concept became of paramount importance in the form of choice sequences as
elements of spreads. However, from this inserted sheet it becomes clear that
as early as 1912 Brouwer reconsidered this third way of set construction, which
was eventually completely dropped in the Addenda from 1917.

Another significant remark is made on an insert on page 87, on which Brou-
wer gave another argument in regard to the negative definitions of a set:

‘All points of the continuum except the set α’ is no definition, since
for that we should perceive the continuum as finished (in order to give
a meaning to all); it only becomes a definition, if it is translated into
a positive (i.e. in terms without except) denumerable construction,
possibly with the aid of a fundamental sequence of choices.34

which clearly shows that Brouwer distanced himself from the third construction
method.

33Het beste is, een puntverzameling op het lineaire continuüm eerst dan als gedefinieerd
te erkennen – en zo iets mogen we doen, zolang de mogelijkheid van onoplosbare problemen
bestaat – als we haar hebben opgebouwd, door welgeordend punt voor punt te plaatsen, al
of niet onder toevoeging der fundamentaalreeks van vrije cijferkeuzen. Elke niet aftelbare
puntverzameling bevat dan een perfecte deelverzameling.

Definitie door uitsluiting van punten erkennen we dus alleen dan als afdoend, als ze zich in
een nieuwe definitie van bovenstaande vorm laat vertalen.

Bijvoorbeeld ‘alle punten tussen 0 en 1, behalve die op ∞ veel opeenvolgende cijfers 4
eidigen’ is te vertalen in ‘vrije keuzen van fundamentaalreeksen van cijfers, die niet 4 zijn, en
tussen elke 2 dier cijfers vrije keuze van een willekeurig eindig aantal cijfers 4’.

34‘Alle punten van het continuüm behalve de verzameling α’ is geen definitie; immers daartoe
zouden we het continuüm moeten af denken (om alle een zin te geven); het wordt eerst een
definitie, als ze is omgezet in een positieve (d.w.z. zonder behalve geformuleerde) aftelbare
opbouw, eventueel onder tehulpname ener fundamentaalreeks van keuzen.
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In the following sections the fundamental developments in the set concept
in the years 1914 – 1919 will be sketched, in order to make the search for
their adumbrations in the notebooks and a comparison with the results in the
dissertation feasible.

The possible cardinalities for sets will be discussed in chapter 7, when the
third chapter of Brouwer’s dissertation will be studied and commented on.

4.5 The review of Schoenflies’ Bericht

In 1900 Schoenflies published the first volume of Die Entwickelung der Lehre
von den Punktmannigfaltigkeiten, Bericht über die Mengenlehre, as a separate
volume with the Jahresbericht der Deutschen Mathematiker-Vereinigung volume
8.35 In 1908 it was followed by the second volume.36

In 1913 an updated and thoroughly corrected edition appeared.37 In 1914
Brouwer published a review in the Jahresbericht der Deutschen Mathematiker-
Vereinigung volume 23,38 in which he wrote down his objections against Schoen-
flies’ new edition.

Brouwer characterized Schoenflies’ work as almost encyclopedical, and writ-
ten with ‘something for everyone’. For the intuitionist there is a lot of surplus
information in it.

Um dies näher zu beleuchten, erinnere ich daran, daß für den Intu-
itionisten nur wohlkonstruierte unendliche Mengen existieren, welche
sich zusammensetzen aus einem Teile erster Art, das sich als eine
einzige Fundamentalreihe erzeugen läßt, und einem Teile zweiter Art,
dem eine Fundamentalreihe f als Fréchetsche V-klasse zugrunde liegt,
während seine Elemente in solcher Weise durch je eine Folge von
Auswahlen unter den Elementen einer endlichen Menge oder einer
Fundamentalreihe bestimmt werden, daß jeder Folge von Auswahlen
eine Folge von einander einschließenden Teilgebieten von f mit gegen
Null konvergierender Breite entspricht, und in den je zwei verschiede-
nen Folgen von Auswahlen entsprechenden Gebietsfolgen zwei außer-
halb voneinander liegende Endsegmente existieren.39

And this immediately leads to some conclusion (without proof, as Brouwer
explicitly added for the second conclusion which is now known as the Cantor-
Bendixson theorem):

1. Die Summe einer endlichen Zahl oder einer Fundamentalreihe
von elementefremden wohlkonstruierten Mengen ist wiederum eine
wohlkonstruierte Menge.

35[Schoenflies 1900a].
36[Schoenflies 1908].
37For a historical account, see [Dalen, D. van 1999], page 229 ff.
38[Brouwer 1914], also in [Brouwer 1975], page 139 – 144.
39[Brouwer 1975], page 140.
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2. Jede abgeschlossene wohlkonstruierte Punktmenge setzt sich aus
einer perfekten und einer abzählbaren Punktmenge zusammen, d.h.
das Cantorsche Haupttheorem bedarf für den Intuitionisten keines
Beweises.

3. Jede nichtabzälbare wohlkonstruierte Punktmenge enthält eine
perfekte Teilmenge, d.h. die ‘total imperfekten’ Punktmengen (vgl.
S 361 – 364 des Schoenfliesschen Werkes) sind für den Intuitionisten
illusorisch.

The exact definition of Fréchet’s V-class is not relevant here; the main novelty
is Brouwer’s definition of ‘Menge’ as the union of a denumerable set and a perfect
set, where the latter is composed of choice sequences. In fact the definition is
quite general, but it is convenient to restrict our attention to the continuum.

In this review a choice sequence is defined as a set of nested neighbourhoods,
converging to a final neighbourhood with width zero, such that the neighbour-
hoods of two choice sequences which become disjunct at a certain step, will
remain so at all subsequent steps. Hence two such sequences stand for two
different choice sequences and thus for two different real numbers on the con-
tinuum, where, as we stressed earlier, the real number is not the limiting point
of the sequence, but the sequence itself in its totality.40 This form of ‘being
different’ of two choice sequences is made more specific in Brouwer’s second
Begründung paper as ‘lying apart’ (örtlich verschieden). This is in Brouwer’s
later intuitionism stronger than merely ‘different’. Two choice sequences ‘coin-
cide’ if every neighbourhood of one is partly covered by every neighbourhood of
the other. In general two species or two elements of a species are ‘different’ if
the assumption of their equality leads to a contradiction. They are ‘apart’ if the
condition given above is satisfied, which is the condition of being ‘demonstrably
separated’.

There are two details in the quoted paragraph from the Schoenflies review
which merit some extra attention.

Firstly, the paragraph begins with ‘erinnere ich daran ...’, followed by Brou-
wer’s definition of ‘Menge’. This opening is a bit surprising, since this is the first
time that a definition of a set is given in which the elements partly consist of
choice sequences. There is no known publication of an earlier date in which this
definition appeared. In his inaugural address from 1912, Brouwer still spoke of
well-defined sets in the sense of his dissertation; that is: constructed out of the
ur-intuition, point by point, on the continuum.

Secondly, it is also for the first time that Brouwer called his mathematics ‘in-
tuitionistic’. In the inaugural address he mentioned Kant’s intuitionism, which
differs from his own ‘neo-intuitionism’ by giving up Kant’s apriority of space,
and maintaining only the apriority of time (see also the footnote on our page 49).

From now on Brouwer fully accepted choice sequences as mathematical ob-
jects, and spreads and species will take the place of the ‘set of which the elements

40cf. [Brouwer 1919a], § 1.



128 CHAPTER 4. THE POSSIBLE POINT SETS

have to be constructed individually’
‘Spreads’ and ‘species’ as the new concepts for sets are, at this stage of the

development and in this review, implicitly there. We are now entitled to speak
of an arbitrary element of the continuum of the real numbers. The continuum
is no longer just a matrix for points, to be constructed onto it. A ‘theory of the
continuum’ comes into being. This, however, does not imply the disappearance
of the intuitve continuum, as we noticed earlier. We observed already that in the
second Wiener Gastvorlesung, entitled Die Struktur des Kontinuums, Brouwer
added a handwritten note that the continuum remains the immediate result of
the ur-intuition:

Add at the end of section I of the continuum lecture that, neverthe-
less, the continuum is still the immediate result of the ur-intuition,
just as with Kant and Schopenhauer.41

How a choice sequence is defined will will be determined by decidable condi-
tions. These conditions may prescribe the terms of a sequence to be fixed either
completely by free choice, or, in the case of sequences as set elements, within
the more or less strict constraints of some limiting prescription.

4.6 The lecture notes 1915/’16 on Set theory

The next important step in Brouwer’s development is to be found in a small
number of notes, written in pencil, in the margin of his lecture notes for his
course ‘set theory’, lectured in 1915 – 1916 and in 1916 – 1917.42 In 1915/1916
Brouwer still lectured set theory in the traditional constructivistic way. For
instance, in 1915 he still proved the non-denumerability of the real numbers by
means of Cantor’s diagonal argument, but in 1916 he sketched in the margin of
his own notes a proof with the help of the continuity argument:

(...) that it is on the other hand impossible to map all the elements
of f1 on different elements of ρ,43 follows from the fact that the
choice of the element of ρ should take place at a certain place of the
never terminating choice sequence, and in this way all extensions of
such a finite branch, defining the element of ρ, have the same image
in ρ.44

41Kept in the Brouwer archives. This was earlier quoted and discussed on page 74 of this
dissertation:

In continuum voordracht, aan het slot van I toevoegen, dat het continuum dus toch weer
uit de oerintüıtie onmiddellijk gegeven is, juist als bij Kant en Schopenhauer.

42These lecture notes, with the handwritten marginal notes on it, are kept in the Brouwer
archives.

43f1 is the set of real numbers, presented as infinite choice sequences (decimal or dual
fractions) and ρ is the set of natural numbers.

44(...) dat het omgekeerd onmogelijk is alle elementen van f1 af te beelden op verschillende
elementen van ρ, volgt daaruit, dat de keuze van het element van ρ dan zou moeten plaatsvin-
den op zeker punt van de (immers nooit aflopende) keuzenreeks, en op deze manier krijgen
alle verlengingen van zulk een eindige keuzentak, die het element van ρ bepaalt, hetzelfde
beeld in ρ.
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A very simple and ingeneous argument, based on the continuum of the reals
as represented by the totality of all choice sequences. After all, from the purely
constructivistic standpoint in the dissertation, the totality of all constructible
irrational numbers remains denumerably unfinished.45 If, however, one admits
all choice sequences, and presupposes their denumerability, then the determina-
tion of the natural number which is paired to a specific choice sequence (thus
mapping the specific choice sequence on a natural number by means of some
mapping function) should take place after a finite number of choices for the se-
quence. In symbols, if the totality of all reals, represented as choice sequences,
were denumerable, i.e. the totality can be mapped on N by some mapping func-
tion F , then the value of F (α) for some choice sequence α has to be determined
after an initial segment α of α. So F (α) = F (α) = n, but then F (α.β) = n for
every extension β of α, which leads to a contradiction, hence no such F exists.

From a constructivistic point of view it is obvious that, in the case of a map-
ping F : NN → N, this mapping can only be performed if an initial segment of
the argument in the form of an infinite choice sequence, is sufficient to determine
the value of F for that argument. This is the ‘Continuity principle for natural
numbers’,46 symbolically written as:

∀α∃xA(α, x) =⇒ ∀α∃m∃x∀β[βm = αm⇒ A(β, x)]

in which α and β are choice sequences, m and x natural numbers, αm the initial
segment of the sequence α with length m and A(α, x) is some predicate that
defines an unambiguous relation between the choice sequence α and the natural
number x.

The above argument does not cover the general case; it does not take into
account the fact that choices of a higher order may play a role. Thus Brouwer’s
note in the margin is more a first idea than an exact argument.47

We also find in the margin of these lecture notes the important, and for intu-
itionistic set theory fundamental, concept of ‘spread’ (Menge, Brouwer usually
employed the word set for spread).

A mathematical entity is either an element of a previously con-
structed fundamental sequence F (governed by induction, as the
sequence ρ), or a fundamental sequence f (which never terminates
and is not governed by induction) of arbitrarily chosen elements from
F . (One can very well operate with such a sequence, if one just has
to operate with a suitable beginning segment of f for every entity d
or function sequence r which has to be deduced), (neither r is ever
terminated in general).

A set now is a law, which deduces a d or r from an f ; this r can
contain as element e.g. relation symbols (e.g. those of ordering),

45See chapter 7 for the notion ‘denumerably unfinished’.
46To be precise, the weak continuity principle, since it only states the existence of a suitable

m for each α separately.
47For an analysis of the continuity principle, in which different types of sequences (lawlike

and non-lawlike) are included in the argument, see [Atten, M. van and Dalen, D. van 2000].
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such that the law can result in well-ordered sets or other ordered
sets or in a function (though one cannot obtain in this way the set
of all ordered sets or of all well-ordered sets).48

The content of this quote reminds us of the passage we cited from the Schoen-
flies review. But the paragraphs in the margin of Brouwer’s lecture notes do
not speak of the union of the two composing parts of a set, as was done in
the Schoenflies review (see page 126), but intend to say that only one of two
possibilities is the case. A set is a law which deduces its elements in the form
of either discrete entities d, or non-terminating choice sequences r governed by
law, with as input a choice sequence f .

Here the most important result is, that infinite choice sequences which never
terminate become legitimate mathematical objects. Infinite sequences, governed
by some law, had of course been familiar objects since long, but these new
sequences are of a completely different character. In the case of sequences of
free choice one cannot, as in the case of an algorithmic sequence, turn away from
it and let it grow while doing something else, as Brouwer expressed it in one of
the notebooks (see page 98).

4.7 Addenda and corrigenda to the dissertation

In the year 1917 Brouwer published in the Proceedings of the KNAW49 a list of
15 corrections to his dissertation.50 Three of those (the numbers 3, 7 and 11)
are relevant to our present subject.

3. Set construction

This item concerns the three modes of set construction.51 In this correction
the third construction mode is dropped as a result of the consequences of his
intuitionistic point of view, as expressed in the Schoenflies reviews. The second
mode becomes the most general one and the first can be seen as a particular
case of the second.

48Een wiskundig ding is òf een element uit een tevoren geconstrueerde fundamentaalreeks
(door inductie beheerst, zoals de rij ρ) F , òf een fundamentaalreeks f (die nooit af is en niet
door inductie beheerst wordt) van willekeurig gekozen elementen uit F . (Met zulk een reeks
kan men zeer goed werken als men voor later uit af te leiden ding d of functiereeks r altijd
maar in elke fase met een passend beginsegment van f heeft te werken), (r is dan i.h.a. óók
nooit af).

Een verzameling is nu een wet, waarmee uit een f een d of een r wordt afgeleid; deze r
kan dan b.v. als elementen ook relatie-symbolen (b.v. ordenende) bevatten, zodat de wet
b.v. tot welgeordende verzameling of andere geordende verzameling of tot een functie kan
voeren (overigens kan men zo niet komen tot de verzameling der geordende verzamelingen of
der welgeordende verzameling).

49Koninklijke Nederlandse Academie van Wetenschappen, the Royal Dutch Academy of
Science. When Brouwer started publishing in the Proceedings, this institute was still called
Koninklijke Academie van Wetenschappen, or Royal Academy of Science.

50[Brouwer 1917a], also in [Dalen 2001], page 195 ff. English translation in [Brouwer 1975],
page 145 – 149.

51See pages 117, 120 and 122.
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As for the first mode, Brouwer explicitly referred to the parts of the Schoen-
flies review that we discussed on page 126: choice sequences enable us to go
beyond the matrix role of the continuum and to represent the continuum of the
reals in a direct way. One might even be inclined to call this representation a
‘construction of the continuum of the real numbers, without the intuition’, but
we saw on page 74 that Brouwer never abandoned his ur-intuition of continuous
and discrete, and, moreover, a construction presupposes an algorithm for indi-
vidual elements, and therefore a representation (or simulation) of the continuum
is the proper expression.

The introduction of choice sequences, in a process of growth, as legitimate
objects of the mathematical universe, certainly ruled out the third construction
mode. The result of the first mode is either a finite, or a denumerably infinite
set, and the result of the second mode is either a denumerably infinite set or a
continuum. Since the representing tree of the result of the first mode has either
finitely many, or a denumerably infinite number of branches in which no further
splitting occurs, the first mode can be considered as a special case of the second,
and the second then becomes the general rule for set construction.

Two essential assumptions form the basis for the analysis in the dissertation:

in the first place that the set can be constructed in such a way that
it is individualized, i.e. so that the different infinitely proceeding
branches of the tree produce different points, and further that the
individualized point set can be internally dissected, i.e. that the pro-
cess of breaking off the branches which do not ramify any more,
which must terminate after a denumerable number of steps, really
can be effected.52

In the Addenda and Corrigenda Brouwer presented an updated version of
his modes of set construction, covering the first two modes and omitting the
third one.

The second assumption was, in fact, already put forward when discussing the
branching method: how can it be decided that no further splitting will occur?
A decision procedure is required for this.

However, in this item of the Addenda, the role of the given use of choice
sequences is still limited to that of ‘describing set elements’ or of ‘simulation
of the continuum’, hence for the analysis afterwards of an already existing set,
and not yet in the more creative sense for their construction. But, as Brouwer
remarked in this same third item of the Addenda, there is also the possibility of
a new construction principle, in which these assumptions are no longer needed.
Brouwer certainly must have had in mind the concept of Menge (spread), as
can be concluded from a reference at this place, to a work which was ‘soon to

52ten eerste, dat de puntverzameling gëındividualiseerd kan worden geconstrueerd, d.w.z.
zo, dat twee verschillende oneindig voortgezette takken van het vertakkingsagglomeraat tot
twee verschillende punten voeren,

ten tweede, dat de gëındividualiseerd geconstrueerde puntverzameling inwendig ontleed kan
worden, d.w.z. dat het afbrekingsproces der zich niet weer vertakkende takken, dat na een
aftelbaar aantal schreden tot een eind moet voeren, werkelijk kan worden uitgevoerd.
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be published’. That work can only have been his Begründung der Mengenlehre
unabhängig vom logischen Satz vom ausgeschlossenen Dritten,53 of which the
first part appeared in 1918, so he certainly must have been working on it in
1917.

7. The principle of the excluded third

This correction refers to two items in two different places in the dissertation,
both about the role of logic in mathematics. Firstly, on page 131 of his dis-
sertation, Brouwer was still of the opinion that the principle of the excluded
third is nothing but a useless tautology, harmless for the rest. In the correc-
tions this claim is changed into the stronger version that this principle results
in ‘improper petitiones principii’, as he argued this already in his 1908 paper
The unreliability of the logical principles; he referred explicitly to this paper at
this place in the Addenda.54

The second item is about the comprehension axiom, which asserts the exis-
tence of a set on the basis of a certain property of its elements alone. On page
135 of Brouwer’s dissertation, the axiom is in its implicit application limited to
entities that belong to a previously constructed mathematical system. Brouwer
mentioned as an example the Euclidean axioms of geometry, of which the blame
of incompleteness is only unjustified if Euclid saw the building of geometry as
already finished; axioms then only serve the purpose of handy and concise sum-
mary of its basic properties.55 But this is, according to Brouwer in his Addenda,
in general not sufficient for the definition of a set or of a mathematical system
within an existing system. Also the set or the system, defined by its properties
within a completed system (hence characterized according to the comprehen-
sion axiom), has to be the result of a construction.56 In the Addenda Brouwer
referred to page 177 of his dissertation, where this corrected view is already
properly applied. On this page he criticized Poincaré, for whom ‘existence’ only
means ‘exempt of contradiction’, contrary to Brouwer’s dictum:

but to exist in mathematics means: to be constructed by intuition;
and the question whether a corresponding language is consistent, is
not only unimportant in itself, it is also not a test for mathematical
existence.57

This constructivistic point of departure remained of course in his later in-
tuitionism in the definition of subspecies of species, even if a subspecies is by

53[Brouwer 1918] and [Brouwer 1919a], called for short: the Begründung.
54For a more detailed discussion of this paper, cf. page 247 of our dissertation.
55See also chapter 7, page 253.
56Also the collection of elements that have a certain property among earlier constructed

elements involves a constructive act. Compare this with page 229, where the concept of a
‘building within a building’ is discussed.

57diss. page 177: maar bestaan in wiskunde betekent: intüıtief zijn opgebouwd, en of een
begeleidende taal vrij van contradictie is, is niet alleen op zichzelf zonder belang, maar ook
geen criterium voor het wiskundig bestaan.
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definition a property.

11. The non-denumerable point set

This item is about the well-ordering theorem, already conjectured by Cantor
and proved by Zermelo.58 Brouwer referred in this item to page 152 and 153
of his dissertation, where he noticed that the theorem is, according to Borel,
equivalent to the axiom of choice; either one can be taken as axiom and the other
one subsequently proved. In his dissertation the solution was simple for him: for
denumerable sets the theorem is trivial and for the only other infinite cardinality,
the continuum, the theorem does not apply because 1) the vast majority of its
elements is unknown, and 2) well-ordering includes denumerability.

If we admit non-denumerable sets of points, defined by an infinite tree repre-
senting the continuum, then the impossibility of well-ordering the perfect spread
can be proved. An earlier proof was given in the Schoenflies review, and Brouwer
made use of the opportunity to correct his earlier proof.

4.8 The ‘Begründung’ papers, 1918/19

The breakthrough of Brouwer’s intiuitionistic mathematics came in the year
1918 with the publication of the first part of a revolutionary paper, bearing the
long, but fully explanatory title Begründung der Mengenlehre unabhängig vom
logischen Satz vom ausgeschlossenen Dritten. Erster Teil, Allgemeine Mengen-
lehre;59 the second part, Begründung ... Zweiter Teil, Theorie der Punkt-
mengen60 appeared in 1919. Both are usually referred to, for short, as the
Begründung papers.

The term ‘intuitionistic’ was, except in the title, not used in these papers.
We met it in its modern meaning in the Schoenflies review, and it is used again
in 1919 in Brouwer’s short paper Intuitionistische Mengenlehre,61 published
in the Jahresbericht der Deutschen Mathematiker Vereinigung.62 From now
on the terms ‘intuitionistic’ and ‘intuitionism’ are used to designate Brouwer’s
fundamentally new approach to mathematics and its construction.63

We already discussed some of the new notions and tools from the Begründung
papers on page 71 when introducing the ‘full continuum’ of the real numbers,
and a part of the following quotes was also given in that section, but will be
repeated here for completeness’ sake.

The Begründung paper begins with the following definition:
58cf. page 17 and page 27 respectively.
59[Brouwer 1918], see also [Brouwer 1975], page 151–190.
60[Brouwer 1919a] or [Brouwer 1975], page 191–221.
61See page 135.
62This latter paper, although it appeared in print in 1920, can very well be read as an

introduction to the Begründung papers.
63[Brouwer 1919b]. Brouwer used terms like ‘neo-intuitionism’, ‘old intuitionism’, ‘semi

intuitionism’; for some clarification of this terminology we refer again to the footnote on page
49 of this dissertation.
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Der Mengenlehre liegt eine unbegrentzte Folge von Zeichen zu Grun-
de, welche bestimmt wird durch ein erstes Zeichen und das Gesetz,
das aus jedem dieser Zeichen das nächstfolgende herleitet. Unter
den mannigfachen hierzu brauchbaren Gesetzen erscheint dasjenige
am geeignetesten, welches die Folge ζ der Ziffernkomplexe 1, 2, 3, 4,
5, ... erzeugt.

and it continues with the definition of spread:

Eine Menge ist ein Gesetz, auf Grund dessen, wenn immer wieder
ein willkürlicher Ziffernkomplex der Folge ζ gewählt wird, jede dieser
Wahlen entweder ein bestimmtes Zeichen, oder nichts erzeugt, oder
aber die Hemmung des Prozesses und die definitive Vernichtung
seines Resultates herbeiführt, wobei für jedes n nach jeder unge-
hemmte Folge von n− 1 Wahlen wenigstens ein Ziffernkomplex an-
gegeben werden kann, der, wenn er als n-ter Ziffernkomplex gewählt
wird, nicht die Hemmung des Processes herbeiführt. Jede in dieser
Weise von der Menge erzeugte Zeichenfolge (welche also im allge-
meinen nicht fertig darstellbar ist) heisst ein Element der Menge.
Die gemeinsame Entstehungsart der Elemente einer Menge M wer-
den wir ebenfalls kurz als die Menge M bezeichnen.

Thereupon the concepts mathematische Entität and Species are defined:

Mengen und Elemente von Mengen werden mathematische Entitäten
genannt.

Unter einer Species erster Ordnung verstehen wir eine Eigenschaft,
welche nur eine mathematische Entität besitzen kann, in welchem
Falle sie ein Element der Species erster Ordnung genannt wird. Die
Mengen bilden besondere Fälle von Species erster Ordnung.

Unter ein Species zweiter Ordnung verstehen wir eine Eigenschaft,
welche nur eine mathematische Entität oder Species erster Ordnung
besitzen kann, in welchem Falle sie ein Element der Species zweiter
Ordnung genannt wird.

Hence choice sequences, according to the first quotation, consist of infinite
sequences of elements, which are constructed from a collection of objects, given
in advance. Choice sequences, in turn, are the elements of a spread and a spread
is a particular case of the more general concept of a species (of the first order).

The simplest example of a spread is one, in which the basic collection is the
set of the natural numbers, and where the law is such that at any stage of its
development, every sequence is composed of the natural numbers in the order
in which they were chosen from the set ζ ‘on their way to the node’.

If every finitely terminating branch is removed, the elements of the spread
consist of infinite choice sequences of ‘signs’ (for instance of the natural numbers
or of intervals on the continuum). These choice sequences can be, and sometimes
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are, constructed according to a specific law, but also sequences of free choices are
possible, e.g. in a spread as a representation of (a segment of) the continuum.

In the next quotation C is the ‘universal spread’,64 which represents the set
of the reals on the open interval (0, 1) and A is the set ζ of the natural numbers.
In this fragment we immediately recognize the marginal notes from the lectures
on set theory:

Die Menge C ist grösser als die Menge A. Ein Gesetz, das jedem
Elemente g von C ein Element h von A zuordnet, muss nämlich das
Element h vollständig bestimmt haben nach dem Bekanntwerden
eines gewissen Anfangssegmentes α der Folge von Ziffernkomplexen
von g. Dann aber wird jedem Elemente von C, welches α als An-
fangssegment besitzt, dasselbe Element h von A zugeordnet. Es ist
mithin unmöglich, jedem Elemente von C ein verschiedenes Element
von A zuzuordnen. Weil man andererseits in mannigfacher Weise
jedem Elemente von A ein verschiedenes Element von C zuordnen
kann, so ist hiermit der aufgestellte Satz bewiesen.65

Brouwer stated as a theorem that the set C is non-denumerable, and sub-
sequently proved it, this time not with the help of Cantor’s diagonal method,
but in his own (intuitionistic) way; however, hidden in this proof is Brouwer’s
‘continuity principle’, here for the first time appearing in print. This principle
was discussed on page 128, and thanks to it we can calculate values of functions
with as input arbitrary real numbers represented by infinite choice sequences.66

This principle is a corollary of Brouwer’s constructivism, in which every con-
struction has to completed in a finite time by means of a finite number of acts.
As a consequence of this, F (α), with α an infinite choice sequence and F (α) a
natural number, only has a computable value if this value can be determined in
a finite construction, that is, after a finite initial segment of α.67

Another corollary is that, if we can speak of an ‘arbitrary α’, for which a
certain property A holds, we can also say that it holds ‘for all α’ that is, ∀αA(α),
but the sign ∀ then has to be understood as ‘for every α you give me, I can prove
that A(α) holds’, rather than ‘for all α’.

4.9 Intuitionistische Mengenlehre, 1919

In 1919 Brouwer published his Intuitionistische Mengenlehre, in which he again
employed the term ‘intuitionistic’ in its new mathematical meaning, after its
initial appearance in 1914 in the Schoenflies review. The Intuitionistische Men-
genlehre paper can be seen as a summary of the Begründung papers, as well as a

64A term introduced by A. Heyting, see e.g. [Heyting 1981], page 128.
65[Brouwer 1918], page 13.
66For a discussion of the concept of choice sequence in the notebooks, see also pages 102

and the last section of this chapter.
67We stress that this argument is only a crude approximation to an explana-

tion of the principle in which different types of choice sequences are included; see
[Atten, M. van and Dalen, D. van 2000].
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less technical-mathematical elucidation of it. It can also perfectly well be read
as an introduction to the Begründung papers.

It opens with the presentation of two statements, which are, in a more
rudimentary form, already present in the dissertation:68

I. The comprehension axiom, which defines a set on the basis of certain
mathematical objects having certain properties, is unsuitable, since it may lead
to contradictions. Only a constructive definition of a set can be the basis for a
set theory, and this definition is the spread law.

II. The axiom, as formulated by Hilbert, that every mathematical problem
has its solution or that its non-solvability can be proved, is equivalent to the
logical law of the excluded third, and there is neither proof nor evidence for this
rule.

These two theses form the basis for the intuitionistic concept of mathe-
matics, but Brouwer immediately admitted that he occasionally applied the
non-constructive PEM himself:

Von der in diesen beiden Thesen kondensierten intuitionistischen
Auffassung der Mathematik habe ich übrigens in den in Anm. 2)69 zi-
tierten Schriften bloss fragmentarische Konsequentzen gezogen, habe
auch in meinen gleichzeitigen philosophiefreien mathematischen Ar-
beiten regelmässig die alten Methoden gebraucht, wobei ich aller-
dings bestrebt war, nur solche Resultate herzuleiten, von denen ich
hoffen konnte, dass sie nach Ausführung eines systematischen Auf-
baues der intuitionistischen Mengenlehre, im neuen Lehrgebäude,
eventuell in modifizierter Form, einen Platz finden und einen Wert
behaupten würden.

Mit einem solchen systematischen Aufbau der intuitionistischen Men-
genlehre habe ich erst in der eingangs erwähnten Abhandlung70

einen Anfang gemacht. Hier möchte ich kurz hinweisen auf einige
der am tiefsten einschneidenden, nicht nur formalen, sondern auch
inhaltlichen Aenderungen, welche die klassische Mengenlehre dabei
erfahren hat.71

Hence in his pure mathematics Brouwer did use the principle, but only
in those cases where he expected the same positive result when using a more
complicated argument without the PEM, and, in hindsight, when applying his
intuitionistic set theory. In his dissertation Brouwer judged the principle of the
excluded middle as a useless principle, but harmless for the rest. Apparently he
was aware of the fact that his proofs, although not wrong on principle, lacked
absolute confidence and strength, but that he relied on the possibility of a PEM-
free stronger proof.

68[Brouwer 1919b]; see also [Brouwer 1975], page 230.
69Brouwer is referring, among other publications, to his dissertation and to [Brouwer 1908a].
70the Begründung papers.
71[Brouwer 1919b], page 2.
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Next in this paper follow the already quoted definitions of spread and species.

As we stated already on page 126, the reason for this relatively long elab-
oration on future notions is to make the discovery of their early traces in the
notebooks possible and useful.

4.10 The notebooks on set formation

Again, the nine notebooks contain numerous remarks about sets, their construc-
tion, limitations on their magnitude etc. The subject of ‘sets’ is often interwoven
with that of the continuum to the extent that a sharp distinction between the
two is not always possible. Therefore a repetition of quotes from our chapter 3
will occasionally occur.

We must also keep in mind the fact that the notebooks were written within
a time span of only two years; in view of the different notions, we can, on the
one hand, clearly observe a development in the direction of Brouwer’s position
in his dissertation; on the other hand we can already discern traces of his later
ideas, which were sketched in the previous sections of this chapter, and which
only turned up in his published work after the year 1914. From several of the
following quotations we can conclude that the latter is the case for the notion
of choice in the construction of elements for sets, and for his attempts to make
the continuum manageable with the help of infinite sequences of free choices.

4.10.1 Sets, general

During the first few years after taking his doctoral degree, Brouwer stuck to his
principle of constructibility in the definition of sets. A set is never given to us in
its entirety, but it is always defined by an algorithm for the construction of its
individual elements, and therefore there are strong limitations on the resulting
cardinality; this in contrast to Cantor for whom no such limitations existed:

(III–16) One cannot speak about an already existing cardinality,
having certain properties; one can construct it and then e.g. con-
clude afterwards that it is equivalent to some other one.72

The phrase ‘one can construct it’ is limiting the cardinality of the result
since a construction, which is carried out stepwise by the subject, can only take
finitely many steps, or run parallel to the generation of the ordinal number ω.
Therefore any ordered construction yields either a finite set, or one of cardinality
ℵ0, i.e. the second number class cannot be viewed as an intensionally completed
set.

Brouwer held on to this view during the years before the first worldwar.
Although he added the ‘denumerably infinite unfinished’ and the continuum to

72Men kan niet spreken over een machtigheid, die er al is; en dan zekere eigenschappen
heeft; men kan haar opbouwen, en dan achteraf b.v. zeggen dat zij gelijkmachtig is met een
zekere andere.
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his list of possible cardinalities, the strict requirement for an algorithm for the
construction of individual elements initially remained.

About Cantor’s transfinite numbers, Brouwer remarked in a (later on deleted)
paragraph:

(II–30 and 31) Everything about transfinite numbers I must be able
to see intuitively (directly or with the help of simple induction). It
is meanigless to speak of other, non-intuitable things.

(...)

The only new aspect in Cantor’s transfinite numbers is the construc-
tion of geometry from the theory of numbers (i.e. units and simple
induction).73

It will be obvious that Brouwer did not restrict his constructivism to sets
alone, but that every ‘mathematical building’ requires a proper construction,
hence also Euclidean and non-Euclidean geometry and arithmetic. One of the
results of his constructivism is of course a high degree of transparancy in the
resulting building.

We can detect Brouwer’s constructivistic attitude in most of his notes. For
instance in the third notebook, the cause of the paradoxes in set theory is at-
tributed to a lack of establishing individually the set elements; one can avoid
impredicative definitions of sets if, in the construction of its elements, one only
makes use of objects and concepts which were constructed earlier, and sub-
sequently collect them in a constructive way. And by avoiding impredicative
definitions one precludes the paradoxes into which set theory ran around the
year 1900 by the work of Richard, Berry and Russell:

(III–17) Be careful with the definitions of sets; they might not exist
just like Russell’s contradictory ‘class of classes not belonging to
their elements’.74

This is one of the earliest statements about sets in the notebooks and we will
attempt to demonstrate, via a series of quotations, that there is a development
in Brouwer’s concept of sets to the ideas as they were laid down in his disser-
tation, and even beyond: there are clues and signs of later concepts of spreads
and species. But from the very beginning he required a proper construction
for all mathematical objects, the only question being which constructions were
admissible.

73Alles van de transfiniete getallen moet ik kunnen zien aanschouwelijk (direct of met behulp
der enkelvoudige inductie). Van andere dingen te spreken die ik niet kan aanschouwen ware
zinloos. (...)

Het enige nieuwe van Cantors transfiniete getallen, is het het opbouwen van de meetkunde
uit theorie van getallen (d.i. eenheden en enkelvoudige inductie).

74Wees met de definities van ‘Menge’ voorzichtig; ze zijn misschien zo min bestaanbaar als
de contradictoire ‘class of classes not belonging to their elements’ van Russell.
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IV–18 reveals that Brouwer’s terminology was not always consistent with its
later specific and strict meaning, when he was jotting down the several notes:

A ‘Menge’, which I can enumerate cannot be ‘ähnlich’ to a part of
itself. This gives the fundamental property of arithmetic.75

For this quotation to be true, ‘enumerable’ must have the meaning of ‘finite’,
whereas nowadays it has normally the meaning of finite or denumerably infinite.

In IV–26 the tone becomes more gloomy, when Brouwer called set theory
the ‘centralizing science’, which starts from counting and which classifies em-
pirical geometry in set theory, as a hypothesis for the totality of the physical
phenomena. The original and forgivable ‘fall’76 of counting changed into the
consciously ‘continued sin’ of doing mathematics. Things go from bad to worse
in this paragraph IV–26: the empirical geometry, which is closest to the in-
tuition, is abstracted into set theory, and this abstraction is the beginning of
mankind alienating from itself. This negative and pessimistic attitude, espe-
cially in relation to the application of mathematics, remained through all the
notebooks (although less frequent and less pronounced towards the end); we also
meet this attitude in the synopsis of the notebooks and apparently they were
also present in the draft of his dissertation. From this draft they mainly found
their way, as a result of Korteweg’s veto, into the preserved Rejected parts. But
a certain pessimistic overtone never completely disappeared from his writings,
not even from his later ones.

4.10.2 Sets, constructibility as condition for their exis-
tence

In the notebooks Brouwer paid much attention to the actual construction of a
set. Also with respect to the geometrical set of lines and planes:

(V–13) Planes are not yet given in space; they are built in it, like on
earth houses are built from the elements of it. Hence in practice the
sinful geometry only applies to the sinful constructions of mankind.77

As we have seen, the move of time is the only ur-phenomenon for Brouwer,
resulting in the two-ity of continuous and discrete, which, in its turn, makes the
awareness and counting of numbers possible, from which arithmetic, analysis
and also geometry can be built.

In the last given quote we recognize again his pessimistic outlook on the
world, where the sinful act of arranging the surrounding nature into physical

75Een ‘Menge’, die ik kan aftellen, kan niet aan een deel van zichzelf ‘ähnlich’ zijn. Hieruit
volgt de grondeigenschap der rekenkunde.

76Brouwer used here the word ‘tumble’, Dutch: tuimeling.
77In de ruimte zijn nog niet de vlakken gegeven; die worden er in gebouwd, zoals op de aarde

uit de elementen er van de huizen worden gebouwd. En zo geldt de zondige meetkunde ook
in de praktijk slechts voor de zondige bouwwerken der mensen.
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laws led to ‘externalization’ and to the downfall of mankind;78 in this view
already the mere act of doing geometry belongs to the sinful activity of ‘ar-
ranging the external world’. In his early work, ‘sin’ has to be understood as
‘every activity which will lead man away from his ur-state of just being there’.79

In a marginal note, added to the above quoted fragment, the act of construc-
tion by the individual mathematician is emphasized. This act of individually
doing mathematics in the flow of time will, in Brouwer’s later years after the
second world war, ultimately result in the concept of the creating subject:

(V–13) The word ‘every element’ of an infinite manifold does not
make sense, if I have not built that manifold myself (they do not
exist in nature) and how else could I do that, but by induction. And
the latter is impossible without indiscernibility in the manifold, and
that includes the fundamental theorem of arithmetic.

And just because of that indiscernibility I can conceive the machine,
that ‘continuously’ (intuitive idea) adds points, one by one (which
is impossible in case of discernibility).80

Hence the construction of an infinite quantity is permitted by means of the
algorithm of iterating the same act of adding one element (which makes the
successive acts mutually indiscernible), together with the confidence that that,
which is constructed, remains. The most basic method for this is the simple act
of counting (V–14). There is a beginning, a growing and a limit that gives us the
cardinal number as ‘reflection of desire for possession’.81 In this fifth notebook
we recognize the tone that, under the influence of Korteweg, was removed from
Brouwer’s concept of the dissertation.

In the last quotation we also notice the emphasis on the individual mathe-
matician, who personally has to construct his objects and sets. This is already
the concept of mathematics ‘as the free creation of the individual human mind’,
as presented in the dissertation, and again underlined in its concluding summary
at the end.

In V–14,15 Brouwer specified explicitly that, first, we construct a system of
numbers, and only after that we build the relations between the numbers in that
system. He elucidated this statement in a long fragment, filled with notions like
sin and desire. Only after performing the construction in the prescribed order,
we observe that this system has the property of indiscernibility, resulting in the
applicability of the main theorem of arithmetic:

78See [Brouwer 1905].
79See Life, Art and Mysticism, chapter I, The sad world.
80En het woordje ‘elk element’ van een oneindige hoeveelheid heeft geen zin, als ik die

hoeveelheid niet zelf heb opgebouwd (in de natuur zijn ze er niet), en hoe kan ik dat anders
doen dan door inductie? En dat kan ik niet doen zonder ononderscheidenheid in de veelheid,
en die sluit in de hoofdstelling der rekenkunde.

Ook kan ik juist uit hoofde van die ononderscheidenheid voorstellen de machine, die ‘altijd
maar door’ (intüıtieve voorstelling) punten een voor een bijlegt (bij onderscheidenheid gaat
dat niet).

81afspiegeling van begeerte naar bezit.
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(V–15) But once we pose the question: is induction possible and are
the units to be seen as equal (in other words, can a cardinal number
be formulated), then a negative answer would collapse not only its
own question, but would at the same time collapse the ‘form’ as
useless for the desire..

Definition A finite quantity is one, which is accurately constructed
by me, without induction.

(...)

How could I formulate a syllogism or a theorem about something,
which I cannot intuit? If I formulate it about something which
is defined, then it applies only for the illustrative examples of the
defined entities.82

We can see in the last part of this quotation, as well as in the next one, his
argument that one can do logic only after the construction of a mathematical
system; only then one has material to perform logic on; logic applies to classes
of constructed objects, not to classes defined by comprehension.

A basic idea of his 1908-paper The unreliability of the logical principles, in
which also the priority of a mathematical construction is underlined, occurs
verbatim in notebook VI:

(VI–35) Once more: it is not true that I can consider mathematics
(e.g. of the transfinite numbers) to be derived from given logical
relations, since logical relations only make sense if they are applied
to a mathematically constructed system. Hence sometimes a math-
ematical system runs parallel to another mathematical system, viz.
if a logical substratum of a mathematical system can be constructed
independently of it as a mathematical system of its own (e.g. Hilbert
in Ens. Math.), but otherwise the system of departure is often neces-
sary as Existenzbeweis of the logical substratum, which is not itself
a mathematical system.83

In V–16 Brouwer stated that there are, roughly, three areas of representation
of the concepts of our mind:

82Maar stellen we eenmaal de vraag: is inductie mogelijk en zijn de eenheden als gelijk te
zien (m.a.w. is er een cardinaalgetal te zeggen), dan zou een ontkennend antwoord behalve
zijn eigen vraag tegelijk doen instorten de ‘vorm’ als onbruikbaar voor de begeerte.

Definitie Een eindige hoeveelheid is een exact door mij opgebouwd, zonder inductie.
(...)
Hoe kan ik een syllogisme of stelling opstellen omtrent iets, dat ik me niet kan voorstellen?

Stel ik zo’n ding op over iets gedefinieerds, dan geldt het eigenlijk alleen over de aanschouwe-
lijke voorbeelden van het gedefinieerde.

83Nog eens: het is nièt waar, dat ik de wiskunde (b.v. der transfiniete getallen) kan
beschouwen afgeleid uit gegeven logische relaties, omdat logische relaties pas zin krijgen, als ze
zijn toegepast op een wiskundig opgebouwd systeem. Soms loopt dus een wiskundig systeem,
als het logisch substraat onafhankelijk er van zèlf kan worden opgebouwd als een wiskundig
systeem, parallel met een ander wiskundig systeem (voorbeeld hiervan is Hilbert Ens. Math.),
maar anders is het systeem van uitgang ook vaak nodig als Existenzbeweis van het logisch
substraat, dat zelf geen wiskundig systeem is.
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There are three areas of representation ((...) one should not interpret
them too strict (...))

1. From the world of observation as the antipoles of our sins (repre-
sented objects not exact, words not exact)

2. From mathematics: the medium of the ‘Beharrung’ of those rep-
resentations (represented objects exact, since they are coming from
me, words not exact (...) )

3. From logic: (represented objects and words exact (...).84

The three areas show an increasing abstraction, in which objects and words be-
come increasingly exact, that is ‘lending equilibrium in the mind’;85 hence the
order in which this happens, is essential: logic can never be in the first place.

One more observation about the notebooks in general: the pages V–13
through V–16 are the first ones where Brouwer devoted several pages in succes-
sion (four, in this case) to one single subject: the foundational construction of
mathematics. From here on this will happen more and more often, whereas at
the same time the negative and pessimistic remarks decrease in number.

4.10.3 Sets and the Russell-paradox

This paradox is discussed in VI–26 through –33. According to Brouwer the
paradox is caused by the confusion between the concepts ‘if something is the
case’ and ‘the class of all objects, for which this is the case’. The Russell
paradox, as far as it appears in the notebooks, will be discussed on page 293.

4.10.4 Sets, limitations resulting from the method of con-
struction

Possible sets, possible elements of those sets, or possible mathematical objects in
general are restricted by the requirement of an algorithmic instruction according
to which they are given. ‘Arbitrary’ objects only exist within a pre-given do-
main, as can be concluded from Brouwer’s comment on a short quote by Cantor,
referring to the comprehension axiom:

(VII–23) (Cantor) ‘Von jedem beliebigen Object muss man angeben
können, ob es seiner Definition zufolge der Menge angehört oder
nicht’. Nonsense ([in the margin]: Russell’s basic mistake originates
from this idea). Mathematics does not know ‘beliebige Objecte’, it

84Er zijn drie gebieden van voorstelling ((...) men vatte ze niet te strict op (...))
1. Uit de aanschouwingswereld als tegenpolen onzer zonden (voorgestelde dingen niet exact,

woorden niet exact).
2. Uit de wiskunde: het medium der Beharrung dier voorstellingen (voorgestelde dingen

exact, want uit mijzelf, woorden niet exact (...).
3. Uit de logica: (voorgestelde dingen en woorden exact).
85evenwicht gevend in het hoofd.
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only knows self-constructed objects; and the definition may only
be a limitation on the construction, through which the intrinsic
construction should again become possible from combinations of 1,
ω and c. It is just that the construction is limited by the definition.86

Hence, a definition may only limit the construction of a set from an available
stock of elements or from building blocks for those elements, but it may not give
a type of ‘elements’ for which no clear algorithm can exist.

Nevertheless, Brouwer attempted to define ‘in practice unmeasurable num-
bers’ on the continuum, but despite this effort to ‘understand’ the continuum,
he stated (VIII–16) that we can only create in our intellect denumerable quan-
tities, ‘according to our life time’, which may suggest finitism, and emphasizes
the notion of time.

Brouwer again stressed that we can neither construct, nor conceive Cantor’s
second cardinality T (that is the cardinality ℵ1) as a completed totality, but the
notion ‘denumerably unfinished’ is not employed here:

(VIII–16) For everything, that we can create mathematically, is de-
numerable; if we want to create T , we observe that our creation is
never finished by giving isolated acts; and laws, which are denumer-
able sequences of facts; but for that reason we may not postulate
that there are more things apart from what we can create.87

T cannot be created as a finished entity by means of ‘isolated acts and laws’,
that is to say, by means of clearly stated algorithms. Hence there are only two
‘modes of existence’ for point sets:

(VIII–16) For pointsets in c, there are only two modes of existence:

1st The mathematical free creation (1st cardinality).

2nd The indefinitely continuing possibility of physical approximation
(2nd cardinality).

Hence there exist only 2 cardinalities for pointsets.88

The ‘second cardinality’ in this quote reminds us of any process of actually
executed approximation (because of the term ‘physical’), which is on prinicple
never completed, e.g. the construction of Poincaré’s physical continuum.

86(Cantor) ‘Von jedem beliebigen Object muss man angeben können, ob es seiner Definition
zufolge der Menge angehört oder nicht’. Larie (met in de kantlijn: in zo’n gedachte zit ook de
grondfout van Russell). De wiskunde kent geen beliebige Objecte, dan de zelf opgebouwde; en
de definitie mag alleen zijn een bouw-beperking, waarna de intrinsieke opbouw weer mogelijk
moet worden uit combinaties van 1, ω en c. Alleen is door de definitie de bouw beperkt.

87Want alles, wat wij wiskundig kunnen scheppen, is aftelbaar; willen we T gaan scheppen,
dan merken we, dat ons scheppen nooit klaar komt met het geven van gëısoleerde daden; en
wetten, dat zijn aftelbaar oneindige feitenreeksen; maar daarom mogen we niet postuleren,
dat er nog dingen zijn buiten hetgeen wij scheppen kunnen.

88Voor Punktmengen in c zijn er maar twee manieren van bestaan:
1e De wiskundige vrije schepping (1ste machtigheid).
2e De onbepaald voortlopende fysische benaderingsmogelijkheid (2de machtigheid).
Er bestaan dus maar 2 machtigheden van (voor) Punktmengen.



144 CHAPTER 4. THE POSSIBLE POINT SETS

Because Brouwer speaks here of ‘cardinality’, he is most likely not referring to
the never terminated process of the composition of a single choice sequence, but,
instead, to the algorithmic construction of a denumerably infinite set, which may
be seen as finished only potentially. He may even allude to the ‘denumerably
unfinished’ cardinality.

Brouwer mentioned the term ‘unfinished cardinality’ for the first time ex-
plicitly in VII–23, as a comment on Schoenflies’ Bericht über die Mengenlehre:

(VII–23) [Bericht page 13, theorem IV] All definable real numbers
are denumerably unfinished.89

But neither this concept, nor the continuum has the status of a separate
cardinality yet. The number of possible cardinalities for sets is still limited to
two, finite and denumerable, instead of the four in the dissertation.

In the eighth notebook, pages 14 up to 45, Brouwer was constantly and in-
tensely searching for the limitations and bounds of set theory. He frequently
discussed the work of other mathematicians (Bernstein, Klein, Cantor) and
commented on it. We recognize this process of seeking e.g. on page VIII–17,
where Brouwer explained that we can construct the everywhere dense rational
scale R which is denumerable; we can add to this the known limit points, the
limits of known algorithmic sequences, like the sequences for π or

√
2, and ‘it

remains the same set’, that is, it remains denumerable; repeat this ω times and
it still remains the same set, hence, as Brouwer concluded in VIII–17, the ‘per-
fect set90 cannot be constructed and therefore does not exist.91 It only exists
in the ‘physics of the intuition’ and we can postulate it, that is, we can express
the words and postulate the concept of the perfect set, but that is all we can
actually do.

Clearly, there is for Brouwer only the general idea of the perfect set, but
then we cannot speak of its cardinality since there is no way of constructing it.

4.10.5 The perfect set cannot be constructed

In IV–12 the possibility of constructing the perfect set is, again, considered.
This fragment is not crossed out, but, judging by the handwriting, a remark
is added to it later, and these two phrases together give a good impression of
Brouwer’s old view, compared to his new: the ‘construction’ of the perfect set
is replaced by the intuition of the continuum:

(IV–12) The only way to ‘construct’ the perfect set (which is re-
quired) must be according to Cantor Mathematische Annalen 46,

89Bericht page 13 st. IV Alle aangeefbare reële getallen zijn aftelbaar onaf.
90This is the set that coincides with its derivative, as defined by Cantor (it is not the Cantor

set as we sketched this on page 95) For Cantor’s general defnition of a perfect set, see page
12.

91See for the relevant quote page 152.
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page 488.92

[with the later addition:]

If we do not want to appeal aprioristically to continuity, which is the
purest thing to do.93

Immediately after that, on the same page IV–12, Brouwer realized that,
among the numbers of a perfect set, some are special: the ones that can be
given by an algorithm; but how can we be sure that the continuum is exhausted
by the Cantorian points (the real numbers)? In IV–13 he stated that we cannot
define every fundamental sequence, that is, not every number, given in the
Cantorian way, can be named by means of a known (algorithmic) sequence.
And that applies to the vast majority of the elements of a perfect set, which is
the reason that in IV–17 Brouwer wrote:

(IV–17) I cannot speak of all points of a straight line in a collective
sense, and give properties for them; I only can constantly construct
points on the continuum, but then I generate them.94

Brouwer realized that the majority of elements of a perfect set escapes our
ability to construct them according to some rule or algorithm. This conclusion,
together with the constant occupation with the subject ‘continuum’, must, one
would say, sooner or later lead to the concept of choice sequence, which even-
tually was Brouwer’s escape from the realm of the lawlikeness.

4.10.6 The second number class

Contrary to the continuum, Cantor’s set of the second cardinality (the second
number class) cannot be postulated intuitively:

(VIII–17) And now T . While constructing T we notice, that we
never can finish it, not even after ω operations.

Hence we have to conclude that this ‘finishing’ does not exist, in
other words that T does not exist. Since there is no intuitive foun-
dation to postulate its ‘Fertigkeit’, like there is in the case of c.95

92On page 488 of M.A. 46 Cantor’s general construction of the continuum (the perfect set)
is presented; see page 14 ff. Again, this is not the Cantor set from page 95.

93De enige manier, om de perfecte Menge ‘op te bouwen’ (wat toch vereist wordt), zal wel
zijn volgens Cantor M. Ann. 48 pg 488.

[met de latere toevoeging:]
Als we niet aprioristisch aan de continüıteit willen appelleren, wat het zuiverst is.
94Ik kan niet samenvattend spreken over alle punten van een rechte lijn, en daarover dingen,

eigenschappen zeggen; ik kan alleen voortdurend punten vormen op een continuüm, maar dan
genereer ik ze.

95En nu T . Bij het opbouwen van T merken we, dat we nooit klaarkomen, ook niet na ω
operaties.

We moeten dus rekenen, dat het klaar komen, m.a.w. de Menge T niet bestaat. Want een
intüıtieve grond, om de Fertigkeit er van te postuleren, zoals bij c, is er niet.
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In Brouwer’s view the continuum is intuitively given and may, for that rea-
son, be postulated as a finished (‘fertig’) object; also ω may, from a certain
viewpoint according to Brouwer, be postulated as being finished, namely as a
closure of the simple algorithm of the successor operation.96

But, as he emphasized above, both these arguments for being finished do
not apply for the second number class T: there is no closure for T, neither
definable, nor intuitively given. Denumerably many elements can be added in
denumerably many ways, still resulting in a denumerable set, according to a
theorem by Cantor.

We have the intuition of the continuum and the knowledge that one can
only speak about the continuum with the help of a constructed scale on it
which is dense and of order type η. That scale, in Brouwer’s words, ‘expresses
the whole essence of the continuum’, that is to say that every definable subset
of the continuum must be expressible in that scale. This was elaborated a
few years later, in 1908, in his paper Die mögliche Mächtigkeiten.97 Hence
the fundamental difference between the two concepts ‘continuum’ and ‘second
number class’ can be construed from the different ways in which the two are
described and in which there properties are explained. The continuum is not
constructed, but intuitively given instead, and the second number class will be
one of the typical examples of a ‘denumerably infinite unfinished’ set, which
stands for a continued process and not for a (potentially) completed entity.

4.10.7 A third and a fourth cardinality

The possible cardinalities are again investigated in VIII–25, and the number
now increases to three:

(VIII–25) In any case a certainly existing set is: Cℵ0 , in which at
every next decimal place, instead of a digit, appears an arbitrary
point of the continuum. But its cardinality is c.

On the other hand, the cardinality F = Cc, that of all functions,
does not exist.

If I want to search for all ‘sets of limit points’ which can be con-
structed from ω, then I have to construct all possible infinite groups
from it, or, for this all possible groups; and this happens by ap-
proximationin the dual system, resulting in the kinds of groups with
cardinality E (finite), A (ℵ0) and C.98

96See for a discussion on a ‘finished’ or an ‘actual’ infinity chapter 8.
97[Brouwer 1908b], the Rome lecture.
98In elk geval is een zeker bestaande Menge: Cℵ0 , waar op elke volgende decimaal in plaats

van een cijfer, een willekeurig punt van het continuüm valt. Maar de machtigheid daarvan is
c.

Daarentegen de machtigheid F = Cc, die van alle functies, bestaat niet.
Wil ik alle mogelijke ‘Mengen van grenselementen’ zoeken, die uit ω zijn te vormen, dan

moet ik alle mogelijke oneindige groepen er uit vormen, of hiertoe maar alle mogelijke groepen;
en dit geschiedt door de benadering in het tweetallig stelsel, die als soorten van groepen dus
alleen geeft, van machtigheid E (eindig), A (ℵ0) en C.
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At this place the continuum is recognized as a possible cardinality,99 which
raises the number of cardinalities to three; only the denumerably infinite unfin-
ished one is still missing.

But in VII–16 and in VIII–16 references are made to this unfinished cardi-
nality; in the seventh notebook we read:

(VII-16) T cannot be mapped on ω by a finite law; neither can T be
completed by a finite procedure; but during the construction of T
in an infinite time it remains possible to map it on ω. And that is
all I can say. Of course T remains unfinished. ω is finished (by our
innate mathematical induction).100

This paragraph contains interesting information in regard to Brouwer’s thought
experiment about the ‘unfinished mapping’. This kind of mapping is mentioned
only once in a footnote on page 149 of Brouwer’s dissertation. It is hardly
worked out and he never came back to this notion, but in this quote we observe
its rough draft. See further page 271 for a detailed discussion.

And finally, about an unfinished cardinality, from the eighth notebook:

(VIII-16) For everything that we can create mathematically is de-
numerable; if we want to create T , we find out that our creating is
never finished by giving isolated acts; and laws, which are denumer-
able sequences of facts; but for that reason we may not postulate
that there are more things apart from what we can create.101

with which we reach the final number of four different cardinalities.
Barring a number of conjectures (in IV–12 the ‘construction of the perfect

set’ according to Cantor’s method), Brouwer generally proceeded towards the
conclusions in the dissertation: one cannot speak of all points of a straight line
(IV–17); we have intuitively the line as the continuum (IV–23); one can only
speak of ‘every element of a set’ in case of a self-constructed set; the continuum
has no cardinality, but is a cardinality; an arbitrary point of the continuum
can only be approximated with the help of constructed points (V–30, VI–21);
mathematics does not know ‘beliebige Objekte’, it only knows self constructed
objects (VII–23).

4.10.8 Later developments, suggested in the notebooks

Finally we will point out a selection of quotes and sections from the notebooks,
which can be viewed as a germ of, or even as direct or indirect evidence for,

99And the continuum will eventually be the only actually infinite set in the literal sense.
100T is niet op ω af te beelden door een eindige wet; maar T komt ook niet klaar door een

eindig werk; maar, T vormende in oneindige tijd, blijft zij onder haar vorming steeds op ω
afbeeldbaar. En dat is het enige wat ik kan zeggen. T is uit dien aard der zaak onaf; ω is af
(door de mathematische inductie, die in ons is).
101Want alles, wat wij wiskundig kunnen scheppen, is aftelbaar; willen we T gaan scheppen,

dan merken we, dat ons scheppen nooit klaar komt met het geven van gëısoleerde daden; en
wetten, dat zijn aftelbaar oneindige feitenreeksen; maar daarom mogen we niet postuleren,
dat er nog dingen zijn buiten hetgeen wij scheppen kunnen.
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later important developmentsin the area of set theory, which were already partly
mentioned or discussed in previous sections. Again, we note in advance that in
the dissertation as well as in the notebooks, a complete separation between the
two subjects of sets and of the continuum is hard to make, since the two are,
understandably, often too interwoven. This sometimes results in a repetition of
the same quote in case its content is relevant to both subjects.

The concept of choice in the definition of choice sequences as elements for
spreads, is in the notebooks frequently expressed in the French terms chance or
prendre au hasard, which are expressions originating with Borel.

From the sixth notebook onwards, one regularly recognizes germs of new
ideas that only after 1907 came to full development, and, probably for that
reason, were in 1907 often crossed out. Take for instance the following:

(VI–36) Now it seems that I cannot speak of all elements of that set
[Brouwer is referring to the continuum], hence that set is not real,
since I cannot say with certainty within a finite time lag whether a
point, indicated on the continuum, belongs to it (sometimes I can
say that it does not belong to it). But nevertheless I can speak of
the reality of that set, and of all its elements;102

and also:

(VI–37) I cannot speak of the cardinal number of the continuum,
(that is not included in its intuition); neither can I speak of that
of the infinite decimal fractions, since the all makes no sense in it-
self, no more than via the continuum because neither the continuum
possesses the ‘all points’ concept.103

After the appearance of choice sequences as elements for sets, and of the
‘universal spread’, one still cannot speak of all elements of the continuum of the
real numbers, but one can speak of an arbitrary element of it. It is of importance
to note that in the last quotation an infinite decimal fraction is mentioned as
an element of the continuum, but obviously Brouwer is now referring to the
continuum of the reals, and not to the intuitive continuum which resulted from
the ur-intuition. Denoting both concepts with the name ‘continuum’ may give
rise to confusion, as we noticed earlier in section 3.3, page 79.

In the seventh notebook we witness the appearance of the concept of choice
in the formation of sets. The term ‘prendre au hasard’ in the next quotation
(which is again crossed out in this notebook) can of course not be specified
any further, since in that case it would give us a denumerable result. In this
102(VI-36): Nu schijnt het, dat ik toch niet kan spreken van alle elementen dier Menge, dus

die Menge toch niet reëel is, want ik kan nooit zeker zeggen binnen eindige tijd van een op
het continuüm aangegeven punt of het er toe behoort (wel soms, dat het er niet toe behoort).
Maar toch kan ik spreken van de realiteit der Menge, en van alle elementen ervan.
103(VI-37): Ik kan niet spreken van het cardinaalgetal van het continuüm, (zoiets ligt niet

in de intüıtie ervan); evenmin van die der oneindige decimaalbreuken, omdat op zichzelf het
alle daarvan geen zin heeft, en via het continuüm evenmin, omdat ook het continuüm geen
‘alle punten’ heeft.
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quote Brouwer compared the continuum with the second number class. Here
‘continuum’ is defined as the fictive continuum in combination with the ‘axiom
of limit points’, which axiom implies that the limit element of a convergent
sequence of elements of a set also belongs to the set (the set is closed under the
construction of its limit points). Hence the continuum is the full continuum of
the reals.

(VII–15) Both (the continuum and the second number class) are
composed of a multiplicity of the right to ‘prendre au hasard’ (and
every ‘prendre au hasard’ is slightly different. (...)

But a closer specification of the ‘prendre au hasard’ is not possible,
since otherwise it would fall under an old field of numbers.

I may postulate the order of the different ‘hasards’ on the contin-
uum, which I perceive empirically afterwards via the infinite decimal
fraction, in the case of my simultaneous or analogous ‘hasard’ for the
second number class arbitrarily, exactly as in the case of its partner
in the continuum.

[crossed out:] Since I know by experience that the ω-fold free choice
can be extended to the ‘prendre au hasard’ (for the continuum).104

The ‘arbitrary choice’ (prendre au hasard) is by definition not governed by
a rule, and is used here to denote the continuum or the second number class
(which two totalities need not be equivalent). In case of a real number, the
‘prendre au hasard’ is a free choice for each decimal place of the empirically
observed infinite decimal fraction as an element of the full continuum.

As for the second number class, things are different. The general term of
a member of this class is also composed of an infinite sequence of choices, but
the result has to be a representation of an element of this class in the form of a
Cantorian normal form, and the inherent limitations in the admitted choices may
(and will) make the cardinality of this class smaller than that of the continuum.

The term ‘prendre au hasard’, which Brouwer often employed, originates
with E. Borel in his publications on set theory and the transfinite. Whereas the
regular French term for arbitrary choice is ‘choix arbitraire’,105 Borel used the
term ‘prendre au hasard’, e.g. in his paper L’antinomie du transfini, published
in 1900 in the Revue Philosophique:

104Beide (continuüm en 2e klasse) bestaan uit de veelheid van recht tot ‘prendre au hasard’
(en elk ‘prendre au hasard’ is weer iets verschillend. (...)

Maar nadere aanduiding van het ‘prendre au hasard’ is niet mogelijk, anders zou het vallen
in een oud aftelbaar getallenlichaam. De ordening van de verschillende ‘hasards’ op het con-
tinuüm, die ik achteraf empirisch merk volgens de oneindige decimaalbreuk, mag ik bij mijn
gelijktijdig of analoog ‘hasard’ bij de tweede getalklasse willekeurig nét zo, als bij zijn partner
in het continuüm postuleren.

(en in een doorhaling:) Immers ik weet bij ondervinding, dat de ω-voudige vrije keuze zich
laat uitbreiden tot het ‘prendre au hasard’ (bij het continuüm).
105See e.g. Cinq lettres sur la théorie des ensembles in Borel’s collected works, containing

letters by Hadamard, Baire, Lebesgue and Borel.
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Si l’on prend au hasard un entier positif quelconque (...)

(which in this case of course refers to a single choice).
In the next phrase (also crossed out) the question about the denumerability

of a system of ‘prendre au hasard’ is possibly raised:

(VII–16) If the ‘prendre au hasard’ is projected on a denumerable
quantity, then this is only possible via an empirical infinite decimal
fraction. Finite is impossible, since then the ‘hasard’ would have
disappeared, and we had a free creation, defined by ourselves.106

This paragraph might refer to a single choice sequence which, in case of
arbitrary choices, necessarily has to be of infinite length, since otherwise the
arbitrariness is lost, but it may also allude to the necessary non-denumerability
of a set which is composed of the sequences of a denumerable number of free
choices from the set of the natural numbers. In both cases such a sequence,
if it really has to be arbitrary, has to be infinite and may never (potentially)
terminate, since otherwise the ‘hasard’ (i.e. the arbitrariness of the resulting
sequence) is lost and it becomes our own unique making, created for this unique
occasion.

An interesting remark (not erased) about choice sequences can be read in
VII–19. After having discussed his solution to the continuum problem,107 Brou-
wer added in the margin the following comment about ‘points on the continuum’:

(VII–19) Of course I can, apart from the continuum with its point-
scale, also build in the ω-sequence of chance-decimals, which I can
arrange everywhere dense. But then the question is: how many of
those decimals I leave for free choice? If their number is finite, then
finite cardinality. If their number is ω, then cardinality c.108

In VII–20 rational and real numbers are compared; Brouwer declared these
two to be of a fundamentally different kind: the rational numbers are construc-
tions whereas the real numbers are ‘chances in nature’. He used this argument
to argue that the separation of all rational numbers from all real numbers is
not a permitted operation. However, a real number as a ‘sequence of chances in
nature’ (a never terminating choice sequence) and therefore a never completed
mathematical object, becomes a mathematical object all the same:

106Wordt het ‘prendre au hasard’ geprojecteerd op een aftelbare hoeveelheid, dan kàn het
niet anders dan door een empirische oneindige decimaalbreuk. Eindige kan nooit, want dan
zou het hasard weg zijn, en hadden we onze eigen gedefinieerde vrije schepping.
107See our next chapter.
108Behalve in het continuum met zijn schaal van punten kan ik natuurlijk ook bouwen in de

ω-rij van kansdecimalen, die ik ook weer überall dicht kan ordenen. Maar dan is het maar de
vraag: hoeveel van die decimalen laat ik over voor de vrije keus? Zijn het een eindig aantal,
dan machtigheid eindig. Zijn het er ω, dan machtigheid c.
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(VII–20) In his deduction of: Cardinality of the continuum = 2ℵ0

Cantor forgets that one is not allowed to subtract all rational num-
bers from all real numbers. They are objects of a different kind: the
former I construct, the latter are chances in nature.109

The eighth notebook is the most relevant and interesting one for the present
subject. In these notes the problems of sets and of the continuum are investi-
gated in a very systematic way, and no longer via loose and randomly scattered
remarks only. Together with the arguments, leading to the well known con-
clusions in the dissertation, we do recognize here, again in phrases which are
often crossed out, the germs of later growth towards a mature intuitionistic set
theory:

(VIII–13) We can only ground the intuition of continuous:

1st to view it as counterpart of discontinuity, which is our external-
ization.

2nd as a probability theorem, which always gives equal chances for
all digits at every next decimal place. But we gaze at the system,
which has that as a result, as a phenomenon of nature, we cannot
construct it with our externalization of discontinuity.110

The first item relates to Brouwer’s view on the sinful activity of mankind
when observing nature with the aim of intervention and control.

The second one already suggests the spread in which on every next node,
in this case at every next decimal place, all possible branches are permitted.
Brouwer still spoke of chances, juding by the terminology almost certainly un-
der the influence of Borel, but he clearly was searching for a way of founding
the continuum of the real numbers, instead of accepting only the intuitive con-
tinuum as a given matrix for the construction of sets and the algorithmically
constructible elements as the only points on it. But a possible construction of
the intuitive continuum remains entirely unthinkable:

(VIII–14) Suppose I had constructed an object with all the proper-
ties of the intuitive continuum; I would gaze at this result in amaze-
ment, hence I would absolutely have no reason to suppose that the

109Cantor in zijn afleiding van: machtigheid continuüm = 2ℵ0 vergeet, dat je niet alle ratio-
nale getallen mag aftrekken van alle reële getallen. Het zijn ongelijksoortige dingen: de eerste
bouw ik op, de laatste zijn kansen in de natuur.

‘Chance in nature’ resembles the act of dice-throwing to determine the decimals
of a real number, which was rejected by Brouwer during the Berlin lectures; see
[Dalen, D. van (ed.) 1981a], page xi.
110Te begründen is de intüıtie van continu niet dan:
1e te bekijken als tegenhanger van discontinüıteit, die onze veruiterlijking is.
2e als de waarschijnlijkheidsstelling, die steeds weer bij elke volgende decimaal voor elk cijfer

gelijke kansen geeft. Maar het stelsel, dat dat geeft, staren wij aan als natuurverschijnsel,
kunnen het niet opbouwen met onze discontinüıteitsveruiterlijking.
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constructed continuum had anything to do with the intuitive con-
tinuum.111

On an attempt by Klein to construct the continuum and to establish the
postulate for the possibility of an infinite degree of accuracy, Brouwer gave the
following comment:

(VIII–15) And it is nonsense when Klein wants to determine in more
detail the postulate of an indefinitely continued degree of accuracy
by the construction of a fictive continuum. The postulate would then
be a theorem of the probability theory applied to nature: continuing
with my measurements I can always establish a next decimal, and
all decimals have equal chances; but a postulate of induction about
nature, albeit a fictitious one, is no mathematics, but physics. And
I must obtain my continuum independently of anything external to
me. But where do I get that theorem? From the intuition of the
continuum.112

The content of this quote reminds us of the content of Poincaré’s argument in
La Science et l’Hypothèse, chapter II La grandeur mathématique et l’expérience
to such an extent, that Brouwer may erroneously have referred to Klein instead
of to Poincaré.113 The concept of the continuum as a ‘spread’ in which, in
case of a decimal representation, all digits (0, 1, 2, ...9) have equal chance at
every next decimal place, is sketched here as the result of a physical process of
always refined measurement, hence as a physical continuum instead of as the
result of a mathematical intuition. This physical approach of the continuum
forced Poincaré, because of the involved paradox, to postulate a mathematical
continuum.114

We already encountered the physical approach on page 15 and 16 of the
eighth notebook (see our page 143), and it is mentioned again on the next page
of the same notebook:
111Gesteld al, ik had een ding met al de eigenschappen van het intüıtieve continuüm gecon-

strueerd; dat resultaat zou ik met verwondering aanstaren, dus zou ik niet de minste reden
hebben, aan te nemen, dat dat geconstrueerde continuüm iets met het intüıtieve te maken
had.
112En als Klein het postulaat van oneindig voortgezette graad van nauwkeurigheid, nader

wil gaan vastleggen door het fictieve continuüm op te bouwen, is dat onzin. Het postulaat zou
dan zijn een stelling van waarschijnlijkheidsrekening over de natuur: doorgaande met meten
kan ik steeds een nieuwe decimaal vinden, en alle decimalen hebben gelijke kansen; maar een
inductiepostulaat over de natuur, zij het een fictieve, is geen wiskunde, maar fysica. En ik
moet mijn continuüm hebben onafhankelijk van iets buiten mij. Maar waar haal ik die stelling
vandaan? Uit de intüıtie van continuüm.
113On the last page of this eighth notebook we find a short list of consulted papers or books,

apparently referring to the relevant literature for the content of this notebook. The following
papers by, or about Klein are mentioned:

– Neuere Geometrie (a paper about Klein),
– Das Erlanger Programm ([Klein 1872]),
– Mathematische Annalen 4, 6, 7, 17. This consists of some 14 papers, neither of which has

a clear reference to the given quote.
114See section 1.3, page 24.
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(VIII–17) R the everywhere dense denumerable set of the rational
numbers (that is, the ‘everywhere dense’ set of the first cardinality);
add to it all known limit points (

√
2, π etc.), and it remains the

same set; apply the addition again and again, ω times; we still have
the same set. Hence the ‘perfect’ set cannot be constructed, and
therefore it does not exist: we perceive it only in the physics of the
intuition, and we can postulate axioms of the calculus of probability
of it.115

The term ‘same set’ in this quote has of course the meaning of ‘set with the
same cardinality’. Any possible continued construction always remains at the
most denumerable.116 The ‘perfect set’ is, again, not the Cantor set (see page
95), but the continuum in the Cantorian sense of the ‘set of all real numbers’.
Departing from the set of rational numbers, which is everywhere dense but not
perfect, one can add to it new elements ω times, that is, one can add all lawlike
limit points, but obviously the cardinality of the resulting set remains the same,
hence the quoted conclusion.

On the same page the second cardinality ℵ1, the cardinality of the totality
of all numbers of the second number class T and the next higher after ℵ0, is
treated. Brouwer proved that T , just as the perfect set of the real numbers,
does not exist as a finished entity either.

But in the following quote a certain amount of doubt concerning the char-
acter of the continuum is again present. It was deleted by Brouwer in the
notebook, probably when his continuum concept became the final one of the
dissertation:

(VIII–18) And yet ... and yet ... Maybe our continuum is a paradox,
in approximation usable as the result of the laws of large numbers
in physics.

And maybe our ‘intuition’ of the line is nothing but the relation of
separation between two points.117

In this fragment we recognize a mixture of critique and doubt. Brouwer was
certainly searching for a way to say more about the continuum, just as in the
next, and again deleted, paragraph:118

115(VIII-17): R de überall dichte aftelbare Punktmenge der rationale getallen (d.w.z. de
‘overal dichte’ Menge van de eerste machtigheid); neem er alle bekende grenzen bij (

√
2,

π enz.), dan blijft het dezelfde Menge; pas er weer en weer en ω maal die toevoeging op
toe; we houden dezelfde Menge. De ‘perfecte’ Menge is dus niet op te bouwen, bestaat dus
niet: alleen in de fysica der intüıtie zien we haar, en we kunnen er axioma’s van stellen van
waarschijnlijkheidsrekening.
116This is an example of denumerably unfinished.
117En toch ... en toch ... Misschien is ons continuüm een paradox, die bij benadering

bruikbaar is als resultaat van wetten van grote getallen in de fysica.
En is onze ‘intüıtie’ van lijn niets, dan de relatie van scheiding tussen twee punten.

118cf. Begründung paper I, [Brouwer 1918].
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(VIII–21) The continuum can be linearly ordered as a sequence of
all integers with a finite number or ω digits (the next integer is
approximated together with the integer itself).119

This sentence, written in 1906 or 1907, describes in a nutshell a method of
ordering the continuum of the reals on the interval (0, 1), as represented by the
set C; this ordering is described in Brouwer’s first Begründung paper via the
technique of continued fractions (see [Brouwer 1918], page 9).

Again we see the concept of the continuum as the set which is composed of
elements of infinite sequences of digits, in which we recognize choice sequence,
still indicated by Brouwer with the term ‘chance sequence’.120

The reason for deleting this paragraph probably was that in 1906 or 1907
Brouwer rejected the idea to view the continuum as an ordered set of ‘integers
with ω digits’. It seems as if he felt that he was forced to choose between the
‘continuum’ as (or, rather, represented by) the set of all real numbers on the
one hand, and the unrepresentable intuitive continuum on the other hand, hence
that he was in two minds about the continuum concept. In the section about the
Begründung papers121 we saw that after 1918 Brouwer distinguished between the
two, both being mathematical concepts. But the existence of the uncountable
set C of the reals (the full continuum of the real numbers) ultimately remained
to be based on the intuitive continuum.122

In his later intuitionistic period, when non-terminating choice sequences were
accepted as arbitrary elements of the continuum, the same quote would again,
but now on different grounds, be crossed out: he proved that the continuum is
not linearly ordered.123

The notion of choice sequence is also present in the next quotation (this
time not deleted), in which the set of chance sequences is seen as a constructed
and everywhere dense scale with the power of the continuum. If a set is ‘di-
rectly defined’, then its cardinality is at most denumerable; if it is defined by
means of non-terminating sequences of free choice (‘chance’), then the resulting
cardinality is that of the continuum:

(VIII–22) Nothing can be said of the continuum, but with the help of
an everywhere dense scale, constructed on it. (That scale completely
expresses the character of c). Hence every subset must after all be
expressible with such a scale. That is only possible in two ways:

1st directly defined. Then the set is denumerable.

2nd with the help of an infinite chance sequence. Then the set is of
the cardinality of c.124

119Het continuüm is lopend te ordenen als rij van alle gehele getallen met eindig of ω aantal
cijfers (het eerstvolgende getal wordt benaderd tegelijk met het getal zelf).
120kansenrij.
121Page 133, and also page 71.
122See page 74.
123See page 121.
124Er is niets te zeggen van het continuüm, dan met behulp van een er op geconstrueerde
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The second item is another early reference to ‘choice sequences’, but Brouwer
used the term only much later; at this stage the concept did not yet have the
status of a mathematical object. We have the intuitive continuum with an
everywhere dense scale of rationals constructed on it. If we have an algorithm
by means of which we can define new elements on the continuum, not belonging
to the scale, hence irrationals, then the result always remains denumerable (or
denumerably infinite unfinished). But if we admit infinite choice sequences, not
governed by some algorithm, then the totality is no longer denumerable (see
page 128). But then, in Brouwer’s view, the cardinality becomes c, since the
totality of the choice sequences represents the continuum of the reals and there
is no cardinality between ‘denumerably unfinished’ and c which is the highest
one.

On the one hand, we observe in the eighth notebook that every point on
the continuum can only be defined by means of a beforehand algorithmically
constructed dense scale; on the other hand, we see attempts to approximate an
arbitrary point of the continuum by means of a chance sequence, expressed in
an everywhere dense scale and not governed by an algorithm. One can construe
this as an ‘element of the continuum’ in the shape of a non-terminating sequence
of decimals, in which every finite segment represents a rational number, hence
an element of the constructed everywhere dense scale, but without an algorithm
for its composition.

Page VIII–23 is one of the more interesting pages, since at this place Brou-
wer attempted to approximate subsets of the continuum of the reals with the
help of the branching method. This method was developed to determine the
cardinalities of sets, hence Brouwer started from an already existing set. This
technique shows, in its form, a similarity with the future process of construc-
ting a set according to a given law, the spread law, which determines on every
node the admissible branches, and subsequently the signs to be attached to the
nodes. This is the concept of the spread in its new form, not operating with a
system of nested intervals, but with the addition of a new natural number to
the sequence of natural numbers, which were assigned to the preceding nodes.

But here, at this place in the notebooks, the branching method is still em-
ployed to determine the cardinality of subsets of the continuum only.

A first attempt is deleted, and stops halfway a sentence, apparently when
Brouwer realized a better (or the proper) method to handle it, which method
later turned out to be the perfect one for the spread concept. The deleted part
must be considered unsuccessful, it is not further elaborated by Brouwer, and
for us it remains in its content rather vague; it stops in the middle of a sentence.

The part which is not crossed out is the text that finally appeared in the
dissertation, but we must be well aware of the fact that a construction of a set

überall dichte schaal. (Die schaal drukt het hele wezen van c uit). Dus ook elke deelverzameling
moet ten slotte met zo’n schaal zijn uit te drukken. En dat kan maar zijn op 2 manieren:

1e direct gedefinieerd. Dan is de verzameling aftelbaar.
2e met behulp van een oneindige kansenrij. Dan is de verzameling van de machtigheid van

c.
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with the cardinality of the continuum is of course completely out of the question
and will remain so:125

(VIII–23) In approximating subsets of c.

Successively every decimal place is approximated in a dual system,
whether or not by free choice.

We then get a repeated twofold branching:
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However, we cut off every branch, which comes to an end or which
splits no more; there remains in the end:

either nothing, or a complete infinitely continuing twofold branching
tree. The latter case certainly will give the cardinality c for the limit
points. For the first case, imagine that we cut off only the branches
coming to a dead end, then there can remain:

a) nothing; in this case we had finite cardinality.

b) a tree with a finite number of infinitely long branches: in that
case we had the cardinality ℵ0 for the set and finite for the limit
points.126

This method for the determination of the cardinality of a set found, as said,
its way into the first chapter of the dissertation (see the discussion on page 117).

The argument of quote VIII–23 requires the use of the principle of the ex-
cluded middle (PEM) (which was already judged to be meaningless): there
remains ‘either nothing or a complete infinitely continuing twofold branching
tree’; apparently this choice was supposed to be decidable.
125However, in a letter to Fraenkel, Brouwer claimed that the ‘initial construction of mathe-

matics’, that is, the definition of elements for a set by means of choice sequences, was already
present in the dissertation. See also page 74.
126Bij de benadering van Teilmengen van c. Achtereenvolgens wordt elke decimaal in twee-

tallig stelsel benadered, al of niet met vrije keuze. We krijgen dan een telkens herhaalde
tweevoudige vertakking:

(see diagram in the text)
We breken nu echter elke tak die doodloopt, of zich nooit meer vertakt, af; er blijft dan ten

slotte over: òf niets, òf een volledige oneindig voortlopende tweevertakking. Het laatste geval
geeft zeker de machtigheid c voor de grenspunten. Denk voor het eerste geval, dat we alleen
de doodloopende takken afbreken; dan kan overblijven:

a) niets; dan hadden we eindige machtigheid.
b) een boom met een eindig aantal oneindig lange takken: dan hadden we machtigheid ℵ0

voor de Menge en eindig voor de grenspunten.
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In the new mode of set definition (after 1918) the branching method is no
longer employed to determine the cardinality of a set, but, instead, to define a
set which then becomes a law. See for this the section about the Begründung
papers on page 133.

According to VIII–23, the ‘complete and indefinitely continuing twofold
branching tree’ (that is, with both branches on every node) certainly has the
cardinality c. This is the continuum of the reals in dual form.127

In the following fragment Brouwer was aware of the problems related to the
decidability of a branching tree:

(IX–26) One could say: can one find out whether a point sequence
on the continuum is dense or not? In other words, is the character
of a branch always decidable? In any case I can say: if it is not yet
decided, I certainly cannot apply the completion to a continuum,
hence it has to be limited to a denumerable quantity.128

This phrase refers to the ‘branching method’, as described by Brouwer on
pages 64 and 65 of his dissertation, and also in notebook VIII–23. See also our
pages 117 and 156.

The following paragraph was quoted earlier:

(VIII–24) One should always keep in mind that ω only makes sense
as a living and growing induction in motion; as a stationary abstract
entity it is meaningless; ω may never be thought as finished, as a
new entity to operate on; however you may think it to be finished
in the sense of turning away from it while it continues growing, and
to think of something new.129

Here we see once more the concept of an infinite sequence: on the one hand,
it is never finished, the process of growth continues and since the process takes
place in time, it never terminates. On the other hand, it may be seen as finished
in an idealized way. We may leave the process alone, it does not require our
permanent personal intervention. In this way we may see the system of nat-
ural numbers as finished, or any other infinite lawlike system for that matter.
Brouwer expressed himself metaphorically with the terms ‘turning away from
it, while it continues growing and think of something else’, meaning that the
process of growth is set into motion by applying the algorithm (inductive or
recursive). We have, as it were, fed the machine with the necessary data in the
127Later by Heyting to be called the universal spread.
128Men zou kunnen zeggen: is het uit te maken, of een puntrij op het continuüm dicht is

of niet? M.a.w. is het karakter van de boomtak altijd uit te maken? In elk geval kan ik
zeggen: heb ik het nog niet uitgemaakt, dan kan ik de completering tot continuüm zeker niet
toepassen, moet dus zeker tot een aftelbare hoeveelheid beperkt blijven.
129Men bedenke steeds dat ω alleen zin heeft, zolang het leeft, als groeiende, bewegende

inductie; als stilstaand abstract iets is het zinloos; zo mag ω nooit àf gedacht worden, om
m.b.v. het geheel als nieuwe eenheid te werken: wel mag je het àf denken in de zin, van je er
van af te keren, terwijl het doorloopt, en iets nieuws te gaan denken.
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form of the first term of the sequence and the algorithm, and set it into motion.
No more intellectual activity is required by us, we can think of something else.
We will return to this matter when discussing Brouwer’s concept of the ‘actual
infinite’.130

About the cardinalities of sets that can eventually be constructed from a
denumerably infinite ordered set with ordinal number ω, Brouwer noticed the
following:

(VIII–25) If I want to find all possible ‘sets of limit elements’ that can
be constructed from ω, then I have to construct all possible infinite
groups from it, or all possible groups for that matter; and this can be
performed by the approximation in the dual system, which results
in the only kinds of groups with the cardinality E (finite), A (ℵ0)
and C.131

In this paragraph Brouwer applied a ‘Cantorian way of reasoning’: all possi-
ble infinite subsets of an ordered set with ordinal number ω (Brouwer used the
term ‘group’, but, again, this should not be understood in its algebraic sense)
expressed in the dual system (just for convenience) results in the cardinality of
the continuum, which makes the total number of possible cardinalities three: E,
A and C. The argumentation here is of course the definition of the universal
spread: on every node of the spread both branches occur. But Brouwer again
referred to a way of constructing or describing the continuum of the reals, or,
at least to a way of ‘parallelling’ it.

The continuity theorem is far too sophisticated at this early stage of the de-
velopment of his intuitionistic mathematics, but Brouwer was already searching
for a solution in a constructive sense for the definition of functions with ‘un-
known irrational numbers’ as argument, and even for their continuity, thereby
speaking of a ‘continuity postulate’:

(VIII–38) One has the rational scale and some continuous operations
in it (e.g. extraction of a root). Then one defines on the basis of
those operations, the known irrational numbers (on the basis of an
extension to a postulate of continuity) as limits of known sequences
(the known order relations are assigned to those limits).

One might define also the unknown irrational numbers as the lim-
its of unknown sequences. One assigns to them the known order
relations, and only afterwards one needs to introduce the continu-
ity postulate, in order to be able to perform operations on those

130See chapter 8 of this dissertation, page 320.
131Wil ik alle mogelijke ‘Mengen van grenselementen’ zoeken, die uit ω zijn te vormen, dan

moet ik alle mogelijke oneindige groepen er uit vormen, of hiertoe maar alle mogelijke groepen;
en dit geschiedt door de benadering in het tweetallig stelsel, die als soorten van groepen dus
alleen geeft, van machtigheid E (eindig), A (ℵ0) en C.
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irrational numbers.132

(VIII–40) Sometimes I can assign certain irregular (unstetige) val-
ues for a function to known irrationals, the values of the unknown
irrationals, however, remain always determined by the continuity
postulate.133

In both quotes the ‘continuity postulate’ is mentioned, which is needed to
define ‘known irrational numbers’ as limits of known sequences of rationals (we
have not yet arrived at the stage where the whole sequence, and not its limit,
stands for the irrational number). The postulate then defines the existence of
the limit of every convergent sequence of rationals, lawlike or not, thus extend-
ing the system of the rational numbers to include the irrationals, giving the
system of the reals.134 Alternatively, the term ‘continuity postulate’ may refer
to Dedekind’s axiom from Stetigkeit und irrationale Zahlen. See page 22.

In the last quotes, Brouwer was referring to the way in which Cantor, in the
Mathematische Annalen, volume 5 from 1872, defined the irrational numbers:

Die rationlen Zahlen bilden die Grundlage für die Feststellung des
weiteren Begriffes einer Zahlengrösse; ich will sie das Gebiet A nen-
nen (mit Einschluss der Null).

Wenn ich von einer Zahlengrösse im weiteren Sinne rede, so geschieht
es zunächst in dem Falle, dass eine durch ein Gesetz gegebene un-
endliche Reihe von rationalen Zahlen a1, a2, ...an, ... (1) vorliegt,
welche die Beschaffenheit hat, dass die Differenz an+m − an mit
wachsendem n unendlich klein wird, was auch die positive ganze
Zahl m sei.

(...)

Diese Beschaffenheit der Reihe (1) drücke ich in den Worten aus:
‘Die Reihe (1) hat eine bestimmte Grenze b’.

(...)

Die Gesammtheit der Zahlengrössen b möge durch B bezeichnet wer-
den.

132(VIII-38): Men heeft de rationale schaal en enkele stetige bewerkingen daarin (b.v. wortel-
trekking). Men definieert nu op grond van die bewerkingen, de bekende irrationale getallen
(op grond van uitbreiding tot een stetigkeits‘postulaat’) als limieten van bekende reeksen (aan
welke limieten dan de bekende orderelatie wordt toegekend).

Of ook men definieert de onbekende irrationale getallen als limieten van onbekende reeksen.
Men kent er de bekende orderelatie aan toe, en behoeft eerst achteraf, om bewerkingen met
deze irrationalen te kunnen uitvoeren, het stetigkeitspostulaat in te voeren.
133(VIII-40): Soms kan ik aan bekende irrationalen bepaalde irregulaire (unstetige) waarden

voor een functie geven, de waarden der onbekende irrationalen blijven dan echter altijd nog
bepaald door het stetigkeitspostulaat.
134The reader will understand that this is not yet Brouwer’s continuity principle from his

intuitionistic mathematics!
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Mittelst obiger Festsetzungen lassen sich die Elementaroperationen,
welche mit rationalen Zahlen vorgenommen werden, ausdehnen auf
die beiden Gebiete A und B zusammengenommen.135

However, after the publication of Stetigkeit und irrationale Zahlen (also
in 1872) the most well-known definition of irrational numbers is by means of
‘Dedekind cuts’136 and Dedekind’s Stetigkeits Postulat:

Zerfallen alle Punkte der Geraden in zwei Klassen von der Art, daß
jeder Punkt der ersten Klasse links von jedem Punkte der zweiten
Klasse liegt, so existiert ein und nur ein Punkt, welcher diese Ein-
teilung aller Punkte in zwei Klassen, diese Zerschneidung der Gera-
den in zwei Stücke hervorbringt.

In the second paragraph of quote (VIII–38), as well as in (VIII–40), attempts
were made to define the unknown irrationals as limits of ‘unknown sequences’,
that is, as limits of non-lawlike choice sequences. A continuity postulate is then
required afterwards to make operations on the unknown irrationals possible.
E.g. if we have two convergent sequences (defining two irrationals), we can
construct a third sequence by adding up the corresponding terms of the two
sequences. With the help of the continuity postulate the limit of the third
sequence (this sequence can easily be proved to be convergent too) then defines
an irrational number which is the sum of the first two irrationals.

Also the definition of the order relation needs the continuity postulate: if
α and β are two irrationals and {an} and {bn} are their defining sequences of
rationals, then α < β if there exists an m such that an < bn for all n > m.

About still higher cardinalities, Brouwer wrote:

(VIII–43) The cardinality of f is contradictory. After all, one can
imagine that the game of chance makes a free choice ω times in
succession (that is to say: always continuing); but not c times. Our
intuition tells us, if requested, that this is unimaginable. One can
only read Schoenflies’ Bericht, page 24 § 4 in the following way: It
is not true that:

f is conceivable and can be mapped one-one on c.137

f is the cardinality of all functions, defined on the continuum, which is
an impossible and contradictory cardinality. However, the last quote from the
eighth notebook clearly tells us that ω times a free choice is thinkable, and that

135[Cantor 1871], § 1.
136See page 22 of this dissertation.
137De machtigheid f is contradictoir. Immers men kan zich denken, dat ω maal achtereen

(d.w.z.steeds weer door) het kansspel een vrije keus doet; maar niet c maal. Dat men dit
niet kan denken, antwoordt ons, desgevraagd, direct onze intüıtie. Men kan dus Schoenflies’
Bericht, p. 24 § 4 alleen lezen: het is niet waar dat:

f denkbaar zou zijn en eenduidig af te beelden op c.
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therefore the cardinality c is not contradictory, thereby referring to the spread in
which on every node (in case of the dual representation) both choices are allowed,
ω times. But c times is unthinkable, a number of choices always remaining
denumerable at the most. Brouwer was referring to Schoenflies’ Bericht über die
Mengenlehre, from the Jahresbericht der Deutschen Mathematiker-Vereinigung
volume 8.138 In chapter 4 of this book, the most simple non-denumerable sets
are discussed, and under item 4 Schoenflies claimed:

Die einfachste uns bekannte Menge, deren Mächtigkeit grösser als c
ist, ist die Menge F aller Functionen einer reellen Variabelen.

Schoenflies proved that its cardinality f = cc > c.

In a note in the margin of the eighth notebook, added afterwards, Brouwer
again stated that the existence of unknown infinite sequences, not determined
by some law and hence being choice sequences of numbers, is very well possible
and certainly not unthinkable and not contradictory (he was not alluding at this
place to the ‘nested interval’ type of choice sequences):

(VIII–45) I can think the unknown infinite sequences in case of the
regular continuum, since I know a close connection with all finite
sequences; only by that connection, independent of the formal gen-
eration, hence intuitively, the unknown infinite sequences can be
thought as existing, as not absurd.139

But the notion of sequences of ω times a free choice is certainly not yet a
definitive and permanent one.

In the ninth and last notebook remarks to the contrary are made again: no
infinite chance sequences as a model for the continuum. Towards the end of this
notebook, and shortly before the public defence of its result, he apparently had
to make his choice for the standpoint of the dissertation, not yet fully realizing
and neither able to work out the consequences of the continuously boiling new
ideas. That these ideas were boiling may be concluded from the fact that not
all quotations, alluding to choice sequences and spreads, are crossed out. And
even if they were deleted, then he apparently had these ideas and thoughts
beforehand.

4.11 Concluding remarks about sets

On the basis of the discussions and quotations in this chapter, we can draw the
following conclusions about Brouwer’s present (1907) and future notions of set:

138[Schoenflies 1900b].
139Bij het gewone continuüm kan ik de onbekende oneindige reeksen denken, omdat ik een

nauw verband weet met al die eindige reeksen; alleen door dat verband, onafhankelijk van
deze formele generering, dus intüıtief, kunnen die oneindige onbekende reeksen als bestaand,
als niet onzinnig worden gedacht.
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– Brouwer was a constructivist from the beginning. Elements have to be
constructed individually; only then a set is well-defined. This also applies for
‘species’: the properties referred to in the definitions apply to pre-existing ob-
jects only.

Three modes for the construction of a set were given in the dissertation,
but, for reasons of non-constructibility, the third mode, most likely introduced
under Cantor’s influence, was rejected in the Addenda and Corrigenda and thus
disappeared from the list of construction methods for sets.

– The number of cardinalities in the notebooks gradually increased from two
to four, which is the number that we find in the dissertation. The four possible
cardinalities, in particular the denumerably infinite unfinished, will be exten-
sively discussed in chapter 7.

– In 1914, the new development set in with the publication of the Schoenflies
review, followed by the notes in the margin of the lecture notes on set theory
(1915), and with the publication of the Begründung papers (1918). This de-
velopment eventually resulted in notions like choice sequences, spreads, species,
the perfect spread as a representation of the continuum of the reals, and in an
intuitionistic real analysis.

With respect to all those future developments we may conclude to the fol-
lowing four summaries, all originating from the notebooks, in particular from
the eighth one:

-1- The concept of the choice sequence can often be indirectly sensed
or directly recognized in the notebooks, but the idea of a ‘free choice’
is not yet explicitly mentioned; it is still expressed in terms of ‘chance
sequences’, every next decimal has equal chances; however, this cor-
responds to the admission of a free choice for every next decimal
place in the determination of a non-terminating sequence.

-2- A function can have a value for an unknown irrational number as
argument. This includes that the function has a value for a choice
sequence as argument, since the unknown irrational can be expressed
as such a sequence.

-3- Without explicitly expressing his continuity principle, Brouwer
employed it, as a result of the same claim that a function can have an
unknown irrational value for an unknown irrational argument (see
page 159). This latter seems to imply, in view of his constructivism,
the continuity principle: if the function value has to be constructed
decimal by decimal, then each next decimal has to be deduced from
a finite number of consecutive decimals from the expansion of the
variable.140

140This reasoning follows Charles Parsons’ argument in the introduction to [Brouwer 1927]
on page 446 of [Heijenoort 1967]. However, this argument is not correct; there is more to say
to it. See [Atten, M. van and Dalen, D. van 2000] for an analysis of the continuity principle.
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-4- The basic idea of the construction of a set according to the spread
concept can already be recognized in the branching method, when
this method was employed in the determination of the possible car-
dinalities of a set and to find out whether or not a set is dense.

At this point we are still in a very early stage of Brouwer’s mathematical and
philosophical development. Many ideas are present in a very rudimentary form,
but it is evident that Brouwer did not hesitate to make up his own mind and
to draw his own conclusions, facing the authorities of his day, when necessary.
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Chapter 5

The ‘continuum problem’

5.1 Introduction

It was in 1900 at the Paris conference that Hilbert presented his list of un-
solved mathematical problems; this list can be viewed as an assignment for the
mathematical world for the century ahead. As number one on that list, which
was entitled Mathematische Probleme, stands the continuum problem, already
conjectured by Cantor, and expressed by Hilbert as follows:

Jedes System von unendlich vielen reellen Zahlen, d. h. jede un-
endliche Zahlen- (oder Punkt)menge, ist entweder der Menge der
ganzen natürlichen Zahlen 1, 2, 3, ... oder der Menge sämtlicher reellen
Zahlen und mithin dem Kontinuum, d. h. etwa den Punkten einer
Strecke, äquivalent; im Sinne der äquivalentz gibt es hiernach nur
zwei Zahlenmengen, die abzählbare Menge und das Kontinuum.1

As a related problem, of which the solution may lead to the solution of the
original problem, Hilbert mentioned the well-ordering of the continuum. In fact
we have to distinguish between the continuum problem which asks for an answer
to the question ‘what is the cardinality of the continuum’, and the continuum
hypothesis, which conjectures that this cardinality is the next higher after ℵ0,
the cardinality of the set of the natural numbers. Since it was proved already
by Cantor that the cardinality of c exceeds ℵ0, the claim of the hypothesis is
that c = 2ℵ0 = ℵ1.

In this form it is still an unsolved mathematical problem. Different other
questions, related to the continuum hypothesis, have been solved, but the hy-
pothesis itself still stands as such.

1Presented at the Paris conference of 1900, and published in the Göttinger Nachrichten in
1900. See [Hilbert 1900], see also [Hilbert 1932], vol. III, page 298. In our dissertation it was
mentioned earlier on page 9.

165
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For Brouwer, the continuum problem is of a completely different nature. The
form c = 2ℵ0 = ℵ1 is a meaningless one for him since ℵ1 is a non-existing car-
dinality. The question that he intends to answer on page 66 of his dissertation
is: what are the possible cardinalities of subsets of the continuum. If we take
the standard interval (0, 1) (which is, in fact, the intuitive continuum between
the first and the second experienced event) as point of departure, then a subset
of the continuum cannot be anything else but a point set, constructed on the
continuum, or a finite or denumerable set of subsegments of the continuum.

The aim of this chapter is an analysis to the solution of the continuum prob-
lem, as Brouwer presented it in his dissertation and in the notebooks. Brouwer’s
solution is simple and is, as we will argue, a direct corollary of the modes of
set construction that he admitted. In fact his solution is almost trivial, since
the limited number of possible cardinalities immediately follows from his set
constructions.

The solution from the notebooks is different, but it is just as well an imme-
diate corollary of Brouwer’s constructivism.

One can wonder why Brouwer did not present the solution from the note-
books in his dissertation; it certainly is a more direct and intuitive (although
possibly a less sophisticated) one. On the other hand, the proof from the dis-
sertation is more in agreement with, and fits better, the three admitted modes
of set construction that Brouwer just had given.

5.2 The solution in the dissertation

On page 66 ff. of his dissertation, Brouwer proved that every point set which
is defined on the measurable continuum (hence constructed on the intuitive
continuum), either has the cardinality of the continuum or is denumerable, thus
solving the problem and confirming the hypothesis. The proof proceeds as
follows:2 let there be given a set, constructed according to the given rule 2,
whether or not in combination with the third rule (see our pages 117, 120 and
122), and a continuum. The set can now be mapped on the continuum in the
following way:

(...) in both sets (the continuum and the given set) a well-defined,
and consequently denumerable, point set is chosen in such a way
that all the other points can be obtained by approximation from
everywhere dense parts of this set. Then the undefined points are
brought into one-to-one correspondence by mapping the everywhere
dense parts, with respect to which the infinitely proceeding approxi-
mations must be taken, onto each other; then the points which were

2In Brouwer’s presentation of the proof the term ‘group’ is used; as said earlier, Brouwer
frequently used the term group when the term set clearly expresses the intention; apparently
the terminology in this matter was not yet completely fixed.
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defined can still be brought into correspondence with each other,
because they are denumerable in both sets.3

As usual, Brouwer put it briefly worded; the conclusion of the foregoing
procedure is drawn without further arguments or explanation:

It follows that every set of points on the measurable continuum (and
consequently also on the simple intuitive continuum, which in fact
we can only handle after having made it measurable – or built up
out of individualized measurable parts) which is not denumerable,
has the power of the continuum.4

As an elucidation of this very concise argument and its conclusion, the follow-
ing discourse expresses, in our opinion, the intentions and content of Brouwer’s
solution. Suppose we have constructed a set according to method 2, i.e. every-
where dense and ‘completed to a continuum’; or, according to rule 3, deleted
from a continuum a constructed dense scale. The result of the (earlier discussed)
rules 2 and 3 can be fully mapped one-to-one onto the continuum, hence has
the cardinality of the continuum. This ‘mapping’ can easily be understood if
we recall to mind the way in which an everywhere dense set was ‘completed to
a continuum’. We discussed this on page 116: we have an everywhere dense
denumerable set which is ‘covered by a continuum’, and this ‘covering’ can now
be identified with the ‘completion to a continuum’ from rule 2. But then, if
we take a continuum C and define an everywhere dense scale (e.g. η) on it, by
which every point on C, not belonging to that scale, can be approximated, then
the proof of the statement that the result of rule 2 is similar to C, is a trivial
one, hence the result of rule 2 has the power of the continuum.

And if we delete from C the scale η, then the result is similar to that of rule
3. Also the proof of this claim is a trivial one: map the denumerable scales onto
each other and map the approximating sequences in the denumerable scale for
undefined points onto each other.

Hence a set satisfying the first method of construction is denumerable in
virtue of its definition, and the set A, constructed according to method 2 and/or
3, has the cardinality of the continuum, since the above sketched mapping be-
tween A and C can be completed one-to-one. No other sets can be constructed
and therefore no other sets exist.

3(page 66) in beide verzamelingen (het continuüm en de gegeven puntverzameling) wordt
een welgedefinieerde, dus aftelbare puntgroep uitgekozen zó, dat alle andere punten als be-
naderingen ten opzichte van overal dichte delen van die groep kunnen worden beschouwd,
en vervolgens worden de ongedefinieerde punten met elkaar één-éénduidig in correspondentie
gebracht, door de overal dichte delen, ten opzichte waarvan in beide de oneindig voortlopende
benaderingen moeten worden genomen, op elkaar af te beelden; de wel gedefinieerde punten
kunnen dan altijd nog daarna in correspondentie met elkaar worden gebracht, daar ze in beide
aftelbaar zijn.

4(page 66, 67) Waaruit volgt, dat elke puntverzameling op het meetbaar continuüm (dus
ook op het intüıtief continuüm zonder meer, waarmee we immers eerst kunnen werken nadat
we het meetbaar – of uit gëındividualiseerde meetbare stukken opgebouwd – hebben gemaakt),
die niet aftelbaar is, de machtigheid van het continuüm bezit.
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Brouwer then concluded:

Thus the continuum problem, put forward by Cantor in 18735 and
mentioned by Hilbert as still open (‘Mathematische Probleme’, Prob-
lem no. 1, page 263),6 seems to be solved, in the first place by
keeping strictly to the view: a continuum as set of points must be
considered with respect to a scale of order type η.7

Brouwer did not claim that the continuum problem was solved, but that it
seemed so. But we immediately see that Brouwer’s solution to the continuum
problem is a direct consequence of 1) the three methods of set-construction that
he admitted, which methods, in turn, are a consequence of the basic intuition of
all mathematics which states that the continuum is no point set, and 2) of his
point of departure that only constructible objects are acceptable as mathemat-
ical entities. ‘Undefined points’ exist only on a continuum, or in a denumerable
set which is ‘completed to a continuum’, in relation to an (everywhere dense)
scale of constructed points. But then the conclusion that every set either is de-
numerable or has the cardinality of the continuum becomes obvious and almost
trivial. Even if we consider (thereby anticipating on future developments) the
perfect spread as a representation of the continuum of the reals, then the conclu-
sion should remain the same under this argument, as a result of the requirement
that every set needs an algorithm for the construction of its individual elements,
and the result of a construction can never surpass a denumerable cardinality.
There simply does not and cannot exist anything between the cardinalities ℵ0

and c.8

Any object in mathematics has to be the result of a construction; this is also
what Brouwer wrote to his thesis supervisor Korteweg in a letter of 5 November
1906, in which he announced his solution:

Allow me to send you the enclosed copy of the Göttinger Nachrichten,
in which Hilbert’s Paris lecture ‘Mathematische Probleme’ is printed.
You will see that I have completely discussed no.1 (‘Cantor’s Prob-
lem von der Mächtigkeit des Continuums’) in the first chapter of my
dissertation, by going back to the intuitive construction, that must
exist for all mathematics.9

5[Cantor 1874], also in [Cantor 1932]
6[Hilbert 1900].
7(page 67) Hiermee schijnt het ‘continuümprobleem’, door Cantor in 1873 opgesteld en

door Hilbert (‘Mathematische Probleme’, Problem no. 1, pag 263) als nog steeds actueel
gesignaleerd, te zijn opgelost, en wel in de eerste plaats door streng vast te houden aan het
inzicht: over een continuüm als puntverzameling kan niet worden gesproken, dan in betrekking
tot een schaal van het ordetype η.

8Note that ‘denumerably unfinished’ does not represent a result, but a non-terminating
process.

9Mag ik u misschien nog bijgaande jaargang der Göttinger Nachrichten sturen, waarin de
voordracht van Hilbert te Parijs: ‘Mathematische Probleme’ staat afgedrukt. U zult dan zien,
dat ik no. 1, (Cantors Problem von der Mächtigkeit des Continuums”) in het eerste hoofdstuk
van mijn dissertatie volledig heb behandeld, en dat juist door mijn teruggaan op de intüıtieve
opbouw die voor alle wiskunde moet bestaan.
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Nevertheless, one gets the impression that Brouwer was not completely sat-
isfied with the proof he gave, for the same reason that he was not satisfied with
the third construction rule. Indeed five years later he added a correction to his
proof, written on a sheet and added to his own corrected copy of his dissertation.
This sheet begins as follows:

The best thing to do is, to recognize a set of points on the linear con-
tinuum as defined only then –we may do such a thing as long as the
possibility of unsolvable problems exists– when we have constructed
it by putting term by term in a well-ordered way, whether or not un-
der the addition of the fundamental sequence of free number choices.
Then every non-denumerable point set contains a perfect subset.

We only recognize a definition by the exclusion of points as suf-
ficient, if it can be translated into another definition in the form
given above.10

A definition must be constructive and one should not speak of ‘undefined
points’, as Brouwer actually did in the proof. We saw that he also used this
negative definition of a point set in his third mode for the construction of sets,
and that he rejected this possibility in the Addenda and Corrigenda. However,
the inserted sheet only questions the quality of the proof, and not the content
of the theorem itself.

And indeed one may put forward as a point of criticism the impossibility to
map the undefined points of the set on the undefined points of the continuum,
because of the impossibility of an algorithm for sequences that represent ‘unde-
fined points’ on the continuum. One can define lawlike approximating sequences
for ‘undefined’ points (i.e. points not belonging to the ‘well-defined point set’) on
both the set and the continuum, but the result remains denumerable and there
is no fixed algorithmic rule which allows us to consider all undefined points on
both the set and on the continuum as a well-defined totality. On the basis of
this proof alone one can never conclude to a cardinality of the continuum. In
fact we have, in case of construction rule 2 or 3, that continuum already; the
proof becomes superfluous.

Again, as can be concluded from the quoted proof and our elaboration of it,
Brouwer had to appeal to sequences of free choices as the only possible argument
for his solution to the continuum problem, since choice sequences of rationals
on the continuum, in any phase of their development, can be mapped on similar
choice sequences in the investigated set, with a denumerable result.

10Het beste is, een puntverzameling op het lineaire continuüm eerst dàn als gedefinieerd
te erkennen – en zoiets mogen we doen, zolang de mogelijkheid van onoplosbare problemen
bestaat – als we haar hebben opgebouwd, door welgeordend punt voor punt te plaatsen, al
of niet onder toevoeging der fundamentaalreeks van vrije cijferkeuzen. Elke niet-aftelbare
puntverzameling bevat dan een perfecte deelverzameling.

Definitie door uitsluiting van punten erkennen we dus alleen dàn als afdoend, als ze zich in
een nieuwe definitie van bovenstaande vorm laat vertalen.

(See page 119, where the possible set constructions were discussed. The given correction
was also quoted at that place. See for this correction [Dalen 2001], page 77.)
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This argument clearly shows the necessity of the later developments to choice
sequences as proper mathematical objects. In order to be able to handle the
continuum, to discuss continuous functions and to work out an intuitionistic
and constructive analysis, a development into the direction of choice sequences
turned out, in hindsight, to be the only way. And in that development the
continuum problem disappeared as improper and unimportant.

Brouwer came already to that conclusion in his inaugural address (see be-
low). In the first Begründung paper the continuum problem is not mentioned
any more, the only two examples of infinite cardinalities are, again, the familiar
‘denumerable’ and ‘continuum’.

In Intuitionistische Mengenlehre11 Brouwer articulated it as follows:

Die klassischen Kardinalzahlen a und c bleiben bestehen, dagegen
wird das in der klassischen Theorie durch die Menge aller Funktionen
einer Variablen gelieferte Beispiel einer Kardinalzahl > c hinfällig.

5.3 Two other publications on this problem

5.3.1 The Rome lecture

In 1908, the year after his academic promotion, Brouwer lectured at the In-
ternational Conference of Mathematicians in Rome. His contribution was Die
mögliche Mächtigkeiten,12 in which Brouwer defined a certain procedure to de-
cide on the cardinality of a set which is defined on the continuum. Without,
at this place, going into the details of the nature of this operation,13 Brouwer
concluded:

Wird die Operation wenigstens einmal vollführt, so ist die Mächtig-
keit von M jene des Continuums; wird sie nicht vollführt, so ist M
abzählbar.

Es existiert also nur eine Mächtigkeit für mathematische unendliche
Mengen, nämlich die abzählbare. Man kan aber hinzufügen:

1) die abzählbar-unfertige, aber dann wird eine Methode, keine Menge
gemeint;

2) die continuierliche, dann wird freilich etwas Fertiges gemeint, aber
nur als Matrix, nicht als Menge.

Von anderen unendlichen Mächtigkeiten, als die abzählbare, die ab-
zählbar-unfertige, und die continuierliche, kann gar keine Rede sein.14

This, once more, shows Brouwer’s conclusion of his solution to the continuum
problem: every set, hence also every subset of the continuum, either has the
cardinality of the continuum, or is denumerable (or denumerably unfinished).

11[Brouwer 1919b], page 3.
12[Brouwer 1908b], also in [Brouwer 1975], page 102.
13See chapter 7
14[Brouwer 1908b], conclusions at the end of this paper.
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5.3.2 The inaugural address

But in 1912 the dawn of his intuitionism was approaching. In his inaugural ad-
dress Intuitionism and Formalism15 Brouwer returned to the question as posed
by the continuum hypothesis, this time with a different outcome: the question
becomes meaningless. In the inaugural address, the attitude of the formalist
with that of the intuitionist is compared on different mathematical topics. In
the following quote the subject is the continuum:

Let us consider the concept ‘real number between 0 and 1’. For
the formalist this concept is equivalent to ‘elementary series of dig-
its after the decimal point’, for the intuitionist it means ‘law for
the construction of an elementary series of digits after the decimal
point, built up by means of a finite number of operations.’ And
when the formalist creates the ‘set of all real numbers between 0
and 1’, these words are without meaning for the intuitionist, even
whether one thinks of the real numbers of the formalist, determined
by elementary series of freely selected digits, or of real numbers of
the intuitionist, determined by finite laws of construction. Because
it is possible to prove to the satisfaction of both formalist and intu-
itionist, first, that denumerably infinite sets of real numbers between
0 and 1 can be constructed in various ways, and second that for ev-
ery such set it is possible to assign a real number between 0 and 1,
not belonging to the set, the formalist concludes: ‘the power of the
continuum, i.e. the power of the set of real numbers between 0 and
1, is greater than aleph-null’, a proposition that is without meaning
for the intuitionist; the formalist further raises the question, whether
there exist sets of real numbers between 0 and 1, whose power is less
than that of the continuum, but greater than aleph-null, in other
words, ‘whether the power of the continuum is the second smallest
infinite power,’ and this question, which is still waiting for an answer,
he considers to be one of the most difficult and most fundamental
of mathematical problems.

For the intuitionist, however, the question as stated is without mean-
ing; and as soon as it has been so interpreted as to get a meaning,
it can easily be answered.16

15[Brouwer 1912], for English translation see [Benacerraf and Putnam 1983], page 77.
16Beschouwen we het begrip: ‘reëel getal tussen 0 en 1’. Voor de formalist is dit begrip

gelijkwaardig met : ‘fundamentaalreeks van cijfers achter de komma’, voor de intüıtionist
met: ‘door een eindig aantal operaties geconstrueerde voortbrengingswet van een fundamen-
taalreeks van cijfers achter de komma’. En waar de formalist de ‘verzameling van alle reële
getallen tussen 0 en 1’ creëert, zijn deze woorden voor de intüıtionist van zin ontbloot, hetzij
daarbij aan de door een fundamentaalreeks van vrije cijferkeuzen bepaalde formalistische reële
getallen, of aan de door eindige voortbrengingswetten gedetermineerde intüıtionistische reële
getallen wordt gedacht. Daar men op voor de formalist zowel als voor de intüıtionist bindende
wijze kan aantonen ten eerste, dat op de meest verschillende manieren aftelbaar oneindige
verzamelingen van reële getallen tussen 0 en 1 kunnen worden geconstrueerd, ten tweede, dat
naast elke zodanige verzameling terstond een niet tot de verzameling behorend reëel getal
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The ‘easily answerable’ questions that Brouwer was referring to in this quote,
are the intuitionistic restatements of the continuum problem; these questions
were put by Brouwer in one of the following forms:17

1. Is it impossible to construct a non-denumerable set of real numbers be-
tween 0 and 1, such that its cardinality is smaller than that of the continuum,
but greater than ℵ0? The answer simply is ‘yes, that is impossible’.

2. Can one, while constructing on the following two sets, maintain a one-
to-one correspondence between a set of real numbers between 0 and 1, and
the set of denumerable infinite cardinal numbers? Again, the answer is in the
affirmative, and the resulting cardinality is denumerably infinite unfinished.18

3. But if one asks for the possibility to construct a law, which generates
a one-to-one correspondence between all real numbers between 0 and 1 (all
‘fundamental sequences of digits’) and the set of all denumerably infinite ordinal
numbers, then the answer is no.

This conclusion is correct, but the proof that Brouwer presented in the in-
augural address is a questionable one:

for this law of correspondence must prescribe in some way a con-
struction of certain denumerably infinite ordinal numbers at each of
the successive places of the elementary series; hence there is for each
place cν a well-defined largest denumerably infinite number αν , the
construction of which is suggested by that particular place; there is
also a well-defined denumerably infinite ordinal number αω, greater
than all αν ’s and that can not therefore be exceeded by any of the
ordinal numbers involved by the law of correspondence; hence the
power of that set of ordinal numbers cannot exceed ℵ0.19

Brouwer’s argument is the following: suppose the law of correspondence
exists, then in a dual representation the first dual place has to prescribe two

tussen 0 en 1 kan worden aangegeven, concludeert de formalist tot de voor de intüıtionist
zinloze stelling : ‘de continue machtigheid, d.w.z. de machtigheid der verzameling der reële
getallen tussen 0 en 1, is groter dan aleph-nul’, stelt de vraag, of er verzamelingen van reële
getallen tussen 0 en 1 bestaan, waarvan de machtigheid kleiner is dan de continue, doch
groter dan aleph-nul, m.a.w. ‘of de continue machtigheid op één na de kleinste oneindige
machtigheid is’, en beschouwt deze vraag, die nog steeds geen oplossing heeft gevonden, als
een der moeilijkste en fundamenteelste wiskundige problemen.

Voor de intüıtionist daarentegen is de vraag in de geciteerde vorm zinloos, en, zodra men
haar door precisering een zin gegeven heeft, gewoonlijk gemakkelijk te beantwoorden.

17See the continuation of Brouwer’s Inaugural address.
18See chapter 7.
19([Dalen 2001], page 189; English text [Benacerraf and Putnam 1983], page 86): immers

die correspondentiewet moet bij de opvolgende cijfers der fundamentaalreeks telkens een con-
structie van aftelbaar oneindige ordinaalgetallen voorschrijven; er is dan bij elke cijferplaats
cν een welgedefinieerd grootste aftelbaar oneindig ordinaalgetal αν , waarvan ze de construc-
tie suggereert, en er is een welgedefinieerd aftelbaar oneindig ordinaalgetal αω , groter dan
alle αν ’s dat door geen der in de correspondentiewet betrokken ordinaalgetallen kan worden
overschreden, zodat van de verzameling dezer ordinaalgetallen de machtigheid niet groter kan
zijn, dan ℵ0.
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ordinal numbers, one of which is the largest, and, in general, the nth dual place
has to prescribe 2n ordinal numbers, with also one as the largest. Hence we
would get a denumerable sequence of largest ordinal numbers a1, a2, ...an, ..., so
then there certainly should exist an ordinal number aω, larger than any from the
denumerable sequence. But this would result in a denumerable largest ordinal
number in the one-to-one mapping of the real numbers (in a dual representation)
into the second number class, which is contradictory, hence there is no such
mapping. But remember that Brouwer considered in his argument only the
set of all finite dual fractions, and concluded from that, that the supposed
mapping leads to a contradiction since the set of all infinite dual fractions in
non-denumerable. Hence either the proof is not correct, or he employs in it a
sort of continuity argument, which states that the result of the mapping from
the reals into the second number class can be decided at a finite decimal place
of the real number to be mapped.

But tools like choice sequences and the continuity principle, that Brouwer
had at his disposal in his second intuitionistic period, were not yet available
to him in 1912. However, in intuitionistic mathematics the continuum hypoth-
esis completely changed its meaning and became incomparable with the one
from 1907 and 1912, since in 1919 Brouwer was able to speak of arbitrary ele-
ments of the continuum of the reals, and the continuum could be represented
by the perfect spread. The ur-intuition of continuous and discrete remained,
but Brouwer’s solution to the continuum hypothesis is no longer needed, and
the problem itself is not mentioned any more. The continuum hypothesis dis-
appeared from Brouwer’s writings, since nothing could be said about it. As a
result of the continuity principle, there are numerous non-denumerable sets that
cannot be mapped one-to-one, e.g. R1, R2, R3, ... See also Brouwer’s Addenda
and Corrigenda.20

5.4 The dissertation again

In the third chapter of his dissertation, in which the (limited) role of logic in
mathematics is discussed, Brouwer returned to the continuum problem, this
time from a logical point of view. The content of this short discussion shows a
strong similarity to that of the relevant part of the inaugural address:

Now neither the totality of numbers of the second number class, nor
the continuum as a system of individualized points, exist mathemat-
ically; therefore it appears from what we said above, that the only
clear idea which we can find behind this problem, is the following
logical theorem, which belongs outside mathematics proper:

It is possible to introduce as logical entities the totality of numbers of
the second number class and the totality of points of the continuum

20[Brouwer 1917b]; see also page 130.
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in such a way that it is non-contradictory to suppose a one-to-one
mapping between them, leaving out no element of one of them.21

But, Brouwer continued, both these totalities can only be defined as a denu-
merably infinite unfinished set, for which the equivalence applies because of their
unfinished character (see chapter 7). However, this has no further consequence
for their possible mathematical equivalence as a totality, since mathematically
these totalities do not exist, from which it follows that it makes no mathematical
sense to speak of their equivalence.

5.5 The notebooks and the continuum problem

In the notebooks only a few remarks are made on the continuum problem; in fact
only one page is (almost completely) devoted to it, but several short paragraphs
in earlier notebooks give already an indication, without further proof, what the
outcome of Brouwer’s solution will be, e.g.:

(V–19) If I have the intuitive continuum, then I can construct in
some arbitrary way a continuum of numbers on it, (...).22

This quote and other ones tell us that we can construct on the intuitive
continuum finite sets or denumerably infinite sets, e.g. the everywhere dense
scale of the rationals as the ‘continuum of numbers’. Hence the only possible
‘subset of the intuitive continuum’ that we can construct on it, seems to be
a denumerable set. What remains then necessarily has the cardinality of the
continuum (see below).

In VII–19 Brouwer presented a proof of the theorem

‘every subset of the continuum either is denumerable, or has the
cardinality of the continuum’.

This implies that there is no cardinality between the continuum and denu-
merable (including denumerably unfinished). It follows from the formulation in
which the same conclusion in the dissertation is put (with a somewhat more
sophisticated proof in the dissertation) that the proof was, for Brouwer, not
absolutely conclusive, but nevertheless Hilbert’s first problem from the list of
1900 ‘seems to be solved’. However, the continuum hypothesis in its original

21dissertation, page 150, Brouwer’s italics: Uit het voorgaande blijkt nu, dat men daarmee,
aangezien nòch het geheel der getallen van de tweede getalklasse, nòch het continuüm als sys-
teem van gëındividualiseerde punten wiskundig bestaan, niets duidelijk gedachts kan zoeken,
dan de volgende buiten de eigenlijke wiskunde staande logische stelling:

‘Men kan als logische entiteiten invoeren het geheel der getallen van de tweede getalklasse
en het geheel der punten van het continuüm zó, dat de aanname dat daartussen een cor-
respondentie één aan één bestaat, waarbij geen enkel element van een van beide buiten die
correspondentie valt, niet-contradictoir is’.

22Heb ik het intüıtieve continuüm, dan kan ik daar op een of andere willekeurige manier
een getallencontinuüm op construeren, (...).
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form, viz. 2ℵ0 = ℵ1, is of course not proved; such a proof would imply the
recognition of the existence of ℵ1, a non-existing cardinality for Brouwer.

The proof in notebook VII proceeds as follows:

(VII–19) Proof that every defined subset of the continuum is either
denumerable, or has the power of the continuum.

What I construct is denumerable. If, now, I alternate on the con-
tinuum segments yes and no, then I have to construct one of those
sequences of segments, say, A. Then the rest is B.

1st case: A is ordered according to its construction. Then A and B
have the power ℵ0 or c, depending on whether they have ‘content’
or not.

2nd case: A is constructed everywhere dense (or of a type that results
from the splitting of elements of the everywhere dense set).23 Then
also B is everywhere dense. That, which has a content, certainly has
cardinality c. But that, which has no content is like A of cardinality
ℵ0, but like B of cardinality c. For B the segments remain, which are
only reached at the ωth decimal in the construction of the rational
scale; despite the fact that these segments are merely points, their
cardinality remains c; whereas for A only those segments count, that
are singled out at a finite decimal place.24

The proof amounts to the following:
All I can construct on the continuum are points, or segments (intervals) defined
by two points.

First case: I construct on the continuum a denumerable number of points
or segments, ‘ordered according to their construction’, and I call the result of
this construction A.25 If A contains one or more non-empty segments (i.e.
has positive measure), then A has the cardinality c of the continuum; If A is
only composed of constructed points, then it has the cardinality ℵ0. If, for the

23The phrase between the brackets is somewhat puzzling; the condition ‘A is everywhere
dense’ seems sufficient.

24Bewijs, dat elke gedefinieerde deelverzameling van het continuüm is òf aftelbaar, òf heeft
de machtigheid c. Wat ik opbouw is aftelbaar. Ga ik nu het continuüm alterneren in segmenten
van wèl en niet, dan moet ik een van die segmenten reeksen, b.v. A, opbouwen. B is dan de
rest.

1ste geval. A is lopend geordend opgebouwd. Dan hebben A en B de machtigheid ℵ0 of c,
naarmate ze geen of wel inhoud hebben.

2de geval. A is überall dicht, of volgens een type, dat ontstaat door splitsing van elementen
der überall dichte Menge, opgebouwd. Dan is ook B überall dicht. Wie inhoud heeft, is zeker
van machtigheid c. Maar wie geen inhoud heeft, is als A van machtigheid ℵ0, maar als B
van machtigheid c. Immers aan B blijven de segmenten, die eerst bij de ωde decimaal geraakt
worden bij opbouw van de rationale schaal; al zijn dus die segmenten slechts punten, hun
machtigheid blijft c; terwijl aan A alleen die segmenten komen, die bij een eindige decimaaltrap
worden afgezonderd.

25As an example of a point set (not having content), ordered according to its construction,
take e.g. ( 1

2
, 1
4
, 1
8
, ...). The denumerable η scale is an example of a set which is not ordered

according to its construction.
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complement B, there also remains at least one non-empty segment, then also
B has the cardinality c; if B contains no non-empty segments, then apparently
B consists only of boundary points of the denumerable number of non-empty
segments that compose A and ‘fill’ the continuum, and since the number of
segments that I constructed is denumerable, the number of its boundary points
is also denumerable, hence of cardinality ℵ0.

The second case is, that A is a constructed everywhere dense points set and
that it is therefore not ordered according to its construction, e.g. A is the η-
scale. In that case also B has to be everywhere dense and does not contain
any non-empty segments either; hence, if A is the η-scale, then B is composed
of the irrational numbers on the continuum. Then the cardinality of A is ℵ0

since it is constructed and B then has, despite the fact that all its elements
are just points (i.e. its measure is zero), the cardinality c, because the elements
of A are all, by virtue of their construction, reached at a finite decimal place,
and this limitation of finiteness is not applicable to the remaining elements for B.

On the same page of this notebook Brouwer continued with the (not entirely
clear) remark that the method of proof presented above can be read in two ways:

(VII–19) (...) A are the segments that are reached at a finite decimal
place; B are the segments that are ‘not reached’ at an infinite decimal
place (to be read as a positive term). After all, the addition of the
infinite decimal place is the postulate for c. But the points that ‘are
not reached’ and that ‘are reached’ at an infinite decimal place, are
the same. And by postulate I can add them to A. B then has the
cardinality ω or 0, depending on whether or not I add the boundary
points to B.26

Note that the proof from the notebooks is different from the one that was
presented in the dissertation, but that both hinge upon the same concept of
which sets can be constructed on the continuum.

However, in the addition to the given proof (the last quote of VII–19), it
is questionable how it can be decided, that a point is reached at an infinite
decimal place, and even how this can be decided for a finite decimal place. The
criterium for the ‘infinite decimal place’ was rejected earlier, and again on the
next page VII–20 Brouwer returned to this, when criticizing Cantor’s method
of deduction of the cardinality of the continuum:

(VII–20) In his deduction of: cardinality of the continuum = 2ℵ0 ,
Cantor forgets that one cannot substract all rational numbers from

26(...) A zijn de segmenten, die bij een eindige decimaal bereikt worden; B zijn de segmenten,
die bij oneindige decimaal ‘niet bereikt’ (als een positieve term gelezen) worden. Immers
die toevoeging van de oneindige decimaal is het postulaat voor c. Maar de punten, die bij
oneindige decimaal ‘niet bereikt’ of ‘wel bereikt’ worden zijn dezelfde. En ik kan ze bij postulaat
even goed bij A voegen. En dan wordt B van machtigheid ω of 0 (naarmate ik de grenspunten
van de segmenten bij B tel of niet.
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all real numbers. They are things of a different kind: the first ones
I construct, the last ones are chances in nature. And in the sense
in which I can add, without change in cardinality, to the group of
all rational numbers plus something all rational numbers without
change in cardinality: in that sense I cannot conceive a cardinality
of the continuum.27

A real number is only a ‘chance in nature’, another important and promising
idea in the light of later intuitionistic developments.

In the solution, given in VII–19, Brouwer apparently departed from a con-
tinuum on which points and intervals are subsequently constructed, whereas in
the dissertation the point of departure is a set, constructed according to rule 2
or 3, i.e. a dense point set which is completed to a continuum.

5.6 Concluding remarks

The conclusion of this chapter can be a rather short one; the fact that Brouwer
rejected Cantor’s cardinality ℵ1 and all higher cardinalities, makes his solution
to the continuum problem a trivial one. One can construct on the continuum
either points or intervals as subsets, and nothing else. In the first case the
cardinality of the constructed set is denumerably infinite at the most, in the
second case it is that of the continuum.

In this light the solution from the notebooks is the most direct and construc-
tive one, since a set is only properly defined if an algorithm for the construction
of its elements is given. In the dissertation, on the other hand, a subset of the
continuum is given and we have to figure out its cardinality. Well, we construct
a denumerable subset on it, and we construct also a denumerable subset on a
continuum, and compare the results: the outcome is almost self-evident.

One can be in doubt as to the reason for the relatively great difference be-
tween the two proofs, and why the proof from the dissertation is completely
absent in the notebooks. We hypothesized about this already in the introduc-
tion to this chapter.

And, finally, we emphasize once more that Brouwer did not compare the
cardinalities 2ℵ0 and ℵ1 (Hilbert’s problem). But how could he, ℵ0 and c being
the only existing infinite cardinalities for him.28

27Cantor in zijn afleiding van: machtigheid continuüm = 2ℵ0 vergeet, dat je niet alle
rationale getallen mag aftrekken van alle reële getallen. Het zijn ongelijksoortige dingen:
de eerste bouw ik op, de laatste zijn kansen in de natuur. En in de zin, waarin ik zonder
verandering der machtigheid bij de groep der rationale getallen plus iets nog wel eens alle
rationale getallen mag optellen zonder verandering der machtigheid: in die zin kan ik mij niet
een machtigheid van continuüm denken.

28The denumerably infinite unfinished cardinality (see chapter 7) is recognized as a method
rather than as a cardinality proper.
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Chapter 6

Mathematics and
experience

6.1 Introduction

In contrast to the first chapter of Brouwer’s dissertation, in which the math-
ematical edifice is constructed departing from the ur-intuition alone, and in
contrast to its third chapter, where the role of logic in the mathematical con-
struction is investigated, the second chapter treats the part that, in Brouwer’s
view, mathematics plays in daily life. Man exploits mathematics in order to
control his life and to gain power over the world that surrounds him. He can
accomplish this, owing to his ability to ‘take a mathematical view of his life’.

In Brouwer’s second chapter, and especially in the first half of it, the tone
sometimes reminds us of one of his earliest publications, Life, Art and Mysti-
cism, which is composed of a series of lectures held for students of the Institute
of Technology of Delft.1 Especially in the ‘rejected parts’ (i.e. the parts that
Brouwer originally wrote for his dissertation, but which fell victim to Korteweg’s
veto) we often recognize its rather pessimistic tone. A considerable share of the
‘rejected parts’ belonged to Brouwer’s draft of the second chapter.

One can wonder what Brouwer had in mind with this chapter, which stands
in such a sharp contrast with the other two, and which seems to be, especially
the first half of it, so unrelated to the construction of pure mathematics. We can
find an answer to this question in his letter to Korteweg, dated 7th November
1906:

With reference to our discussions on Sunday may I add that the
purpose of chapter 2 is:

a. to explain how the mathematical experience accompanies all essentially-
human acting;

1The ‘Technische Hogeschool’, cf. [Dalen, D. van 1999], § 2.6.
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b. and with reference to the preceding: to investigate to what extent
experience-based mathematics can be a-priori, in particular whether
space and time are both a-priori.2

In answer to the question why this chapter is discussed in our dissertation,
instead of completely omitting it, we claim that it contains foundationally rel-
evant material, and that it expresses Brouwer’s global philosophy. This has
significant consequences for his ideas on objectivity, on natural sciences and on
apriority.

Not all parts in Brouwer’s second chapter are of equal importance to us.
Some fall outside the scope of this dissertation (but are sometimes mentioned
for completeness’ sake), and therefore we will make a selection.

In the present chapter we will see that Brouwer’s idea of physics, its role in
our world and its importance to mankind, is different from that of the average
physicist. According to Brouwer, man can take a mathematical view of his life,
a view in the form of causal sequences, and he does this for the sole purpose of
increasing and maintaining his power over the surrounding world and over his
fellow men. Causality is imposed instead of discovered, and the same applies
to continuity and differentiability of the describing functions. This latter is not
an uncommon position in the philosophy of science, but Brouwer’s opinion that
we force laws upon nature as a means to rule and to control (and that this is
judged as most negative and sinful) distinguishes him from the mainstream of
physical practice.

This attitude is a consequence of his general view on mankind, which was
expressed in his mentioned booklet Life, Art and Mysticism and we will, for a
better understanding of his ideas, pay some attention to this work.

Brouwer is also of the opinion that the laws, which describe phenomena in
nature, are in fact just laws describing our measuring instruments. This, too,
is not a common view on the nature of physical laws and this view asks for an
analysis and a comment. In this comment we will try to do justice to Brouwer’s
standpoint.

On the basis of Poincaré’s La Science et l’Hypothèse, Brouwer discussed top-
ics like ‘the meaning of a physical theory’ and ‘the value of an explanation’, and,
on the basis of Russell’s An Essay on the Foundations of Geometry, concepts
like ‘objectivity’ and ‘apriority of space and time’. We will argue that Brou-
wer’s interpretation of these terms should be understood from the angle of his
solipsism.

2[Stigt 1990], page 492; Dutch text [Dalen 2001], page 15: Mag ik u, naar aanleiding
van het zondag besprokene, nog opmerken, dat de bedoeling van het tweede hoofdstuk is a)
toelichting, hoe de wiskundige ervaring het essentieel menselijke handelen begeleidt, en b)
naar aanleiding van het vorige: onderzoek, in hoeverre ervaringswiskunde a priori kan zijn,
in het bijzonder, of ruimte en tijd beide a priori zijn.
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6.2 Man’s desire for knowledge and control

The second chapter opens with the following significant paragraph, which sets
the tone for the next eight pages:

Proper to man is a faculty which accompanies all his interactions
with nature, namely the faculty of taking a mathematical view of his
life, of observing in the world repetitions of sequences of events, i.e. of
causal systems in time. The basic phenomenon therein is the simple
intuition of time, in which repetition is possible in the form: ‘thing
in time and again thing’, as a consequence of which moments of life
break up into sequences of things which differ qualitatively. These
sequences thereupon concentrate in the intellect into mathematical
sequences, not sensed but observed.3

Man first of all observes recurring sequences of events; after that, the se-
quences of successive events are interpreted in his imagination to be ‘causal
sequences’, especially when such sequences always lead to the same result when
departing from the same initial state. Because of the recurrence of such se-
quences man believes that the events taking place later in time are caused by
the earlier ones. This, in fact, is a normal procedure in the practice of physical
research, and certainly not typical for Brouwer. A physical theory is based on
sequences of observed events, in which regularity and a pattern is noticed which
lends itself to a mathematical description. In general, the content of the second
chapter reflects the methods of mathematical physics of Brouwer’s days in a
faithful way. Brouwer’s deviating and mysticism-based views can be found in
the dissertation ‘between the lines’, but elsewhere, in the rejected parts and in

3dissertation, page 81: De mensen is een vermogen eigen dat al hun wisselwerkingen met
de natuur begeleidt, het vermogen n.l. tot wiskundig bekijken van hun leven, tot het zien in
de wereld van herhalingen van volgreeksen, van causale systemen in de tijd. Het oer-fenomeen
is daarbij de tijdsintüıtie zonder meer, waarin herhaling als ‘ding in de tijd en nog eens ding’
mogelijk is, en op grond waarvan levensmomenten uiteenvallen als volgreeksen van kwalitatief
verschillende dingen; die vervolgens zich in het intellect concentreren tot niet gevoelde, doch
waargenomen wiskundige volgreeksen.

A handwritten correction to this text was made, in which Brouwer changed the phrase

(..) of observing in the world repetitions of sequences of events, i.e. of causal
systems in time.

into:

of observing in the world sequences of events, repeating themselves as causal
systems in time.

(in Dutch: ‘tot het zien in de wereld van volgreeksen, zich herhalend als causale systemen in
de tijd’.)

By this rewording Brouwer emphasized that the definition of a causal sequence is not ‘a
sequence of events, repeating itself more than once’, but that, thanks to the repetition, it
forces itself on us as being causal. Rightly or wrongly we suppose that, as a rule, real causal
sequences, when departing from the same initial state, will proceed in the same way and will
lead to the same final result. For that reason every such sequence gives us the impression of
being causal.

Note that these events now have content, and are no longer abstractions of experiences.
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some other papers from a later date, more openly, albeit in later time not in the
extreme pessimistic tone larded with terms like ‘sin’ and ‘sinful desire’ from his
early days.

For instance, we recognize his interpretation of a mathematical viewing of
life in the first of the two Wiener Gastvorlesungen from 1928.4 See also (and
especially) the lecture Will, Knowledge and Speech, held in 1932:

Mathematical viewing is an attitude which man has adopted in his
struggle for existence. It comes into being in two phases, the phase
of becoming-aware-of-time and the phase of causal attention.

The becoming-aware-of-time is the fundamental event of the intellect:
a moment of life falls apart into two qualitatively different things of
which the one gives way to the other but is retained by memory.

(...)

Causal attention is an act of human imagination linking and identi-
fying different sequences of phenomena; such a phantasy is called a
causal sequence.5

In this paper Brouwer once more emphasized the fact that both, the math-
ematical attention and the causal attention, are not a necessity, but a phe-
nomenon of life, subject to the free will. The separation between the self, and
the world of perception which comes to us in the form of sequences of succes-
sive events, is brought about by man’s own power; hence on the basis of this
argument there need not be at all any form of causal coherence in the world,
independent of man.6

Immediately following the quoted opening paragraph of this chapter, the
text of the dissertation now continues with a short discussion on man’s ability
to influence and to control his surrounding world. He notices that, by interfering
in an early stage of the development of a sequence, the final result changes too.
If a specific final result is desired, but an intermediate goal, being a necessary
station to be passed on the way to that desired result, is easier attainable via
a slightly diverging route, then an intervention in an early stage of a causal
sequence of events will be directed towards this intermediate goal, as a means
to the final desired situation.

4[Brouwer 1929].
5[Brouwer 1933]. For the English text see [Stigt 1990] appendix 5, page 418. For the

original Dutch text: [Brouwer 1933], page 177, 178: Wiskundige beschouwing is een in de
strijd om het bestaan aangenomen houding, die in twee fasen tot stand komt, de fase der
tijdsgewaarwording en de fase der causale aandacht.

De tijdsgewaarwording is het grondgebeuren van het intellect: uiteenvalling van een levens-
moment in twee qualitatief verschillende dingen, waarvan het ene voor het andere terugtreedt
en niettemin door herinnering wordt vastgehouden.

(...)
Causale aandacht vervolgens is fantasering der identificering van verschillende verschijnsel-

reeksen, en een zodanige fantasie wordt een causale reeks genoemd.
6[Stigt 1990], page 418, 419.
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In order to make an early intervention successful, man observes as many
as possible of those causal sequences. In this way he obtains a large stock of
sequences which makes, in case of some desired goal, a proper choice for the
best one easier:

And human behaviour includes attempts to observe as many of these
mathematical sequences as possible, in order, whenever in the real
world intervention at an earlier member of such a sequence seems
more successful than at a later member, to choose the earlier one as
a guide for his actions, even when his instinct is only affected by the
later one. (Substitution of the means for the end.) Nevertheless the
non-instinctive nature of his intellectual action renders the certainty
that the parts of a sequence really belong together, anything but
perfect. Consequently it can always be falsified, which is observed
in the discovery that ‘the rule no longer applies’.7

Mankind thus obtains his power over the world, and this is an ability which
was, on moral grounds, judged as most negative in Life, Art and Mysticism
since it removes him from his natural state and from his natural destiny. The
pessimistic tone which we meet in this early publication and in the rejected parts
(but not in the dissertation, or at the most in a latent form) appears again in
the mentioned lecture Will, Knowledge and Speech, which shows that despite
Korteweg’s intervention the ‘old’ ideas are still there, though in a slightly milder
form. In this lecture Brouwer made the following remark about causality:

(...); there can therefore be no question of a causal coherence of the
world independent of man. On the contrary, the so-called causal
coherence of the world is a dark force of human thought serving a
dark function of the will of mankind, which it uses like a cloud of
stupefying gas, in an attempt to make the world defenseless and
ready to be assaulted by its desires.8

In order to maintain power over his environment, man needs certainty of
regularities; the dissertation continues as follows about this desired certainty:

7dissertation, page 81, 82: En het levensgedrag der mensen zoekt zoveel mogelijk van die
wiskundige volgreeksen te kunnen waarnemen, om telkens, waar in de werkelijkheid bij een
vroeger element van zulk een reeks met meer succes schijnt te kunnen worden ingegrepen,
dan bij een later, ook dan, wanneer alleen bij dat latere het instinct wordt aangedaan, het
eerste te kiezen als richting voor hun daden. (Vervanging van het doel door het middel.)
Het oninstinctieve van deze intellectuele handeling maakt echter de zekerheid dat werkelijk
de delen ener volgreeks bijeen behoren alles behalve volkomen, zodat ze steeds kan worden
gelogenstraft, wat waargenomen wordt als de ontdekking ‘dat de regel niet langer doorgaat’.

8[Stigt 1990], page 419; Dutch text [Brouwer 1933], page 179: (...) kan er derhalve van het
bestaan van een causale samenhang der wereld onafhankelijk van de mens geen sprake zijn.
Integendeel, de zogenaamde causale samenhang der wereld is een donkere kracht der gedachte
in dienst ener donkere wilsfunctie der mensheid, die daardoor, als door afwolking van een
bedwelmend gas, de aanschouwingswereld tegenover haar weerloos en voor haar verlangen
stormrijp tracht te maken.
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In order to maintain as long as possible the certainty of an observed
regularity, one tries to isolate systems, i.e. to exclude those obser-
vations which disturb the regularity; in such a way man makes far
more regularity in nature than originally occurred spontaneously; he
desires this regularity, because it strengthens him in the struggle for
life, rendering him capable of predicting, and taking action.9

But, as we saw, man goes further in his quest for knowledge and power:
independent of any direct or even possible applicability, he has already created
his own stock of pure theoretical and for the time being non-materialized causal
sequences, just waiting for an opportunity to apply them in his daily practice.
One may ask if Brouwer is now referring to pure mathematics, or to some form
of theoretical physics based on earlier and successful causal sequences. In view
of the subsequent argument, the former seems to be the case:

Here it must be remembered that in those mathematical systems
in which no time-coordinate appears, it is found that in practical
applications all their relations still become relations in time. Thus,
for instance, Euclidean geometry when applied to reality gives the
causal relations between the results of different measurements exe-
cuted with the aid of the group of rigid bodies.10

Therefore only a small number of sequences from that stock (or, before
viewing these causal relations in time, a small number of these mathematical
substructures) represent causal sequences in reality.

But man’s power and his ability to knowledge (and therewith to control)
still increase by the further abstraction from direct experience to a more general
viewpoint, by the creation of theories and laws:

Mathematical natural science does not, however, derive its great
power solely from the observation of sequences which are approxi-
mately equivalent for the instinct, but from combining a very large
number of such sequences from one point of view by means of a
mathematical system built up with the aid of mathematical induc-
tion. Such a system is called a law.11

9dissertation, page 82: Om de zekerheid van een waargenomen regelmaat zo lang mo-
gelijk te handhaven, tracht men daarbij systemen te isoleren d.w.z. het als regelmaat storend
waargenomene, verwijderd te houden; zo maakt de mens in de natuur veel meer regelmatigheid
dan er oorspronkelijk spontaan in voorkwam; hij wenst die regelmatigheid, omdat ze hem
sterkt in de strijd om het bestaan, doordat ze hem in staat stelt te voorspellen, en zijn maat-
regelen te nemen.

10dissertation, page 83: Men bedenke hierbij dat de wiskundige systemen, waarin geen tijd-
coördinaat voorkomt, bij practische toepassing toch al hun relaties tot causale relaties in de
tijd zien worden. Zo b.v. de Euclidische meetkunde geeft, op de werkelijkheid toegepast, het
causaal verband tussen de resultaten van verschillende metingen, met behulp van de groep
der rigide lichamen uitgevoerd.

11dissertation, page 84: Haar grote macht krijgt echter de wiskundige natuurwetenschap
nog niet door het opmerken van voor het instinct ongeveer gelijkwaardige volgreeksen, maar
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In that context individual causal sequences only differ in the values of the
relevant parameters, and the ones that occur in nature are the coincidental oc-
currences.

And man still goes on: Brouwer described on page 85 how discrete ob-
servations, by the interpolation between these observations, are completed to
continuous functions, not only with respect to the time coordinate, but with
respect to every functional variable. This completion to a continuous function
finds its justification in the fact that ‘it works’. By the act of interpolation be-
tween the observed values, the resulting functions become analytic; this type of
functions has a strong preference since they are differentiable, which is a desired
property in the ‘anthropomorphisation’ of nature; that is, man decides for that
type of functions and is fully satisfied with them, because only gradual changes
in a desired direction apply at a time, hence a similar behaviour of the de-
scribing function in closely adjacent argument values is a requirement. Analytic
functions meet this requirement, and apparently nature obeys laws which can
be appropriately described by this type of functions. This, again, is common
practice in physical research, although continuous or analytic functions are not
always the proper ones to describe and to predict. Nature sometimes resists or
refuses a ‘smooth’ continuous description.

At first sight it may seem to the unsuspected reader that Brouwer mentioned
the term analytic just in passing, but on closer examination it becomes obvious
that the term is used in its strict mathematical sense.12 For instance, when
Brouwer stated on page 87 of his dissertation that for functions in nature which
can be measured in practice, thereby starting from the postulate of ‘nearly equal
behaviour in closely adjacent argument values’, one can prove the existence of all
higher derivatives. In a footnote he added that this, by itself, does not give the
certainty that the resulting function is analytic, thereby referring to Pringsheim
in the Mathematische Annalen 44 (1894).13

Beyond this, Brouwer did not refer to analytic functions any further in his
dissertation, but in the notebooks there are several references to this type of
function, clearly in the strict mathematical sense, as for instance in notebook
seven:

(VII–7) We only postulate the functions in nature to be continuous,
and that is merely human externalization.

But that imitation from our own creation, the ‘analytic’ function,
has in Faraday’s physics no value.14

door het samenvatten van een zeer groot aantal van zulke volgreeksen onder één gezichtspunt
door middel van een met behulp van mathematische inductie opgebouwd wiskundig systeem,
dat wet wordt genoemd.

12A function is analytic in a point a if it can be locally (i.e. in an interval around a) expanded
in a Taylor series.

13Pringsheim’s paper Ueber Funktionen, welche in gewissen Punkten endliche Differen-
tialquotienten jeder endlichen Ordnung, aber keine Taylor’sche Reihenentwickelung besitzen,
M.A. 44 (1894), page 41 - 56.

14De functies der natuur postuleren we alleen continu en dat is zuivere mensenveruiterlijking.
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In the notebooks Brouwer strongly approved of Faraday’s physics as being purely
descriptive, contrary to the theoretical approach by, for instance, Lorentz or
Maxwell.15

Also in the eighth notebook, again with the ‘old’ negative undertone and
with the same purpose of ‘ruling’ and ‘controlling’:

(VIII–11) Function theory is only concerned with very special func-
tions: the analytic functions; but that does not matter: it is strict,
that is, it is a free and self constructed building, which intends to
imitate a part of nature, in order to control it, (...)16

And in the ninth, with the same goal:

(IX–17) We construct, within certain constraints, analytic functions,
which of course can approximate every empirical function, (...) since
we postulate the functions of nature such that they can be interpo-
lated indefinitely.17

6.2.1 Comments on Brouwer’s views on physics

Brouwer claimed that man has a faculty of ‘taking a mathematical view of
his life’, that is, to view the sequences of events that allow a mathematical
description as causal sequences. And as a result of the possibility to intervene
in such causal sequences, mankind derives his power over the surrounding world.
Brouwer’s description in the dissertation of the praxis of physical research can
be seen as a lifelike one, but his view on the aim of the natural sciences seems
to be that they just serve as a tool to obtain power over our environment and to
control it. The more positive vision of a physical practice as one of fundamental
research and creation of models, guided by and born out of pure curiosity or
admiration, is not the one that, at first sight, appears from his writings. True,
in its most primitive state the human race in the low countries, constantly
threatened by floods, tried in a combined effort to ensure itself against this
threat, but after this early period the history of modern science is filled with
examples of curiosity as the only motivation for fundamental research. Of course
man employs a great number of his discoveries for his own benefit, but usually
technical applications come only after fundamental discoveries, and moreover,
this occurs in a limited number of cases only. Certainly in his early years,
Brouwer identified fundamental discoveries with their possible but relatively
rare applications. This was a direct result of his philosophy, which appeared in

Maar dat na-bouwen uit onze eigen schepping: de ‘analytische’ functies, is Faraday-fysisch
zonder waarde.

15See the next section for a comment on this rather diverging view.
16De functieleer houdt zich slechts met zeer bijzondere functies bezig, de analytische; maar

dat hindert niet: het is streng, d.w.z. een vrij zelfgeschapen bouw-werk, dat een gedeelte van
de natuur wil nabouwen, om er vat op te hebben, (...)

17Wij bouwen binnen bepaalde grenzen analytische functies, die natuurlijk elke empirische
functie kunnen benaderen, (...), immers we postuleren de functies der natuur onbegrensd
interpoleerbaar.
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its strongest form during the years in which he was maturing intellectually. The
attitude, expressed in Life, Art and Mysticism, reappeared in his draft for the
second chapter of his dissertation that we are discussing now; about this draft
Korteweg commented in a letter, dated 11th November 1906 as follows:

(...)

Therefore only chapter two remains.

After receiving your letter I have again considered whether I could
accept chapter two as it stands. But honestly, Brouwer, I cannot. I
find it all interwoven with a kind of pessimism and mystical attitude
to life which is not mathematics and has nothing to do with the
foundations of mathematics. In your mind it may well have grown
together with mathematics, but that is wholly subjective. (...) I am
convinced that any promotor, young or old, sharing this philosophy
of life or not, would object to it being included in a mathematical
dissertation.18

Indeed if we compare Brouwer’s original draft for the beginning of the second
chapter with the earlier quoted final result, the difference is striking and the
text of the draft indeed reminds us of the content of his early writings. We
easily can imagine Korteweg’s objections and his resistance to its inclusion in a
mathematical dissertation when he was reading the following lines:

All human life originated in a one-sided construction of nature and
has protracted its existence in an ‘externalization’, man impregna-
ting nature with the human self and repressing other one-sided de-
velopments. ([footnote:] This externalization of life and the holding
off of death, from the point of view of religion, reflects a lack of wis-
dom and the absence of a bond with the universe. Moreover, this
externalization, the will to destroy and rule, immediately obstructs
any nourishing of the heart by nature. Those who rule are already
damned and damned are those qualities that promote man’s rule.)

This externalization by man, making his environment subservient
to the full development of his humanity, appears to us ([footnote:]
If we view the world intellectually, i.e. with a mathematical causal
eye.) as a process whereby nature itself becomes linear and regu-
lar and all other life repressed or adapted to mankind. ([footnote:]
Since the adaption of the environment leads human life further away

18See e.g. [Stigt 1990], page 90 and for the original Dutch version [Dalen 2001], page 17: (...)
Blijft dus alleen het tweede hoofdstuk. Na ontvangst van uw brief heb ik nogmaals overwogen
of ik dit zoals het daar ligt accepteren kan. Maar waarlijk Brouwer het gaat niet. Daarin
ligt een soort pessimistische en mystieke levensbeschouwing ingevlochten die geen wiskunde
meer is en ook met de grondslagen der wiskunde niet te maken heeft. Zij moge in uw geest
hier en daar met wiskunde zijn samengegroeid; maar dat is dan geheel subjectief. (...) Ik ben
overtuigd dat iedere promotor, jong of oud, die levensbeschouwing delende of niet, tegen de
opname daarvan in een wiskundige dissertatie bezwaar zou maken.
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from the natural state which originally supported him, this con-
quered and adapted environment will ultimately become intolerable
to mankind.)

What then is the nature of this human externalization which evi-
dently is so much more powerful than the brute assimilation and
destruction practised by other creatures? We feel linearity and reg-
ularity, for example, also in bees; there it does not result in any sort
of special power. But man has the faculty, accompanying all his
interactions with nature, of objectifying the world, of seeing in the
world causal systems in time. ([footnote:] This ‘seeing’, however, is a
human act of externalization: there is no real existence of objective
natural phenomena as can be ascribed to nature itself: the seeing
originates in man, is an expression of man’s will alone, independent
of nature which itself exists independent of man’s will.)19)

At the end of this long passage we recognize the text of the beginning of
chapter two of the dissertation. We quoted this rejected part at length to
emphasize its gloomy tone and the negative role that Brouwer granted to physics
in human life. Pure physics, that is the search for the building blocks of nature,
was in Brouwer’s (early) opinion identified with its worst imaginable application:
to rule and to submit our environment and its inhabitants. Man is no longer a
discovering subject in awe, trying to understand nature and its building blocks
for the sake of understanding only, but he is a ruling subject, and for that
purpose mathematics is employed to force a world into mathematical equations,
thus enabling man to manipulate.

19[Stigt 1979], or [Stigt 1990] page 405 or, for the original Dutch text [Dalen 2001], page
29: Alle leven, na ontstaan te zijn als vereenzijdiging van de natuur, rekt zijn bestaan in een
‘veruiterlijking’, een doordringing van de natuur met zichzelf, in terugdringing van andere
vereenzijdigingen. ([footnote] Dát het zich veruiterlijkt, en niet te sterven legt, wordt als

gemis van wijsheid, als gemis van verband met het Àl, door religie gevoeld. – Overigens snijdt
het zich veruiterlijken, het willen vernietigen of willen heersen, meteen af van alle voeding van
het hart uit de natuur. – Wie heerst, is reeds gevloekt, en het zijn gevloekte eigenschappen,
die helpen tot heersen.)

De veruiterlijking der mensheid, het dienstbaar maken van de omgeving aan de ontplooiing
der menselijkheid, verschijnt ons ([footnote] n.l. als wij intellectueel, met wiskundig-causale
blik de wereld bekijken.) als een rechtlijnig en regelmatig worden van de natuur; waardoor
al het andere leven wordt teruggedrongen of aan de mensheid aangepast. ([footnote] Daar
het aanpassen van het milieu het steeds verder afvoert van de natuurtoestand, zoals die
oorspronkelijk de mensheid droeg, wordt elk overwonnen en aangepast milieu ten slotte voor
de mensheid zelf onhoudbaar.)

Wat is nu het essentiële van de menselijke veruiterlijking, dat zoveel machtiger blijkt, dan
de brutale assimilatie of vernieling, die van andere schepselen uitgaat? De rechtlijnigheid
en regelmatigheid komt b.v. ook bij de bijen voor, maar daar brengt ze generlei bijzondere
macht. Maar de mens heeft een vermogen, dat al zijn wisselwerking met de natuur begeleidt,
het vermogen n.l. tot objectivering der wereld, het zien in de wereld van herhalingen van
volgreeksen, het zien in de wereld van causale systemen in de tijd. ([footnote] Dat zien is
intussen niets, dan een daad van veruiterlijking; van een bestaan der objectieve verschijnselen
der natuur, in dezelfde zin als van een betaan der natuur zonder meer, is geen sprake: het
zien gaat uit van de bekijker, is een wilsuiting van de bekijker alleen, buiten de natuur om,
die zelf bestaat voor het subject buiten zijn wil om.
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The attitude towards nature and towards the world, which appeared from
his early writings, is a direct consequence of Brouwer’s mystic bias with its
solipsistic character, which we find in its most pronounced form in the mantioned
Life, Art and Mysticism. It will be useful to pay some attention to Brouwer’s
mystical monograph, as it is the background for many of his early convictions
and reflections. In the first chapter of this essay the human predicament is
sketched, which was caused by the abandonment of man’s natural destiny: a
complete introspection, an unconditional ‘turning into oneself’. Not surprisingly
the only remedy for mankind is a return to this natural state:

(from chapter 1) The Netherlands came into existence and was pre-
served by the deposit of silt of the rivers; a balance between the
dunes, the delta, the tides and the discharge of water was estab-
lished – a balance in which temporary floodings of parts of the delta
were incorporated. And in that land a strong human race could live
and endure.

(...)

The people originally lived separated, and each tried to preserve for
himself his balance in the supporting environment of nature, amidst
sinful seductions; thàt filled their lives, no interest in each other,
no worry about the morrow. Hence, also, no work and no grief; no
hatred, no fear; also no pleasure. Meanwhile, one was not content;
one sought power over each other, and certainty about the future.
Thus the equilibrium was destroyed, ever more sore labour for the
suppressed, ever more infernal conspiracies for the rulers, and all are
the suppressed and the rulers at the same time; and the old instinct
of separation lingers on as pale envy and jealousy.

(...)

(from chapter 2, about the possible remedy) If it is nevertheless given to
you to overcome all inertia, and to continue, then the passions be-
come silent; you feel yourself pass away from the old exterior world,
from time and space and all other manifold things. And the eyes of
a joyous silence, which are no longer tied, open up.

(...)

You recognize your ‘Free Will’, in sofar as it was free to withdraw
itself from the world, in which there was causality, and then remains
free, and yet only then has a really determined Direction, which it
reversibly follows in freedom.20

20(from capter 1) Nederland ontstond en werd in stand gehouden door het afslibsel der
rivieren; er vormde zich een evenwicht van duinen, delta, getijden en afwatering, een evenwicht,
waarin mee waren opgenomen tijdelijke overstromingen van gedeelten der delta. En in dat
land kon leven en voortleven een krachtig mensengeslacht.

(...)
De mensen leefden uit oorsprong gescheiden, en ieder voor zich zocht te houden zijn even-
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The picture we are left with from these quotes is one of pessimism and
solipsism. Man’s destiny is one of introspection, of being completely on his
own. He has to accept life and the world as it happens to him. Every act to
improve his environment, especially when this is performed in cooperation with
others, is a sinful act. In that light we have to interpret Brouwer’s early attitude
towards the natural sciences.

True, under Korteweg’s influence the tone became more moderate and true-
to-life, but the pessimistic undertone remained. Whereas most physicists will
rather agree with Galileo’s famous dictum:

Philosophy is written in that great book which continually lies open
before us (I mean the Universe). But one cannot understand this
book until one has learned to understand the language and to know
the letters in which it is written. It is written in the language of
mathematics, and the letters are triangles, circles and other geomet-
ric figures. Without these means it is impossible for mankind to
understand a single word; without these means there is only vain
stumbling in a dark labyrinth.21

which is usually remembered in its brief form ‘the book of nature is written in
the language of mathematics’, for Brouwer the surrounding world is forced into
a mathematical form; this on itself is of course normal physical practice, but for
Brouwer this was not done as a means to learn and to discover it, but to let it be
ruled and manipulated by a mankind who has forgotten his natural destiny. This
attitude, though not present in the dissertation and becoming much milder in
later years in comparison with 1905, never completely disappeared; it remained
one of the foundational aspects of his philosophy.

When reading the relevant pages in the dissertation or in Will, Knowledge
and Speech there seems to be, however, at first sight a certain similarity between

wicht in de dragende natuur tussen zondige verleidingen; dát vulde hun leven, geen belang-
stelling in elkander, geen zorg om de dag van morgen. Dus ook geen werk, en geen verdriet;
geen haat, geen vrees; ook geen genot. Intussen, men was niet tevreden; macht zocht men
over elkaar, en zekerheid over de toekomst. Zo werd het evenwicht verbroken, steeds pijnlijker
arbeid voor de onderdrukten, steeds helser samenspanning voor de machthebbers, en allen
zijn onderdrukten en machthebbers tegelijk; en het oude instinct van scheiding leeft voort als
bleke nijd en jalouzie.

(...)
(from chapter 2) Wordt het u niettemin gegeven, alle traagheid te overwinnen, en voort te

gaan, dan gaan de hartstochten zwijgen, ge voelt u afsterven van de oude aanschouwingswereld,
van tijd en ruimte en alle andere veelheid, en die niet langer gebonden ogen ener blijde stilte
gaan open.

(...)
Ge erkent uw ‘Vrije Wil’, in zoverre hij vrij was, zich te onttrekken aan de wereld, waarin

causaliteit was, en dan vrij blijft, en toch eerst dán een recht bepaalde Richting heeft; die hij
in vrijheid, omkeerbaar volgt.

The English translation is by D. van Dalen, see [Dalen, D. van 1999], page 66 – 68. The
content of chapter 2, section 2.6 of this book gives a better and a more complete picture of
Brouwer’s attitude. For an integral English translation of this early work see [Stigt 1996].

21From his Il saggiatore nel quale con bilancia esquisita ..., translation by J. Summers. See
also [Galileo 1957] or [Galileo 1960].
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Brouwer’s view and by Galileo’s dictum just quoted, in particular in regard to
the mathematical techniques. For instance the last two paragraphs of section
two of Will, Knowledge and Speech read as follows:

Some scientific theories are coined the ‘theories of exact science’.
They are those theories which first of all refer to causal sequences
that are particularly stable, either because they are perceived as
laws of nature or because they are artificially called into being as
technical facts; secondly, their hypothesis achieves a very consider-
able simplification; thirdly, the causal sequences in them that are
to be governed correspond to special values of numerical parameters
whose whole domain is present in the more extended mathematical
system of the hypothesis.

It is in these exact-scientific theories in particular that the phe-
nomenon of the heuristic character of scientific hypotheses becomes
evident; this consists in discovering behind sequences –which were
originally added as hypotheses– corresponding real causal sequences
in the perceptional world.22

But, following this quote, Brouwer expressed a different intention. At the
end of the first section of Will, Knowledge and Speech Brouwer spoke of mankind
who, even at the lowest levels of civilization, attempts ‘to stabilize his range of
causal influence and to create an ordered domain under his power’. And two
paragraphs earlier he referred to the mathematical attention of which the only
justification ‘lies in the expediency of the ‘mathematical act’, which is based
on it and which is within the grasp of man because of his causal attention.’
Man notices an element in a causal sequence of events, of which the last event
is some desired goal that cannot be achieved directly, and for that reason man
shifts his attention to an earlier element in the sequence and selects that one as
a provisional goal, as a means to the originally desired end. One can of course
interpret the phrase ‘to create an ordered domain under his power’ in the sense
of isolating sequences of events for a more directed research, which is, again,
a common way of doing physical research, but the quoted paragraph on our
page 183 clearly speaks of a defenseless world, ready to be assaulted by man’s
transformation of a sequence of events into a causal one.

For Galileo the use of the mathematical language as a successful means to
describe nature is an astonishing discovery, the ‘book of nature’ appears to be

22[Stigt 1990], page 420; in Dutch [Brouwer 1933], page 180: Speciaal tot exactwetenschap-
pelijke theorieën worden zodanige wetenschappelijke theorieën gestempeld, die ten eerste op
zeer bijzonder stabiele, hetzij als natuurwetten waargenomen, hetzij als technische feiten
kunstmatig in het leven geroepen, causale reeksen betrekking hebben; door welker hypothe-
sen ten tweede een zeer aanzienlijke vereenvoudiging wordt bereikt; en waarin ten derde de
te beheersen causale reeksen aan speciale waarden van numerieke parameters beantwoorden,
waarvan het volledige waardengebied in het hypothetische uitgebreidere wiskundige systeem
aanwezig is. Het is in het bijzonder bij de exactwetenschappelijke theorieën, dat het ver-
schijnsel van het heuristische karakter van wetenschappelijke hypothesen aan de dag treedt,
hierin bestaande dat bij oorspronkelijk als hypothetisch ingevoegde reeksen achteraf daaraan
beantwoordende werkelijke causale reeksen der aanschouwingswereld ontdekt worden.
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written in that language, whereas for Brouwer it is an act by which man forces
nature into a mathematical model, with the sole aim to control. And this aim
is man’s sinful attitude, by which he strays from his natural state and destiny.

Well, of course the creation of a mathematical model for the description of
nature is a human act, and to that extent physicists indeed force nature into
such a model. As long as it works, we can make progress in the development
of the natural sciences, and in case of failure, which is of course very likely to
occur in a continued development, we do not accept the conclusion that nature
cannot be forced into our mathematical model, but we attempt to create an
improved or a new model instead, in which the successful part of the old model
is included as a particular case. Hence the main difference between Galileo and
Brouwer is that, although they both successfully apply the same mathematical
technique (apart from 300 years development in those techniques), the discovery
of a fruitful application of mathematics to causal sequences was for the former
an astonishing discovery which filled him with joy, whereas for the latter it was
the result of human sin and sinful desire, filling him with regret and sorrow for
violating nature and man’s destiny in it.23

Another example of Brouwer’s diverging view on physics can be read in the
correspondence with his thesis supervisor Korteweg, in the same letter from
which we quoted earlier, dated 11th November 1906. Korteweg wrote to Brou-
wer:

You think that I considered as absurd the view ‘that astronomy is
no more than an easy way of lumping together causal sequences
of the readings of our measuring instruments’. No, not that view!
I recognize that it is possible to look at it in this way, although
in my opinion the general law of gravity has little to do with the
instruments that led to its discovery except in as far as they make
measuring at all possible. But the assertion that the uniformity of
laws which apply in very different areas of physics would find its
origin in the uniformity of the instruments used, that assertion to
me seems absurd.24

Brouwer wrote an extensive reply to Korteweg’s letter, which, in its turn,
apparently was a reaction to a discussion on that topic that took place on
the 4th of November. In a long letter, dated 13th November 1906, Brouwer

23It is of course a different philosophical question whether nature can be exactly described
in mathematical equations, or that every theory is ultimately and fundamentally an approxi-
mation.

24[Stigt 1990], page 495; in Dutch [Dalen 2001], page 18: (...) ge dacht dat ik de mening ‘dat
astronomie niets is dan een gemakkelijke samenvatting van causale volgreeksen in aflezingen
op onze meetinstrumenten’ absurd vond. Neen niet die mening; ik erken dat men de zaak
zo voorstellen kan, hoewel m.i. de algemene aantrekkingswet al heel weinig meer te maken
heeft met de instrumenten die tot haar ontdekking hebben geleid dan alleen in zoverre deze
het meten ‘überhaupt’ mogelijk maken; maar dat de gelijksoortigheid der wetten die op zeer
verschillend natuurkundig gebied heersen haar oorsprong zou vinden in de gelijksoortigheid
der gebruikte instrumenten die bewering was het die mij ongerijmd voorkwam.
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defended his view that the laws of nature in the different parts of physics show
a strong mutual similarity because the laws merely express relations between
measurements, taken from the rigid group. The similarity is then a result of
the similarity in the different measuring instruments used; physical aspects are
never directly measured, only angles of torsion of wires are measured.

To stress his point, Brouwer gave the following example which is, although
it makes his point clear, not convincing from a physical point of view:

When the electromagnetic field of a Daniell element and that of a
Leclancher element are projected onto our measuring instruments
no difference is shown up, and yet looking at this problem for the
first time one would expect there is to be as great a difference as
there is between copper sulphate and ammonium chloride. Only
our counting and measuring instinct, working with certain instru-
ments, is affected by them in the same way and it then appears that
the same mathematical system can be applied. It is only the lack
of suitable instruments that has prevented us so far from finding
other mathematical systems which can be applied to one but not
the other.25

Brouwer’s claim is, in other words, the following: in the days of preparing
his thesis, there was no difference in instrument readings between two elec-
trostatic or electromagnetic fields of, say, equal strength but originating from
two qualitatively different sources. They have the same effect on our counting
and measuring instinct and therefore we can describe them by means of the
same mathematical system. By refining and improving our measuring equip-
ment there might show up some difference in the measurements, in which case
also the describing mathematical system would have to be altered. Brouwer’s
conclusion is then that we describe in our mathematical model the instruments
used, rather than the measured fields themselves.

The following comment on this view is of relevance:
1. Two fields originating from two qualitatively different sources need not,

with sufficiently sophisticated instruments, necessarily show a difference in in-
strument readings. Both mentioned examples are galvanic elements, producing
a potential difference or a direct current via different chemical reactions. In
an equilibrium situation of equal magnitude of the resulting fields, the meas-
urements will produce identical results, since there is fundamentally no differ-
ence between electrons and other charged elementary particles in the different
molecules.

25[Stigt 1990], page 496. In Dutch [Dalen 2001], page 20: Geprojecteerd op onze meetinstru-
menten is er geen onderscheid tussen het electromagnetisch veld van een Daniell-element
en dat van een Leclancher-element; maar als we het onbevangen bekijken, moeten we toch
verwachten, dat tussen beide velden een even groot verschil moet heersen, als tussen koper-
sulfaat en chloorammonium bestaat; alleen op ons tel- en meetinstinct, werkend met zekere
bepaalde instrumenten, werken ze gelijk; daar blijkt zich een zelfde wiskundig systeem op
beide te laten toepassen, maar het is alleen gebrek aan geschikte instrumenten, dat ons tot
nog toe belet heeft andere wiskundige systemen te vinden, die zich op het ene veld wel, op
het andere niet, laten toepassen.
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We admit that one can claim that this comment and its underlying theory
is based exactly on the inherent limitations in measuring instruments. But al-
ready in Brouwer’s days the electron as the carrier of the negative elementary
charge was known (though not yet the magnitude of that charge); there was also
a theory describing the electrostatic (and the electromagnetic) field, and this
theory predicted no difference in the measured fields of the two different gal-
vanic elements. Modern theories predict the same result and extremely refined
measuring aparatus confirm this. In regard to this it is significant for Brouwer
that in the notebooks he valued so negatively the unifying theory of Maxwell
and the work of Newton and Van der Waals, in comparison with the (for the
rest of the greatest importance) method of just mathematically describing the
observed phenomena of Faraday.26

2. In the dissertation Brouwer expressed himself in a different and more
balanced way (e.g. when stating that sometimes different theories can be brought
together into one), but still physical practice differs from the way as it is sketched
by him, which is caused by the difference in its purpose. Ideally, physics is an
interplay between theory and experiment, and is guided by curiosity alone,
without thinking of practical applications. Sometimes a theory asks for certain
specific experiments, but often experimental physicists play the leading part and
are ahead of existing theories. One starts with pure and unbiased observation,
which is of course the most fundamental level of all physics. Then follows a
theory, based on those observations and on the basis of that theory further, and
this time directed, observations are made or experiments are performed for its
confirmation, and even special instruments are designed for those observations,
thereby in the first place not thinking of practical applications in order to rule
or control our environment.

If, for instance, on the basis of a theory about electromagnetic fields origi-
nating from different sources, a difference in observable values is expected when
measuring the different fields, instruments are selected, refined, or designed to
confirm that prediction. If no difference is observed then one either adapts the
theory or designs better instruments. If, however, a difference is observed where
no one was expected, then one searches for an explanation for this difference,
whether or not in the form of an improved theory. This ideal ‘model of interplay’
is of course common to all physical practice, including the one as described by
Brouwer, but in his view the aim of the physicist is different, viz. that of gaining
power (which is judged negatively by Brouwer), and if some physicist with such
a view on his field of research is doing physics, then that cannot but have an
impact on that practice and its results.

To summarize, Brouwer’s view on physics can be sketched as follows: Based
on observations, man notices ‘causal sequences’, which can be expressed mathe-
matically. These causal sequences are employed to reach a certain desired goal.
On top of that, new causal sequences are observed (or constructed), having no
practical application yet but just waiting for one, to reach new goals, if neces-
sary via intermediate targets (‘means to an end’). Also attempts are made to

26See also the quotes at pages 185 and 199.
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combine different groups of sequences into one type of sequence (hence, also with
Brouwer we find attempts to create grand theories by means of the interplay
between theory and experiment). But physical practice, as sketched by Brou-
wer, though from a theoretical, experimental and technical point of view similar
to the above sketched ‘ideal’ practice, has a different purpose, viz. to steer and
force nature for our own benefit, and, as we just remarked, this difference in pur-
pose must influence the result. But let us emphasize once more that this is not,
according to Brouwer, the ideal situation; man wants to control and this is an
extremely sinful desire. Brouwer presented a very negative picture of the aim of
physical research, which picture is born out of his general outlook on mankind.
His view on physics is not from within the physical community, it is a meta-view,
and he passes a meta-judgement on it. This meta-view about aim and purpose
as the main impetus to do physics and the negative judgement on this practice
is in fact the main difference with our view on what physical research should be.

Two remarks have to be made here to put things into perspective:
Firstly, as said, Brouwer acknowledged the possibility that two different groups
of phenomena eventually can be brought together into ‘one continuous region
of possibilities’, hence can be subsumed under one theory; but the aim remains
the same: to forecast results and consequently, to intervene successfully. (cf.
page 207).
Secondly, it has to be admitted that besides the ‘idealized’ picture of physics as
fundamental research for its own sake, also an ‘instrumentalism’ always has ex-
isted (and still exists), which more or less resembles Brouwer’s view on physical
practice. Instrumentalism claims that every theory is just a tool for controlling
and changing the observable reality for one’s own benefit. However, our point
is that Brouwer’s view is not all there is in physics, that it even is a ‘minority
opinion’ (also in Brouwer’s days), and that there is a different and more ‘com-
mon’ approach.

In all, one could say that the methods of modern physics and their accom-
panying (or guiding) philosophies are ‘extensionally similar’ (or, in terms of
modern logic: ‘elementary equivalent’) to Brouwer’s methods and philosophies,
the main difference being the aim of doing physics and, for Brouwer, the moral
aspect involved in physical practice.

In his subsequent letters Korteweg did not come back to this topic but one
can hardly imagine that he agreed with Brouwer.27

27In the third chapter of his dissertation, when discussing the role of logic, Brouwer sketched
in a footnote on page 135 a seemingly different, more generally accepted and ‘objective’ picture
of the physical practice, when stating:

In addition to this delusion on the freedom of logic stands as an analogous
overrating the idea of Aristotle and the scholastics (...) namely that logic would
be able to uncover secrets of nature which are not clear a priori. In reality the
conclusions reached by this method do not hold for nature itself, but only for
the mathematical system which has been arbitrarily projected on nature (and
only part of which covers what has been directly perceived, while the rest has
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6.2.2 The notebooks on causality and man’s desire to rule

Causality and causal sequences

Most topics in regard to ‘mathematics and experience’ are discussed through all
nine notebooks, from the beginning of the first one onwards:

(I–3) The scientific system of means and ends attempts to include in
itself as many dimensions (formerly: disturbances) as possible, but
there always remains an infinite number of disturbances.28

This quote from the first notebook reveals that the idea of sequences of
events in which one can interfere and which are employed in order to reach a
certain end with the help of choosing a provisional end as a means to the final
one, is an old idea which one can trace as early as in the third chapter of Life,
Art and Mysticism. The (almost) impossibility of this effort is expressed in
terms of the infinite number of disturbances (that is, the number of different

been added by induction). One should verify for every conclusion anew (and
every verification ought to be completed by mathematical induction) that it is
also true for nature (i.e. that it is efficient as a guide for humen action). Such
a verification is necessary even if the premisses are completely true, in the same
way as every new consequence of a physical hypothesis ought to be expressly
checked, no matter how useful the hypothesis has proved so far.

(Naast deze waan van de vrijheid der logica staat als een analoge overschatting
ervan het idee van Aristoteles en de scholastici (...) dat men door logica niet
a priori duidelijke geheimen der natuur zou kunnen ontdekken, terwijl in wer-
kelijkheid de conclusie waartoe men zo geraakt, niet voor de natuur zelf, maar
alleen voor het in willekeur daarop geprojecteerde wiskundige systeem (waarvan
dan slechts een deel het direct doorleefde dekt, terwijl het overige een uitbreiding
door inductie daarvan is) geldig zijn; dat die conclusies ook voor de natuur juist
zijn (d.w.z. als leidraad voor het menselijk handelen doel treffen), dient voor
elke conclusie opnieuw geverifieerd (en elke verifiëring door wiskundige inductie
aangevuld). Zulk een verifiëring is nodig, hoe juist de gebruikte premissen ook
waren, zo goed als van een fysische hypothese, hoe bruikbaar ook tot nog toe
gebleken, elke nieuwe consequentie uitdrukkelijk dient gecontroleerd te worden.)

But subjectivity returns in the rest of this footnote, (thereby at least giving room again to
solipsism):

Moreover this verification can lead to different results for different persons, be-
cause they check the words of the conclusion with different mathematical systems
which they mentally connect with these words. It is also possible that, lacking
such mathematical systems, verification is impossible for the time being and
that it must wait for further experience, i.e. for the building of new ([handwrit-
ten correction:] effective) mathematical systems.

(Die verifiëring kan verder door verschillende personen tot verschillend resultaat
leiden, omdat zij de woorden der conclusie toetsen aan verschillende voor die
woorden in hun geest bestaande wiskundige systemen, of ook zij kan bij gebrek
aan zulke wiskundige systemen in afwachting van latere ondervinding, dat is
vorming van nieuwe ([toegevoegde correctie:] doeltreffende) wiskundige systemen
voorlopig onmogelijk zijn.)

28Het wetenschappelijk doel-middelstelsel tracht zoveel mogelijk dimensies (vroeger storin-
gen) in zich op te nemen; toch blijft er altijd nog een oneindig aantal storingen over.
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variables) that influence our actions. Man attempts to simplify this effort and,
for that reason, tries to use syllogisms as simple causal schemes in his reasoning:

(I–28) The desire towards syllogism is the desire towards the equality
of means and ends.29

At an early stage the concept of causality and its related difficulties are brought
up for discussion:

(III–20) Causality is only observed in a viewpoint which is restricted
by a freakish arbitrariness (in which is neglected 1. that there are
unobserved channels of supply and drain through the sides of the
vessel, and 2. that the supposed constancy of the laws inside the
vessel is depending on all kinds of situations of the environment,
which are unjustifiably supposed to be constant; and above all the
value of the elements of the content is precarious, and suddenly can
have disappeared). It is always connected with a passion of fear and
desire: it notices limitations and also untrue constancy of that what
is limited.30

The meaning of the first part of the quote being: in all cases of a supposed
and supposedly understood causality there are too many unknown factors and
influences, which makes causality at least very doubtful. The fact that man
ascribes causality to nature, despite this inherent uncertainty, proves that he
wants causality to serve his purpose. This inherent uncertainty and desire can
also be read in the following:

(VII–6) Part of your own externalization by straightforward acts is
the frivolous postulation of ‘habit’ in nature (and the subsequent
limitation of your attention to these things in nature (which are
there, since you want to see them) and granting the term ‘laws’ to
those habits according to your own externalization) (conditions for
equilibrium, mechanical explanations) in order to be able to contest
them or to handle them on the basis of these laws.31

Whereas in the dissertation man’s effort to control nature is emphasized,
with the aim to increase his knowledge for his own benefit, in all the notebooks

29De wil tot syllogisme is de wil tot gelijkstelling van doel en middel.
30Causaliteit wordt alleen gezien bij een in grillige willekeurigheid beschränkt gezichtspunt.

(Daarbij is dan verwaarloosd 1. dat er door de wanden van het vat verborgen kanalen van
toe- en afvoer leiden, 2. dat de vooronderstelde constantheid der wetten binnen het vat van
allerlei niet-standvastige, maar als standvastig gerekende milieutoestanden, afhankelijk is; en
vooral de waarde der elementen van de inhoud precair is en plotseling kan zijn verdwenen.)
Het hangt steeds samen met een passie van vrees en begeerte: die ziet beperkingen en tevens
onware constantheid van dat beperkte.

31Tot de veruiterlijking van jezelf door rechtlijnige daden, hoort het lichtzinnig postuleren
van ‘gewoonten’ in de natuur (en zich dan in zijn attentie tot dié (die, daar je ze wilt zien
er natuurlijk zijn) dingen van de natuur te beperken, en toekennen aan die gewoonten van
wetten volgens je eigen veruiterlijking) (evenwichtsvoorwaarden, mechanische verklaring), om
ze op grond van die wetten te kunnen bestrijden of behandelen.
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Brouwer’s doubts as to the possibility and the success of this effort are expressed.
But despite this uncertainty, of which man is aware, his ‘sinful desire’ forces him
to continue. Brouwer’s opinion that this all is a sinful act of mankind and a
consequence of abanoning his natural destiny can be read time and again in the
notebooks, as well as in the rejected parts of his second chapter.

In order to control, man isolates parts of nature from their natural unity, in
order to perform his sinful interference successfully:

(VIII–60) Causality in human life is the sinful splitting of a unity
into two parts, in order to let, by the intellect, the desire act on one
of the parts.

Causality in science is a juxtaposition of constructed systems into a
new system (or the splitting of a system into two parts); the term
here means nothing but the mathematical term ‘mere relation’.32

Mathematization of observation and experience

The ‘sinful act’ of viewing the world mathematically is emphasized in the be-
ginning of the first notebook, as if setting the tone for what will follow:

(I–2) The mathematical viewing of a phenomenon in mathematical
physics (...) is the haughty impregnation of the humble view with
the human intellectual burden.33

In the synopsis of the nine notebooks this is in a most gloomy way expressed
in the introduction of its fourth chapter, Mathematics and society, as follows:

(How society is deformed by it, and is getting always more miserable
and complicated, and how mathematics is just mutual understand-
ing, and how, on the other hand, mathematics is practised in soci-
ety). Instead of being a foundation of society, mathematics is just a
commodity.34

On our page 181 we noted that the act of viewing the world mathematically
comes in two phases: the becoming-aware-of-time and thereafter the causal at-
tention. Only after these two phases man attempts to express a causal sequence
itself in a mathematical formula. This too can be performed in two ways: purely

32Causaliteit in het leven is de zondige splitsing in tweeën van een eenheid, opdat op een
der delen de begeerte door het intellect kunne werken.

Causaliteit in de wetenschap is een juxtapositie van opgebouwde systemen, of splitsing
van een systeem in tweeën, tot een nieuw systeem; het woord betekent hier niets, dan het
wiskundig ‘relatie zonder meer’.

33Het wiskundig zien van een verschijnsel in mathematische physica (...) is het doortrekken
van de nederige visie hovaardig met de menselijke intellectuele belasting.

34(Hoe de samenleving er door vervormd wordt en steeds ellendiger gecompliceerd, en hoe
de wiskunde verstandhouding is, en hoe aan de andere kant de wiskunde in de samenleving
wordt bedreven). In plaats van de grondslag der samenleving te zijn, is wiskunde een gewoon
handelsartikel.
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descriptive and on the basis of an abstract theory. In view of Brouwer’s atti-
tude towards ‘man doing physics’, it will be clear that he strongly rejected
the abstract-theory based method. He preferred Faraday’s descriptive method,
rather than Newton’s and Van der Waals’ theory-based results (one may wonder
of course if a theory-free description is possible at all):

(I–4) The Faraday theory is just a direct description and therefore
pure of its kind. But not so the hypotheses of Newton and Van der
Waals.35

The act of any physical observation arises from desire, which has a negative
undertone: It is the desire to see regularity, which opens the way to ruling;
the only reason for this desire is, to exert power. For that purpose man needs
physical laws and therefore he creates them; a law is for that reason no discovery.
A natural phenomena is an object introduced by us:

(II–10) How about the explanation of phenomena, like Korteweg’s
explanation of the phenomenon of Huygens? Well, all those phenom-
ena are objects introduced by our discretion, willing to externalize
its own mathematical laws, which mathematical discretion is always
partially thoughtless.36

This second notebook contains the most outspoken ideas of how Brouwer
saw the role of physics in our life: to force nature into a mathematical form
in order to rule. This is another opinion which was hardly subject to change
during the composition of the nine notebooks: physical laws are our imposed
rules:

(II–19) Physical nature does not act according to scientific laws, but
people deform nature according to their own scientific laws (in ex-
periment and in technology), of which little is to be found in nature,
but which small amount was soon to be noticed by science.37

And physical laws can only be imposed after expressing the phenomena of nature
in numerical values:

(II–27) Science is the desire to compute, to give everything numer-
ical values and derivations of those values according to laws, which

35De Faraday theorie is niets dan direct beschrijving, is daarom in zijn soort zuiver. Maar
niet de hypothesen, als van Newton en Van der Waals.

36Wat te denken van het verklaren van verschijnselen, zoals Kortewegs verklaring van het
verschijnsel van Huygens? Och, vooreerst zijn ál die verschijnselen dingen, [die] door onze
willekeur, die zijn eigen mathematische wetten tracht te veruiterlijken, zijn ingesteld; evenwel
is die mathematische willekeur altijd voor een deel ondoordacht.

37De natuur beweegt zich niet volgens de wetenschappelijke wetten, maar de mensen ver-
vormen de natuur volgens hún wetenschappelijke wetten (in experiment en techniek), waarvan
oorspronkelijk in de natuur zeer weinig zat; maar dat weinige wordt door de wetenschap snel
opgemerkt.
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originate in onesidedness. The world is flowing; if one grips a part,
then one distances oneself all the more from the rest.
When introducing hypotheses in physics by calculation, one even
gets more confused and one sacrifices an even greater part.
In this all, mathematics is the instrument, which greedily swallows
down all onesidedness of the invariabilities, but which has no grip
on the totality.38

The physical world, described by mathematics (i.e. forced by us into a mathe-
matical model), is not a discovery, but the result of our wickedness:

(IV–15) The ‘wisdom by experience’: ‘such is the world’ (including
the mathematical) is said in a complacent and acquiescent way, as
if the world was not such by our own wickedness.39

One easily recognizes in this small anthology of quotes the tone of Life, Art
and Mysticism and of the rejected parts, rather than the tone of the dissertation.
The reason will be obvious: the rejected parts are, in content, rather mild and
moderate compared to the notebooks, and even those rejected parts fell already
victim to Korteweg’s strong objections.

Continuity and differentiability of functions in nature

Also the continuity of functions which describe nature is a chimera, just intro-
duced to make interference easier:

(VII–7) We just postulate the functions of nature to be continuous
and that is pure externalization of man.
(...)
It does not matter that we observe that continuity is not preserved
for the infinitesimally small. It is after all our externalization that
prevents our ability to think sudden jumps, but instead continuous
segments of change and dimensionless points without change. We
again give the infinitesimally small particles small and continuously
changing sizes.40

38Wetenschap is de wil tot berekening, geven van waarden van alles, en afgeleiden van die
waarden volgens wetten, die komen uit eenzijdigheid. De wereld vloeit; houdt men nu een
deel vast, dan verwijdert men zich des te meer van de rest.

Gaat men nu hypothesen in physica invoeren door de berekening, dan raakt men nog verder
van de wijs; offert nóg groter deel op.

De wiskunde is bij dat alles het instrument, die alle eenzijdigheden der vastigheden gretig
opslokt, maar op het volle geen vat heeft.

39Het ‘door ondervinding wijs gewordene’: ‘zo is de wereld’ (ook het wiskundige) wordt
zelfgenoegzaam berustend gezegd, alsof de wereld niet zó was door eigen slechtheid.

40De functies der natuur postuleren we alleen continu en dat is zuivere mensenveruiterlijking.
(...)
Dat wij merken, dat in de natuur in ’t oneindig kleine de continüıteit niet blijft, doet er

niet toe. Onze veruiterlijking is nu eenmaal, ons geen plotselinge sprongen te kunnen denken,
maar continue segmenten van verandering en dimensieloze punten zonder verandering. De
oneindig kleine deeltjes geven wij toch weer opnieuw kleine afmetingen, die continu verlopen.
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Much is said in the notebooks about the continuous, differentiable, or ana-
lytic character of functions that describe nature, and, again, only in the negative
and pessimistic sense, which is standing in such a sharp contrast with his cre-
ative and constructive attitude in mathematics. But we are concerned here with
the young Brouwer; eventually his standpoint became more moderate.

(III–30) Where do we get the axiom of differentiability of physical
functions? Well, because one chooses, out of free will, the measures
of distance on the different continua as ‘belonging together’, (the
axiom of time of the uniform motion in the limit), one measures
time in such a way that the axiom applies.41

This concept of differentiability of physical functions was introduced, as
we saw, to increase man’s control over his surrounding world. Finitely many
observations are extended to infinitely many points between the observed values,
thus creating continuous functions:

(IV–3) The function concept is just the presentation of the mapping
of infinitely many points in a finite form, to be performed with the
help of a finite number of values under the application of a finite
number of certain mathematical inductions.42

Another paragraph about forcing nature into a set of differential equations, and
about our natural and innate abhorrence of discontinuities since they thwart
our ruling capabilities, goes as follows:

(VIII–18) We postulate in nature the accuracy and regularity of
the functions and differential quotients; however, our observation is
inaccurate, and our mathematical simulation suffers from singular-
ities, hence becomes inaccurate with respect to nature. Why don’t
we want them in nature? Because we can ‘hardly think them’, and
because they don’t fit in our externalization.

Does nature give infinite dy
dx? Yes, but y and x are coordinates,

introduced by us, hence are part of the simulation.43

41Hoe komt men aan het axioma der differentieerbaarheid van fysische functies? Wel, door-
dat men de maatafstanden op de verschillende continua vrijwillig ‘zusammengehörig’ kiest
(het tijdsaxioma van eenparige beweging bij de limiet), zo meet men de tijd, dat het axioma
uitkomt.

42Wat is het functiebegrip anders, dan het geven van een afbeelding van een oneindig aan-
tal punten in eindige vorm, uit te voeren met behulp van een eindig aantal waarden onder
toepassing van een eindig aantal bepaalde mathematische inducties.

43Wij postuleren in de natuur exactheid en regulariteit van de functies en differentiaalquo-
tienten; onze waarneming echter is inexact, en onze wiskundige nabootsing lijdt aan singu-
lariteiten, wordt dus t.o.v. de natuur inexact. Waarom willen we die niet in de natuur?
Omdat we het ‘moeilijk kunnen denken’, slecht vinden passen in onze veruiterlijking. Komt
in de natuur dan geen oneindige dy

dx
voor? Jawel, maar die y en x zijn door óns ingevoerde

coördinaten, behoren dus bij de nabootsing.
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It is of course common physical practice to attempt to describe series of
numerical observations in a continuous (or even differentiable) function, which
is then preferably part of a more comprehensive theory, and in sofar Brouwer’s
quote reflects, again, everyday physical reality. But the frequent use of terms
like ‘sinful’ and ‘externalization’ indicates that Brouwer certainly was referring
to the use of physics to intervene in nature for man’s own benefit.

The next quote again speaks of forced continuity, just to make ‘ruling’ pos-
sible:

(VIII–26) In order to operate on nature, we venture the generaliza-
tion of continuity and of differentiability, indeed the possibility of
interpolation. Discontinuity is out of the question, since for that we
should be able to observe ‘points’ in nature, and we notice very well
that they are our own externalization.44

There are many more relevant paragraphs in this eighth and ninth notebook,
often referring to Poincaré. The following reminds us of Mach, to whom Brouwer
seems to react. Nature is forced by us into a mathematical description, and
therefore we introduce the principle of inertia. ‘Mach’s principle’ states that
inertia is the expression of the dynamical interaction of an object with the
‘cosmic surrounding’. Without a reference system of objects (which may even
consist of remote galaxies) there is no observable inertia. But in the following
fragment Brouwer most likely refers to Mach’s Erkenntniss und Irrtum45 from
1905, in which it is claimed that all external phenomena are observed by our
own physical (muscular) experience.:

(VIII–70) In a representation of nature, a system of ordering (i.e. of
arithmetic and algebra) is not sufficient; we introduce in nature the
principle of inertia (maybe as a consequence of our own muscular
sensation) and then we can represent all kinds of problems by some
sort of function, deduced from mechanics. Such a function can only
vary in a differentiable way, with a finite differential quotient with
respect to place and time.46

44Om op de natuur te kunnen werken wagen wij de generalisatie van continüıteit, en van
differentieerbaarheid, immers interpoleerbaarheid. Discontinüıteit is geen sprake van, daartoe
zouden wij in de natuur ‘punten’ moeten kunnen zien, terwijl we heel goed merken, dat die
alleen onze veruiterlijking zijn.

45[Mach 1968], page 8. This conjecture is based on the list of references at the end of the
eighth notebook, and fits with the content of the quoted paragraph from this notebook.

46Bij het nabouwen van de natuur is het geordend systeem (dat is dat van aritmetiek en
algebra) alleen niet genoeg; we voeren het traagheidsbeginsel in de natuur in (misschien
overigens is het het gevolg van ons eigen spiergevoel) en kunnen dan voor allerlei problemen
een of andere soort van grootheid uit mechanica afgeleid, laten optreden; zo’n grootheid kan
alleen differentieerbaar (met eindig differentiaalquotient tijd en plaats) veranderen.

Mach’s name and his work Erkenntniss und Irrtum were not mentioned in regard to this
quote, but it was on the list of consulted literature on the last page of this notebook. Also
Poincaré introduced muscular movement when describing a ‘third dimension’, but the ‘inertia
concept’ refers to Mach, rather than to Poincaré.
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6.3 Poincaré’s La Science et l’Hypothèse

The analysis of the role of science in human life and of its value is continued
on page 88 of Brouwer’s dissertation, with a comment on the tenth chapter
of La Science et l’Hypothèse by Poincaré, entitled Les théories de la Physique
moderne.47 Because of the weight that Brouwer, in his dissertation as well as
in the notebooks, lent to Poincaré’s views on physical theories, on mechanical
explanations for phenomena of nature, and on the actual state of affairs in the
field of science, we will present a brief sketch of the content of this chapter,
thereby emphasizing the items Brouwer commented on. It is divided into the
following three sections:

The meaning of physical theories

The purpose and the meaning of a physical theory is not the truth about its
fundamental building blocks (e.g. ether or atoms), but its ability to predict cor-
rectly the values of the observables, thus indicating that their mutual relations
are properly described despite the fact that the character of the variables may
change over time as a result of further research :

Mais ces appellations [i.e. names we give to the phenomena ] n’étaient
que des images substituées aux objets réels que la nature nous cachera
éternellement. Les rapports véritables entre ces objets réels sont la
seule réalité que nous puissons atteindre, et la seule condition, c’est
qu’il y ait les mêmes rapports entre ces objets qu’entre les images
que nous sommes forcés de mettre à leur place.48

The fact that there is such a close relationship between the different mod-
els which are so successfully employed by us to represent the unknown reality,
suggests that those models are all based on, and are, according to Poincaré, a
consequence of, more general and more fundamental principles: the principle
of conservation of energy to which all processes must obey, and the principle
of least action that prescribes which one of all the possible processes satisfying
the first principle, will actually occur. An apparent contradiction between two
theories, both correct in their predictions, frequently reduces to mere contradic-
tions between our metaphoric images, e.g. the comparison of colliding molecules
with colliding billiard balls or with interacting charged particles. In different
theories we often recognize the conservation of a certain scalar quantity. What
is conserved, we then call energy:

Est-ce à dire que le principe n’a aucun sens et s’évanouit en une
tautologie? Nullement, il signifie que les différents choses auxquelles
nous donnons le nom d’énergie sont liées par une parenté véritable;
il affirme entre elles un rapport réel.49

47[Poincaré 1916], page 189 ff.
48[Poincaré 1916], page 190.
49l.c. page 195.
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The introduced principles remain valid as long as they are useful to us.

Physics and the mechanism

There is always a strong preference among physicists for an explanation of phe-
nomena in terms of mechanical processes, i.e. an explanation in terms of collid-
ing molecules, whether or not in combination with attractive or repulsive forces.
This is, according to Poincaré, always possible provided that the two principles
mentioned above are satisfied.50

In the case of electromagnetic phenomena there was the ether, often con-
sidered as the only existing matter; atoms were then considered to be points of
condensation or vortex points in the ether (Kelvin). With the help of the ether
theory, physicists hoped to demonstrate the existence of a measurable absolute
motion.51 Poincaré opposed the idea of absolute motion (and turned out to be
right at this point).

The present state of affairs in science

This is of course the situation in science around 1900, the time of publishing La
Science et l’Hypothèse.

There are two different developments: 1) In the direction of a greater unity
by the unification of different theories into one unified theory. In Poincaré’s
days the most well-known example was Maxwell’s theory, which united electric-
ity and magnetism into one single theory, governed by four differential equations.
2) In the direction of a greater complexity by the discovery of new and inexpli-
cable phenomena, the most well-known example in those days probably being
Planck’s theory of black body radiation. Because of the second development
the optimism of around 1850 had diminished by 1900, despite progress made by
e.g. Lorentz, who, however, still needed the ether for his electron theory. The
two principles (least action and conservation of energy) remained fundamental
in modern theories, but new ones were added like Carnot’s principle and the law
of increasing entropy.52 New analogies were recognized, such as that between
electric resistance and viscosity of fluids.

Néamoins les cadres ne sont pas rompus; les rapports que nous avions
reconnus entre des objets que nous croyions simples, subsistent en-

50As a comment on this section about Poincaré’s ideas, the following remark can be made.
During the nineteenth century there was indeed a strong preference for explanations in terms of
mechanics for natural phenomena. However, at the end of that century there was a transition
towards a different approach: not mechanics, but electromagnetism was seen as fundamental,
and one tried to interpret for instance inertia electromagnetically. Note that the first edition
of La Science et l’Hypothèse was published in 1902.

51The concept of ‘absolute motion’ was an older one, already present in Newton’s work, and
not depending on ether theory.

52Carnot’s principle from thermodynamics: All Carnot engines (an engine operating accord-
ing to a Carnot cycle), operating between two given temperatures, have the same efficiency,
and this efficiency is the maximum attainable for any cyclic heat engine.
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core entre ces mêmes objets quand nous connaissons leur complexité,
et c’est cela seul qui importe.53

As a final remark, not directly related to our subject, but interesting in
itself, Poincaré observed that the fundamental laws of celestial mechanics could
be discovered thanks to the imperfection of the measuring instruments and the
unfamiliarity with the complexity of nature. Familiarity with relativistic effects
in astronomy could have prevented Newton’s laws.

C’est un malheur pour une science de prendre naissance trop tard,
quand les moyens d’observation sont devenus trop parfaits.54

6.3.1 Brouwer’s comment on Poincaré

Poincaré certainly was one of the greatest minds of his time in the area of math-
ematics and physics, and, as the direct precursor of French pre-intuitionism,55

was of great influence on Brouwer. Brouwer discovered in La Science et l’Hyothèse
certain aspects, which strengthened his views or which were useful to him as
arguments in his pessimistic and solipsistic outlook on the role of science. Ac-
cording to Brouwer,56 man concludes a posteriori from his observations of the
surrounding nature that many physical phenomena that come to us in the form
of causal sequences, can be mathematically expressed in second order differen-
tial equations, e.g. in its simplest form Newton’s equation F = md2x

dt2 . The
mass m is then to be understood as a convenient coefficient in this equation.57

Observation teaches us that a system is ‘approximately isolated’ if its centre of
gravity moves rectilinearly and uniformly, from which one gets by abstraction
the principle of (scalar) equality of action and reaction as well as the concept of
an ‘isolated system’ in absolute terms. By means of the equations of motion of
Lagrange, simple systems of rigid bodies can be described, but also theoretical
astronomy becomes subject to mathematical description, as well as most parts
of physics that are governed by reversible processes. The preference for mechan-
ical explanations of natural phenomena, which was also emphasized by Poincaré
without giving reasons for this preference, is made plausible by Brouwer in the
following terms:

[The preference for an explanation in terms of a rigid mechanism]
is probably the result of the fact that man is more familiar with
the setting up of rigid constructions and mechanisms, and that he
can control rigid bodies in their behaviour more easily; and that
therefore the idea that nature only builds rigid mechanisms removes
its mystery in so far, as if nature were to build things which man

53l.c. page 210, 211.
54l.c. page 211.
55See [Bockstaele 1949], page 23 e.v. and page 79.
56Dissertation, page 90 ff.
57Compare [Poincaré 1916], page 127: ‘les masses sont des coefficients qu’il est commode

d’introduire dans les calculs’.
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could not imitate by building from matter; and also of the fact that
in this way the considerable reliance on the invariability of the laws
governing rigid bodies strenghtens the illusion that ‘nature can be
controlled’.58

In this passage we once more recognize Brouwer’s view on what man’s aim
in life is. This is not to know and to understand nature for its own sake, but
to control it, and for that control a certain technical knowlwdge is needed. In
achieving this knowledge Brouwer showed, just like Poincaré and many others,
a natural preference for an explanation of physical phenomena in terms of rigid
body dynamics.59 But, as we saw, the main difference with Poincaré and others
was the aim of doing physics. No curiosity, but a desire to rule, which desire
was indeed recognized by Brouwer, but also rejected on moral grounds.

Due to his pessimistic view on mankind, Brouwer saw the application of
mathematics to the physical world only as an attempt to increase man’s power
over it; and the most effective way to increase power, so it seemed to him, is by
means of a demystification of nature and therefore by treating it like familiar
rigid dynamics. The ‘familiarity’ with this method of explaining and controlling
can be interpreted as referring to a personal familiarity, which reminds us again
of his solipsism. Doing physics out of pure curiosity escapes his outlook on
mankind, at least in his early years. Brouwer is still observing mankind in the
context of his own Life, Art and Mysticism.

This all makes the objections from the side of the mathematical physicist
Korteweg understandable, which resulted in the Rejected Parts.60

In a footnote Brouwer proposed another reason for the said preference of
explanations of physical phenomena in terms of rigid body dynamics: a rigid
body is the familiar example of an object, fixed by a finite and very limited
number of coordinates. Indeed, a physical phenomenon is normally determined
by a finite number of objects, which number, however, is usually very large, for
instance the number of molecules in a certain volume of a gas. Therefore:

the remaining coordinates could only show discontinuous variations
and could therefore be determined by means of integers, so that
nature would only possess the order of freedom of a permutation

58dissertation, page 90: [De voorkeur voor een verklaring in termen van een rigide mecha-
nisme] heeft waarschijnlijk zijn oorsprong daarin, dat het bouwen van rigide constructies en
mechanismen de mensen het meest vertrouwd is, en dat men de rigide lichamen het gemakke-
lijkst in hun gedrag beheerst; dat dus het idee, dat de natuur alleen rigide mechanismen
bouwt, haar mysterie, in zoverre zij dingen zou bouwen, die de mensen niet materieel zouden
kunnen nabouwen, wegneemt; en ook hierin, dat zó het zeer grote vertrouwen op de on-
veranderlijkheid der wetten, die de vaste lichamen beheersen, de illusie, ‘de natuur te kunnen
beheersen’, versterkt.

59We remarked already that the preference to explain all physical phenomena by means
of mechanical model, was dominant during the second half of the nineteenth century, and
was followed by a preference for electromagnetism as fundamental in explanations. See the
footnote on page 204.

60[Stigt 1979].
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group. (...) That would bring nature still closer to the material
structures of man, and to the limited freedom experienced in their
creation.61

Hence a finite number of rigid bodies, each determined by a finite num-
ber of coordinates, makes the remaining coordinates only show discontinuous
jumps, but which can be described to a very good approximation by continuous
functions owing to the large number of rigid bodies involved.

Note that, just like Poincaré, Brouwer did not follow the tendency of his days
in the physical community, i.e. the switch to an electromagnetic worldview.

The value of an explanation of phenomena

If it is man’s desire to control and to rule, then physical phenomena which can
serve that purpose stand in need of an explanation, but the concept ‘explanation’
here has to be interpreted with care. To compare different explanations and to
select one of them as the most valuable, one has to attach a certain value to an
explanation.

This value is, in Brouwer’s terms, the possibility of a clear separation of
the essential component from the accidental component of an observed phe-
nomenon. The essential part can subsequently be ‘extended to a larger field
of possibilities’, i.e. brought together into one model with essential components
of seemingly different and independent phenomena, such that the prediction of
new phenomena becomes possible.

The most reasonable interpretation of Brouwer’s concept of ‘explanation’
and of its ‘value’ seems to be as follows: For Brouwer, an explanation is not
intended for a more profound understanding of phenomena, it is not an objective
for its own sake. An explanation is just a device that makes predictions possible,
and those predictions are not meant to confirm the explanation as being true,
but merely to intervene in nature efficiently:

because man always wish, and be able, to extend the totality of
inductively summarized phenomena, in the realm of which he can
forecast results and consequently intervene successfully.62

When observing a physical phenomenon and when searching for an expla-
nation of that phenomenon in the form of a model that can make predictions
possible, which model is then preferably but not necessarily in terms of rigid
body dynamics, one devises it such that it accounts for the relevant observed

61dissertation, page 90: dat nu ook de nog overblijvende coördinaten slechts discontinue
sprongen zouden vertonen, dus door gehele getallen zouden zijn te bepalen, en de natuur zou
slechts de orde van vrijheid van een permutatiegroep behouden. (...) Dat zou de natuur nóg
dichter brengen bij de materiële gebouwen der mensen, en de beperkte vrijheid in het scheppen
daarvan gevoeld.

62(dissertation, page 93) want het geheel der inductief samengevatte verschijnselen, waarin
de mensen vermogen gevolgen te voorspellen, en uit hoofde daarvan met succes in te grijpen,
zullen zij steeds willen en kunnen uitbreiden.
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data. These relevant data are the ones that are included as parameters in the
theory; they belong to the essential components of the theory or of the expla-
nation. The non-relevant numerical data belong to the accidental components.

As a simple example take the basic Newtonian mechanics of billiard balls,
in which mass, force and acceleration form the essential variables, and in which,
say, the colour of the balls is accidental. Or take the theory of radioactivity
(a topical subject in Brouwer’s early years), in which the temperature is an
accidental variable (in absolute terms to every known degree of approximation).

However, we must also keep in mind what might be Brouwer’s criteria for
being an essential component. If a physical law is not discovered, but created
by us with the sole purpose of gaining power, then the degree of either or not
being essential might be determined by the end we set ourselves, by that ‘sinful
desire’ of ours. We will return to that at the end of this section.

It will be obvious that, in the strict physical sense, the role of accidental
and essential component may change in time. For instance when applying the
Newtonian laws to the kinetic theory of gases, temperature becomes a relevant
parameter in the equations. In fact, temperature is defined in terms of the basic
mechanical quantities.

Brouwer also expressed it as follows: ‘a successful “explanation” opens a field
of induction’, that is, all consequences or all possibilities following from that
explanation can be verified and if that is successfully completed, the essential
part again has to be separated from its previously unnoticed accidental subparts,
thus widening the field of induction. The result will be the unification of two
hitherto separated groups of phenomena.63 In regard to this, Brouwer speaks
in a footnote of ‘He who believes in the reality of hypotheses will speak of
“going deeper into the nature of the phenomena”’,64 thereby emphasizing his
anti-realism.

About an explanation of a physical phenomenon, which, after a further de-
velopment of the theory (and its verification by experiment), turned out to be
not correct, Brouwer noticed:

Let us remark further that it can never be said afterwards that an
explanation, which served its purpose in extending the region of
known sequences by means of induction, was shown to be incorrect.
For, in that case, a clash with experience proves no more than that
on the strength of the explanation a field of induction was openend
which was too large. In such a case the explanation can always be
saved by re-extending the essential parts in the mathematical image
of the phenomena on which it was based, at the expense of the part
which had been assumed as essential.65

63Compare Maxwell’s unification into one theory of electromagnetism of the previously
separated theories of electricity and magnetism, and the subsequent unification of the different
manifestations of electromagnetism.

64dissertation, page 93, footnote 3.
65dissertation, page 93: Merken we nog op, dat nooit een verklaring, die haar diensten bij
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This is correct in the case of the Newtonian mechanics, which was improved
by Einstein to relativistic mechanics. The first one can still be considered as a
very good approximation for the second in case of relatively low speeds, as we
experience them in our daily life. However this claim is not so conclusive in the
case of Zeeman’s own explanation of the effect called after him, i.e. the splitting
of spectral lines in a strong and inhomogeneous stationary magnetic field.

The last citation and the discussion on it might give the impression, that
Brouwer is speaking here in a strict physical sense, but we must constantly
keep in mind Brouwer’s early ideas of the role of physics in human life. The
reason why Brouwer attached so much importance to the concept of ‘value of an
explanation of phenomena’ is a corollary of his concepts of nature, of physics,
and of man’s role in it. In order to control and to manipulate his environment,
man has to create laws and theories that make predictions possible in his system
of causal sequences. And in a relatively simple set of laws, explanations, and
techniques of operating on the world, man can live and control in his own small
world, in himself. In this world his fellow-men are merely a special kind of active
and dynamic (‘living’) objects.

Let it again be said that this attitude shows itself in its most pronounced
form in his early years, the tone becoming more moderate as time went on. But
his tendency towards mysticism and his pessimistic philosophy was to stay.

The notebooks on Poincaré

Brouwer read and studied Poincaré, and often agreed with him, for instance
when discussing force and mass, which are no ‘natural phenomena’, but are
introduced by us for convenience:

(II–19) Force, to be distinguished in static and kinetic (i.e. hypo-
thetical), and mass are proper fossilizations for the summary of some
phenomena.66

This is clearly influenced by Poincaré. For the latter, mass is just a conven-
ient coefficient. In his notebooks Brouwer expressed this informally as ‘proper
fossilizations for the summary of phenomena’.
The following fragment is written as a reaction to page 212 of Poincaré’s La
Science et l’Hypothèse. This is the last page of the tenth chapter, entitled Les
Théories de la Physique moderne, in which Poincaré remarked: ‘A mesure qu’on
connait mieux les propriétés de la matière, on y voit régner la continuité’:

de uitbreiding door inductie van het gebied der bekende volgreeksen heeft gedaan, later kan
worden gezegd, onjuist te zijn gebleken. Immers dan bewijst een démenti der ervaring alleen,
dat men op grond der ervaring een te groot veld van inductie had geopend. En in zulk een
geval kan men de verklaring steeds redden, door in het erop gegronde wiskundig beeld der
verschijnselen weer het essentiële gedeelte uit te breiden ten koste van het reeds als toevallig
gestelde.

66Kracht (te onderscheiden in statische en kinetische d.i. hypothetische) en massa zijn
geschikte verstarringen om sommige verschijnselen samen te vatten.
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(V–4) The continuous divisibility with respect to time of the phe-
nomena (in physics and geometry) is the basic axiom. In other
words, one can write down differential relations as the basic idea.67

Brouwer also read and commented on Poincaré’s La Valeur de la Science. Chap-
ter 9 of this book is entitled La science et la réalité, and in § 5 of this chapter,
Contingence et déterminisme, the postulate of the indefinite possibility of inter-
polation of functions in nature is discussed:68

(IX–17) We construct, within certain limits, analytical functions
that can, of course, approximate every empirical function.69

We even force nature into analytic functions:

(IX–20) We would like to catch nature and, because analytical func-
tions are the main tool for that, we have the tendency to view equi-
librium situations expressed in such functions.70

Finally, in the following we note Poincaré’s idea of a third dimension in the
perceptible world, as a consequence of our own physical movements, which was
also discussed in chapter 4 of La science et l’hypothèse in the section L’espace
visuel:

(IX–29) The fact that space is a living thing for us, means that our
muscular movements are living sensations.71

6.4 Space, time, objectivity and apriority

The question about objectivity and apriority of space and time was actualized
again by Russell in his An essay on the foundations of geometry.72

Brouwer raised this question in order to investigate and decide in how far the
concepts of objectivity and apriority can be ascribed to mathematical systems
in general, and what exactly, from his point of view, these terms mean.

67De continue splitsbaarheid der verschijnselen naar de tijd (voor fysica en geometrie) is
het grondaxioma. M.a.w. men kan differentiaalbetrekkingen opschrijven als grondidee.

68[Poincaré 1923], page 248 ff.
69Wij bouwen binnen bepaalde grenzen analytische functies, die natuurlijk elke empirische

functie kunnen benaderen.
70Wij zouden de natuur willen vangen, en omdat analytische functies daartoe het hoofdza-

kelijke middel zijn, hebben we altijd neiging, om ook de evenwichtsfiguren zo te willen denken.
71Dat de ruimte voor ons leeft, wil zeggen, dat onze spierbewegingen zo levend zijn.
72[Russell 1897]; Brouwer used in his discussion the French translation [Russell 1901], proba-

bly as a consequence of the subsequent polemic in French in the journal Revue de Métaphysique
et de Morale between Couturat, Poincaré, Lechalas and Russell. Another reason might be the
many corrections, made by Russell in this four years later French edition. In the sixth note-
book, on the pages 24 – 33, the polemic in the Revue de Métaphysique et de Morale between
Russell, Poincaré, Couturat and Lechalais, which followed on the publication of Russell’s
foundational work, is commented on.
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When discussing objectivity we must keep in mind Brouwer’s solipsistic view-
point, which remained in his later work. This point of view also applies to math-
ematics in the sense that this is a free creation of the individual mind. One can
never be certain that other individuals will build the same mental constructions
when communicating their mathematical arguments and results. In its strict
sense one can even never be certain about other minds at all.

Brouwer on objectivity

A consequence of a solipsistic and constructivistic standpoint is that objectivity
cannot have its common meaning of ‘a real substantial existence, external to,
and independent of the subject’. Therefore Brouwer’s possible definitions of that
concept differ from the usual and traditional ones. He is seeking his solution in
‘invariance under mathematical transformations representing natural phenom-
ena’. Take for instance mass; according to Brouwer (after Poincaré),73 this is
merely ‘a coefficient whose introduction simplifies the mathematical image of
nature and which remains invariant under mathematical transformations rep-
resenting natural phenomena’; mass thereby becomes a mathematical concept
and is described in a mathematical system.74 However, this concept of mass
may change with the development of physics in such a way that explanations
of newly discovered natural phenomena become simpler when mass becomes a
variable quantity (which in fact happened in relativistic mechanics). Then mass
only remains invariable, and therewith an ‘objective’ concept, under transfor-
mations in a representation of a very important group of natural phenomena,
viz. the phenomena of non-relativistic physics.

Hence ‘objectivity’ of some specific quantity or law (in the given meaning of
invariance under mathematical transformations) is always relative to a certain
mathematical model of nature, which model is chosen on the basis of simplicity
and utility of its description. But then the definition of objectivity per se, not
relative to some specific mathematical model, has to be adapted.

The reader may still wonder why ‘objectivity’ is so closely linked to the
notion of ‘invariability under a mathematical transformation’, whereas the tra-
ditional idea is that of ‘existence, independent of an observer’. Brouwer even
mentioned ‘indestructibility’ as a first thought in regard to the objectivity of
mass. But we emphasize once more Brouwer’s solipsism, where a world, exter-
nal to and independent of an observer, remains a hypothetical reality, unknown
on principle. Indestructibility as the characteristic for the objectivity of mass

73[Poincaré 1916], page 127.
74dissertation page 95. As a simple and obvious example we might take the case of the

mass of billiard balls and a Galileo transformation from one coordinate system (the billiard
table) to another one which is in motion relative to the first one; or, as another more compli-
cated example of a ‘mathematical transformation representing natural phenomena’ we might
again take the billiard balls. Between an initial state and a final state, both given by the
position coordinates and the momenta of the balls, the transition is given by a mathemati-
cal transformation, governed by Newtonian laws of motion, under which the masses remain
invariant.
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is an untenable one, since mass is just ‘a convenient mathematical coefficient’.
Objectivity of mass as a mathematical notion from Brouwer’s point of view,

where at least the ‘old’ idea of ‘external to and independent of an observer’ can
be recognized, can then be expressed as ‘invariance under mathematical trans-
formations in the time and space coordinates of the equations’, where mass then
remains invariant in time or space.

Brouwer distinguished three possible definitions for the general concept of
objectivity of a mathematial system or notion:

either invariance for a certain given interpretation of all phenomena
which are so far known; (...)

or invariance for the simplest or the most common interpretation of
all phenomena so far known; (...)

or invariance for the simplest or the most common interpretation of
a very important group of phenomena;75

In the first case objectivity of a quantity would be, according to Brouwer,
an arbitrary property, depending on the chosen interpretation, consequently
resulting in the construction of rather artificial systems. This may be the case if
e.g. one sticks too long to an outdated and improper interpretation. Artificiality
would then indeed be the result, since there is, apparently, in this case no
interpretation which offers itself as a natural one; we just have selected one (or
stuck to an old one), in which all known phenomena have to fit (are forced to
fit) in order to let the quantity concerned be an objective one.

In the second case we clearly have chosen, according to sound physical prac-
tice, the simplest interpretation for all known phenomena (an ideal situation
from a physical point of view), but then objectivity would become a transient
property which may lose its value and therefore may disappear upon the ap-
pearance of a new phenomenon. A new ‘simplest and most common’ theory
then has to be invented, since, if we hold on to the old theory, we are back in
the first case. For a given set of observed phenomena, there is, ideally, one sim-
plest interpretation, in which a certain concept, (e.g. mass) remains invariant
under a mathematical transformation. But new observations will be added to
the existing ones, which might make the interpretation no longer tenable. As an
example we again mention the concept of mass and the appearance of relativity
theory.

The third definition is ‘the greatest mainstay’, despite (or precisely because
of) the subjective aspect in it. Mass, as a simplifying coefficient, is considered to
be objective, until a variable mass is asked for to improve (i.e. to make simpler or

75dissertation, page 95: òf invariabiliteit bij een zekere verklaring van alle tot nog toe
bekende verschijnselen. (...)

òf invariabiliteit bij de eenvoudigste of de meest gebruikelijke interpretatie van alle tot nog
toe bekende verschijnselen. (...)

òf invariabiliteit bij de eenvoudigste of de meest gebruikelijke interpretatie van een zeer
belangrijke groep van verschijnselen.
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to extend the range of) the explanation of phenomena. Under the old condition
(‘the very important group of phenomena’) mass remains objective.

The fact that Brouwer’s choice is the third alternative, can again be ac-
counted for by looking at it from his standpoint: the arbitrariness, resulting
in a forced system, of the first possibility and the transient characteristic of
the second one are far greater disadvantages compared to the subjectivity of
the third possible definition. This subjectivity is in fact no disadvantage at all
in the light of his solipsistic standpoint; subjectivity becomes a most natural
and obvious property of the selected definition: a quantity need not be invari-
able under transformations in the simplest and most common interpretation
of all phenomena, but of a very important group of phenomena. What is ‘a
very important group’ and wat is ‘the simplest interpretation’? That is decided
by the individual who asks that question, since there is no absolute certainty
about other individuals to agree with. According to Brouwer, mathematics and
a mathematical model for nature cannot be anything else but an individual
creation.

In accordance with the last definition, space and time with the physical space
and scientific time76 constructed on it, are objective. Space and time are, as
Brouwer observed, a necessary tool in the description of the physical phenomena,
and for a very important group of phenomena they are invariable magnitudes,
i.e. length and duration are invariable quantities under a transformation from
one coordinate system to another, with constant (and relativistically low) rela-
tive speed between the two systems, hence they are invariable in the mechanics
of all our daily experiences, which man needs to control and to rule.77 In rela-
tivity theory they are no longer invariable magnitudes, but this theory has its
own invariants under transformations.78

Apriority

Brouwer’s concept is of course influenced by Kant, who discussed apriority and
a priori knowledge thoroughly in his Kritik der reinen Vernunft.

Very briefly Kant’s concept amounts to the following:
All our knowledge begins with sense experience, but does not necessarily

originate from sense experience, since it can have its source in our own faculty of
knowledge (Erkenntnisvermogen) (page B 1 of the Kritik der reinen Vernunft).
Kant raised the question (B 2) whether or not there is knowledge independent
of all experience and of all sense perception. This type of knowledge he called
a priori knowledge or pure knowledge (B 3).

A property of an a priori statement is, that its content is necessary and at
the same time of general validity, that is, it is valid without exceptions.

On page B 38 (about space) and B 46 (about time) Kant stated, among other

76This concept has to be distinguished from the intuitive time, as we saw earlier.
77Even today in the century of space travels.
78We could of course also have included an arument about Kant’s influence on Brouwer in

regard to objectivity, as we have done this in regard to apriority. See Van Atten’s comment
on intersubjectivity in [Atten 2004], chapter 6.
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properties, that 1. space and time are not empirical and 2. they are necessary a
priori notions, underlying all external experience (‘eine notwendige Vorstellung,
a priori, die allen äußeren Anschauungen zum Grunde liegt’). Hence in this
latter sense the a priori notions of space and time are a necessary condition for
the possibility of experience, they are ‘a priori Anschauungsformen’ (a priori
forms of intuition). Neither space, nor time as a priori Anschauungsformen
are objects of knowledge, but in geometry one can obtain a priori knowledge
about spatial properties of objects of experience, like one can obtain a priori
knowlwdge about temporal properties of the objects of experience in arithmetic.

Brouwer on apriority

According to Brouwer, the concept of apriority of a mathematical system can
be interpreted either as79

1. existence of that mathematical system, independent of experience,
or, more generally and fundamentally, as

2. necessary condition for the possibility of science.

Ad. 1: In the first alternative the whole of mathematics is a priori knowledge
(e.g. both Euclidean and non-Euclidean geometry), since it is constructed on
the basis of the ur-intuition alone, independent of the content of any external
experience. Of course the ur-intuition is an abstraction from the content of
internal experiences of different external (or internal) events, separated by a
continuum,80 hence a sense experience marks the beginning of mathematical
knowledge, but it is not the source of this knowledge since the source is the
awareness of the abstracted two-ity after a second sense experience. This can
perfectly well be understood in the Kantian sense (see above).

This interpretation, in which mathematics in its totality becomes a priori
knowledge, is not to Brouwer’s satisfaction; a reduction to a more primitive
concept is desirable. The obvious option is precisely the ur-intuition itself, the
individual experience of the two-ity event–separation or discrete–continuous,
which makes mathematics a free creation of the individual mind. The next
alternative leads to this option.

Ad. 2: This option presents apriority as the ‘necessary condition for the pos-
sibility of science’. Brouwer’s subsequent argument amounts to the following:

79Note that the English translation of Brouwer’s dissertation, as published in [Brouwer 1975]
states:

’Next the apriority; this can mean one of two things’ (my emphasis),
whereas the original Dutch text states:

‘Nu de aprioriteit; men kan hiermee twee begrippen bedoelen, (...)’
i.e. it can have two interpretations. The English text as it were forces one to a choice, whereas
the Dutch text seems to leave both options open, which apparently was meant by Brouwer,
as can be concluded from the subsequent two paragraphs: one is not forced to a choice but
one is led automatically to the second alternative.

80dissertation, page 8:

the substratum, divested of all quality, of any perception of change (...)
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science can be distinguished in 1) experimental science, originating from the ap-
plication of intuitive mathematics to the observed reality, and 2) the properties
of intuitive mathematics which was applied in 1). Since there is no aprioristic
element in our observation of reality, the only aprioristic element in science con-
sists of that one thing which is common to all mathematics, i.e. the ur-intuition
of mathematics.

Brouwer’s conclusion then is:

And since in this intuition we become conscious of time as change
per se, we can say:

The only aprioristic element in science is time.81

In a footnote to this conclusion Brouwer added the following interesting
remark, which casts light on his view about what science is:

Strictly speaking the construction of intuitive mathematics in itself
is an action and not a science; it only becomes a science, i.e. a
totality of causal sequences, repeatable in time, in a mathematics of
the second order, which consists of the mathematical consideration of
mathematics or of the language of mathematics; only there one meets
with causal connections in the way in which mathematical systems
on the one hand, mathematical symbols, words or ideas on the other
hand, succeed one another. But there, as in the case of theoretical
logic, we are concerned with an application of mathematics, that is
with an experimental science.82

Brouwer subsequently discussed a number of topics from Russell’s mentioned
book Essai sur les Fondements de la Géométrie, and he more or less strongly
disagreed with the content and conclusions of the treated items. We will not
examine this part of Brouwer’s dissertation.

6.4.1 Kant’s point of view, compared to that of Russell
and Brouwer

The last pages of Brouwer’s second chapter consist of a comparison between the
concepts of space of Kant, Russell, and Brouwer himself.

81dissertation, page 98: En daar deze samenvalt met de bewustwording van de tijd als
verandering zonder meer, kunnen we ook zeggen:

Het enige aprioristische element in de wetenschap is de tijd.
82dissertation, page 98, footnote: Eigenlijk is het gebouw der intüıtieve wiskunde zonder

meer een daad, en geen wetenschap; een wetenschap, d.w.z. een samenvatting van in de
tijd herhaalbare causale volgreeksen, wordt zij eerst in de wiskunde der tweede orde, die het
wiskundig bekijken van de wiskunde of van de taal der wiskunde is: eerst daar bestaat causaal
verband in de wijze van opvolging der wiskundige systemen enerzijds, en der wiskundige tekens,
woorden of begrippen anderzijds; maar daar, evenals bij de theoretische logica, hebben we ook
weer te doen met een toepassing der wiskunde, met een ervaringswetenschap.
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Kant

Kant’s view concerning space is briefly summarized by Brouwer in his disserta-
tion on pages 113 – 115. The relevant passage was quoted on page 52. Kant’s
conclusion, as summarized by Brouwer, is ‘that three-dimensional Euclidean ge-
ometry is a necessary condition for external experiences and the only possible
receptacle for the conception of an external world’, and therefore the proper-
ties of Euclidean geometry are synthetic judgements a priori for all external
experience.83 Both premises (see page 52) more or less claim objectivity of em-
pirical space per se (supposed to be necessary for external experience) and of
the Euclidean group of motion (translation) defined in that space.

However, for Brouwer the experiences of an external world can occur without
mathematics:

But it can immediately be objected that we obtain our experiences
apart from all mathematics, hence apart from any space conception;
mathematical classifications of groups of experiences, hence also the
creation of a space conception, are free actions of the intellect, and
we can arbitrarily refer our experiences to this catalogization, or
undergo them unmathematically.84

Nevertheless Brouwer claimed that, even if Kant’s premises are correct, it
could just as well be that the human intellect is composed in such a way that
it can place the conception of an external world in other receptacles, which is
not experienced due to a lack of practice or lack of effect. Hence apart from our
experience of an external world by placing it in empirical space only, one could
also have that experience by placing it in time, but possibly also in some other
unnoticed framework for experience, e.g. in non-Euclidean space.

For Brouwer, however, mathematics is for its existence not depending on any
external experience. The ur-intuition as described in our second chapter is the
only a priori element for the development of mathematics, and this ur-intuition
is not depending on the content of any experience. Hence, also experience
is independent of any mathematical system. The only synthetic judgements
a priori generally (that is, whether or not for external experience) are those,
‘obtained as possibilities of mathematical constructions by virtue of the basic
intuition of time’.

Therefore possible judgements are:

1. the very possibility of mathematical synthesis, of thinking many-
one-ness, and of the repetition thereof in a new many-one-ness.

2. the possibility of intercalation (namely that one can consider as
a new element not only the totality of the two already compounded,

83For a short comment of this summary, see page 52.
84dissertation, page 115: Maar er kan direct tegen worden ingebracht, dat wij onze ervarin-

gen krijgen los van alle wiskunde, dus ook van alle ruimtevoorstelling; wiskundige classifi-
catieën van groepen van ervaringen, dus ook de schepping der ruimtevoorstelling, zijn vrije
daden van het intellect, en wij kunnen naar verkiezing onze ervaringen op die catalogisering
betrekken, of onwiskundig ondergaan.
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but also that which binds them: that which is not the totality and
not an element).

3. the possibility of infinite continuation (axiom of complete induc-
tion).85

And, as a concluding remark of this chapter,

Experience a posteriori can teach us nothing about the necessity
of the occurrence of definite mathematical systems in experimental
science.86

The notebooks on Kant

In the first quote Poincaré’s concept of space is compared with that of Kant:

(III–22) All Poincaré’s talking does not take away anything from
Kant’s apriority. The relevant questions can always be tackled from
two sides, but can only be solved morally.87

Brouwer is referring to Poincaré’s La Valeur de la Science, chapter IV,
‘L’espace et ses trois dimensions’, in which a physical three-dimensional contin-
uum is the result of observation and which is called by Poincaré ‘le continu ou
le groupe de déplacements’:

(III–23) With his apriority of space, Kant only wants to say that, in
case of self-reflection of your consciousness, one has to depart from
something, but then one cannot do without the act of counting and
without space.88

The following paragraph is a direct reaction to Kant’s Kritik der reinen Ver-
nunft, page A-22 and A-24:

(V–16) If somebody uses the word space and elaborates on it, then
he immediately has to be silenced: the word space should not be
admitted. Neither the word not to speak about.

85dissertation, page 119: 1. de mogelijkheid zelf van wiskundige synthese, van het denken
van veelenigheid, en van de herhaling daarvan in een nieuwe veelenigheid.

2. de mogelijkheid van tussenvoeging, (dat men n.l. als nieuw element kan zien niet alleen
het geheel van de twee reeds samengestelde, maar ook het bindende: dat wat niet geheel is en
niet element is).

3. de oneindige voortzetbaarheid (axioma van volledige inductie).
86dissertation, page 120, the last paragraph: De ervaring a posteriori kan omtrent het

noodzakelijk optreden van bepaalde wiskundige systemen in de ervaringswetenschap niets
leren.

87Al het gepraat van Poincaré doet niets af aan Kant’s aprioriteit. De kwestie daarvan is
steeds van twee kanten aan te pakken, alleen moreel is ze op te lossen.

88Kant wil met zijn aprioriteit van de ruimte eigenlijk niets zeggen, dan dat je bij zelfbekij-
king van het bewustzijn van iets moet uitgaan, en dan wel niet kunt buiten het tellen en de
ruimte.
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(Kant, page 24) [this should be: A-24] ‘Think’, yes, but I ought not
to think anything, but for the sake of the struggle; the rest is fool-
ishness.89

The first paragraph of this fragment most likely refers to Kant’s Tran-
szendentale Ästhetik, erster Abschnitt Von dem Raume, § 2 Metaphysische
Erörterung dieses Begriffes (A–24 ff.), to which Russell reacted in Fondements
de la Géometrie. But why then should one not speak about space? Most likely,
Brouwer’s argument will be that the discussion by Russell gets bogged down in
a formalist treatment of the concept; it becomes an object, void of life. Space
has to be experienced intuitively.

The second paragraph of this last quote is also about page A–24 of Kant’s
Transzendentale Ästhetik. Brouwer is reacting to the following fragment:

Der Raum ist eine notwendige Vorstellung a priori (...) Man kann
sich niemals eine Vorstellung davon machen, daß kein Raum sei, ob
man sich gleich ganz wohl denken kann, daß keine Gegenstände darin
angetroffen werden.

Russell

1. Russell too claimed the possibility of external experience apart from Eu-
clidean three-dimensional space, but, according to him, the properties of pro-
jective geometry and the axiom of free mobility are necessary properties of the
receptacle of external experience. The different geometries of constant curvature
remain as alternatives for experience.
2. Experience teaches us that only Euclidean geometry can serve to describe
the external world as we observe it, hence that this geometry is ‘true’ to a
high degree of approximation. Russell attempted to prove these two points in
his Fondements de la Géométrie in a manner that was unacceptable for Brou-
wer. His criticism of Russell’s proofs amount to the fact that Russell’s assump-
tions are arbitrary and superfluous since the only necessary prerequisite in the
mathematical receptacle of experience is the ur-intuition of mathematics or the
intuition of time.

Brouwer was, in his dissertation as well as in the notebooks, sharp in his
criticism of Russell, but the relevant parts of Brouwer’s dissertation and his
notebooks contain no new viewpoints, and will therefore not be discussed here.

The notebooks on Brouwer’s own point of view about space and time

Brouwer’s own remarks, especially in the earliest notebooks, often contain terms
like ‘sin’, ‘desire’, ‘doom’ and the like. The concept of space is a sinful human

89Wanneer iemand het woord ruimte gebruikt, en daarover gaat spreken, moet hem direct
de mond toegesnoerd worden: het woord ruimte mag niet toegelaten worden. Evenmin het
woord niet om óver te spreken.

(Kant page 24) denken, ja, maar ik heb mij niets te denken, dan ter wille van de strijd; de
rest is dwaasheid.
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desire. However, in pure mathematics we can do without space as a basic
concept in the Kantian sense, the ur-intuition being sufficient as a foundation
of mathematics (which does not alter its sinfulness).

As a comment on Poincaré’s (non-verbatim!) quote from La Science et
l’Hypothèse, Brouwer remarked:

(II–12) (Poincaré page 72) La troisième dimension vient du phéno-
mène, que si deux sensations de convergence A et B sont indiscern-
ables, les deux sensations d’accomodations A′ et B′ qui les accom-
pagneront respectivement seront également indiscernables.

That is not true, the three dimensions exist only in our description of
nature, when observing the motions of rigid bodies with our senses,
but we are not aware of the senses; we may not and we cannot
observe the senses themselves. In retrospect we can conclude that it
fits, but not in advance; we just experience the dimensionless change
in our body, but we observe the external world in dimensions.90

There is an objectively existing space, not in the traditional sense of ‘external
to, and independent of the observer’, but in the sense that we experience it. But
the belief in it on the basis of that experience is a sinful belief:

(II–29) The belief in an objectively existing (i.e. which you have to
be afraid of) space is at the same time a punishment for the desire,
and that desire itself.91

Brouwer’s concept of objectivity was discussed on page 211: invariance under
mathematical transformations representing natural phenomena for the simplest
interpretation of a very important group of phenomena, which concept could
be understood and interpreted as following from his solipsism. However, in the
previous and in the following quote the term ‘objective’ has indeed to be under-
stood in its ‘popular’ sense as ‘existing external to us’, his other interpretation
apparently being from a later date. But both interpretations fit in his solipsistic
attitude: there is only the self, and one has to be afraid of everything that forces
itself upon the self, including an objective space, since it leads man away from
his natural destiny: a return to his ur-state. Note that we are now quoting only
from the early notebooks two and three. In this ‘old’ interpretation space has
to be feared; it is threatening our existence:

(III–10) Man’s externalization has the illusion of constancy (animals
don’t have that), therefore they want to count and to measure, and

90[Na de Franse tekst van Poincaré volgt Brouwer’s commentaar:] Niet waar, de drie
afmetingen zijn er slechts, voorzover wij de natuur beschrijven, en daarbij bekijken we de
beweging van rigida met onze zintuigen, maar aan die zintuigen denken we niet; die mogen
we niet waarnemen, en kunnen we ook niet waarnemen. Achteraf kunnen we wel kijken, dat
het klopt, maar het is niet waar vooraf; wij voelen alleen de dimensieloze ‘wisseling’ in ons
lichaam, maar de buitenwereld bekijken we met dimensies.

91Het geloof in een objectief bestaande (d.i. waarvoor je bang moet zijn) ruimte is tegelijk
de straf voor de begeerte, en die begeerte zelf.
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successfully, as it seems; but in the meantime time goes its own way,
not only the measurable (for which there is consolation and which
can be assimilated), but also the unmeasurable, that is the ageing
of the self.92

6.5 Conclusions

We have seen in this chapter that Brouwer’s view on physics in general, and the
application of mathematics for the description of physical processes in particular,
is different from the usual opinions about physical research and the status of
physical theories.

This is not in the first place caused by Brouwer’s view on the day-to-day
practice of the physical community, but by his view on man’s aim in applying
mathematics in our daily life. This aim is, according to Brouwer, man’s sinful
desire to rule, which is the reason that man is not searching for fundamental
theories, but for collections of causal sequences to make intervention in nature
possible. Hence, for Brouwer physics must be descriptive instead of founda-
tionally explaining; he prefers the experimental work and its elaborations by
Faraday, rather than the unifying theories of Lorentz and Maxwell. Causality is
imposed on nature instead of discovered, which is, as we remarked, not an un-
common view; only man’s aim is different in Brouwer’s option. Brouwer adduced
uncommon, and sometimes even untenable ideas in support of his general view
on physics (like the idea that theories about nature are in fact theories about
the instruments used, although this idea appeared only in his correspondence
with Korteweg).

We have seen that Brouwer’s opinions on physics in general can be made
comprehensible by taking into consideration 1) Brouwer’s rather gloomy view
on man, his aims and his motives, and 2) Brouwer’s solipsistic standpoint.

Other concepts which could be made understood by taking into account in
particular the second of these two important ingredients of Brouwer’s thinking,
are his notions of objectivity, apriority, and value of an explanation.

We have also seen that his most pessimistic views became more moderate
during the years, but that they never disappeared completely.

92De veruiterlijking der mensen heeft de waan der constantheid (de dieren hebben die niet),
zo willen ze tellen en meten, en dat schijnt zo ook goed te gaan; maar intussen gaat de tijd
zijn gang niet alleen de meetbare, waarvoor nog troost is, en die is te assimileren, maar ook
de onmeetbare, d.w.z. de zelfveroudering.



Chapter 7

The role of logic

7.1 Introduction

For centuries Aristotelian logic was believed to be the final word in this branch
of knowledge; some improvements and extensions were introduced by his imme-
diate and later successors, but the main body of this discipline was assumed to
be settled by Aristotle.

Only in the nineteenth century substantial progress was made by the intro-
duction of mathematical methods in logical reasoning, and symbolic logic came
into being. The pioneers in that area were Peano, Boole, Frege and Russell.
Peano for instance had devised a notation of logical symbols in order to discuss
logic in a mathematical way. Boole was the first to study the algebraic prop-
erties of propositional logic in a systematic way, and he created the ‘Boolean
algebra’.

But the most prominent representative of the logistic school was Gottlob
Frege.1 He can be considered as the founder of this school, whose aim it was
to build the whole of mathematics on a foundation of logical principles alone.
Apart from Frege, Russell in his Principles of Mathematics2 and Couturat in
Les Principes des Mathématiques and in Pour la Logistique3 made attempts in
this direction.

Among the several opponents of logicism, Poincaré and Borel played an
important role, and had a great influence on the development of Brouwer’s view
on the role of logic in mathematics. Poincaré was of the opinion that:

La logique tout pure ne nous mènerait jamais qu’à des tautologies;
elle ne pourrait créer du nouveau; ce n’est pas d’elle tout seule

1See his Begriffschrift from 1879, Grundlagen der Arithmetik from 1884 and Grundgesetze
der Arithmetik, begriffschriftlich abgeleitet from 1893 and 1903; respectively [Frege 1879],
[Frege 1884] and [Frege 1893].

2[Russell 1938].
3[Couturat 1905] and [Couturat 1906] respectively.
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qu’aucune science peut sortir.4

Logic, according to Poincaré, plays its important and even indispensable role
in mathematical reasoning, but more is needed for the construction of arithmetic
and geometry or of any other science, apart from pure logic. That ‘more’ con-
sists of an intuition, which is not based on the senses and which gives us some
fundamental principles and relations. This kind of intuition is not denied by
Russell and Couturat either, but Poincaré is hereby referring to specific and
intuitively given mathematical objects and principles like the system of the nat-
ural numbers and the basic rules of arithmetic.5 Mathematics is more than a
game of manipulation of symbols, it has an extra-logical content too. Also the
choice of a set of axioms from the many possible, given by logic alone, is led by
this intuition.

Ainsi, la logique et l’intuition ont chacune leur rôle nécessaire. Toutes
deux sont indispensables. La logique qui peut seule donner la certi-
tude est l’instrument de la démonstration: l’intuition est l’instrument
de l’invention.6

Poincaré’s typical example of the intuitively given mathematical reasoning
pur sang is the principle of mathematical induction, which is not a logical prin-
ciple, and can neither be derived from logical principles, nor proved in any other
way. Poincaré’s opinion about the status of the principle of mathematical in-
duction is exactly Brouwer’s view,7 but Poincaré’s criterium for mathematical
existence is fundamentally different from Brouwer’s: For Poincaré existence is
identical to consistency, for Brouwer it is to be the result of a construction.

Borel agreed with Poincaré about the role that intuition (Borel also used the
term invention to designate it) plays in the selection of the proper axioms from
the multitude available:

Je voudrais montrer que la logique fournit seulement aux mathé-
matiques leur matière, c’est-à-dire un ensemble innombrable de for-
mules possibles. La science commence lorsque l’on choisit parmi ces
formules, (...)8

According to Borel, logic is a reliable instrument when studying the math-
ematical reality, but it cannot be the source of that reality; mathematics has a
content of its own. Borel also has a typical and non-Brouwerian criterium for
the existence of mathematical objects: such an object is real if it is a commonly
shared and familiar concept among mathematicians, about which no misunder-
standing or ambiguity exists.9

4[Poincaré 1923], page 20.
5Op. cit. page 22.
6[Poincaré 1923], page 29.
7Compare Brouwer’s second thesis from the list of theses at the end of his dissertation.
8From La logique et l’intuition en mathématiques (1907); see [Borel 1972], page 2084.
9See [Borel 1950], page 175.
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Brouwer’s view on logic and its role in the founding and construction of
mathematics was, during his early active years as mathematician, one of violent
opposition. This attitude became one of acceptance after the formalization of
intuitionistic logic by Heyting and Kolmogorov.10 Logic was merely a formal-
ization of the language accompanying mathematical reasoning (or of any other
language), and had nothing to do with mathematics proper and its construc-
tion. Brouwer’s main claim is that, in contrast to the view of the logicists, logic
is depending on mathematics instead of the other way round; it may play its
limited and modest role of the accompanying language, suitable for memory and
communication, but only after the construction of mathematics proper. In his
criticism and argumentation, Brouwer limited himself to the role of traditional
logic, despite the availability of modern developments in the work of Frege, Rus-
sell and others. Therefore his rejection of the role of logic in the deduction of
mathematics was not based on some specific kind of formalization of logic; it
was a matter of principle and not of form. For that reason Aristotelian logic
served him well enough to argue his rejection, and modern developments in logic
would not have added any new elements to this argumentation.

It is striking that in his dissertation not a single reference is made to Frege,
the founder of modern logic after two millennia of Aristotelean logic. But one
should keep in mind that the work of Frege was rather neglected by mathemati-
cians of that time.11 There are several possible reasons for this omission: one
could be that the formalism of his logic was rather forbidding and therefore not
too attractive to be studied; another one could be that Russell’s influence was
far greater and that he was often read instead. Indeed Brouwer read, studied
and criticized (in the second and third chapter of his dissertation) Russell’s Prin-
ciples of Mathematics;12 he also he read Whitehead’s A Treatise on Universal
Algebra, judging by a footnote on page 159 of his dissertation.13

Just to illustrate the contrast with Brouwer’s opinion, we will devote a few
words to Frege’s view in passing. For Frege, logic does not describe the psy-
chological process of how man thinks, but prescribes how man must think if his
thought is to remain within the bounds of reason; logic is the study of truth-
preserving inference:

(...) its focus is truth in general, it strives not to define the predicate
‘true’, but to characterize the conditions under which truth is trans-
ferred from proposition to proposition. (...) The laws of logic are

10See page 226.
11It is worth noting, however, that [Frege 1884] and [Frege 1893] were available in the library

of the University of Amsterdam in the year 1907, according to information gained from the
University Library,

12[Russell 1938].
13That Brouwer was at least familiar with some of Frege’s work can be concluded from the

following: in the first place, he attended the lectures by Mannoury who discussed Frege’s work
on the foundations of mathematics; (cf. [Mannoury 1909], Vorwort and page 78 ff.); secondly,
Brouwer referred on one occasion in notebook 8 to an article by Frege in the Jahresbericht der
Deutschen Mathematiker-Vereinigung number 12, Über die Grundlagen der Geometrie II, in
which Frege reacted on Hilbert’s book with the same title. In his Synopsis of the notebooks
Brouwer again referred to the relevant paragraph in notebook 8.
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what make it possible to infer one sentence from another, to justify
one claim by appeal to another.14

According to Frege, nothing is needed to justify our arithmetical knowledge
beyond the axioms of logic and its rules of inference.15

Mathematicians around 1900 were indeed of the opinion that logic codi-
fies truth and that logic tells mathematicians how to think during the process
of doing mathematics. According to them (but in more modern terminology)
mathematics is about structures and relations, obeying the laws of logic.

Brouwer’s diverging view on the role of logic is already cleary expressed
in his own introduction to his third chapter:16 Mathematics is the result of a
construction, ultimately based on the ur-intuition alone. The criterium of a
successful construction is not that the laws of logic are obeyed, but merely the
simple fact that the construction can be completed. Brouwer usually expressed
himself in the metaphor of a building. A proof of a theorem in a certain well-
constructed mathematical theory is then a sub-building in a building. This idea
is elaborated on page 229 ff.

Now, a natural corollary of this concept of ‘building-in-a-building’ is a con-
structive interpretation of the hypothetical judgement A → B, in which the
antecedent A actually has to be constructed before granting B the status of a
constructed sub-building. We will discuss this at length on page 230 ff. Brouwer
worked out an example of a hypothetical jugement in one of his last letters to
Korteweg before the date of taking his doctoral degree, clearly to get Korteweg
on his side in this matter. See for this page 241.

Brouwer’s contrasting views in regard to logic can also be read in many of
his publications and papers, from the dissertation onwards to his later work:
mathematics is a free creation of the mind, and only the free creative mind tells
us how to do mathematics. In Consciousness, Philosophy and Mathematics,17

Brouwer stated that ‘there is a system of general rules called logic enabling the
subject to deduce from systems of word complexes conveying truths, other word
complexes conveying truths as well’, but ‘truth is only in reality’. ‘There are no
non-experienced truths’. ‘Logic is not a reliable instrument to discover truths
and cannot deduce truths which would not be accessible in another way as well’.
This attitude and these arguments make it clear that Brouwer did not need any
form of modern logic to reject logic as a foundation of mathematics.

In subsequent papers about this issue he is becoming more and more spe-
cific on this matter. In the dissertation it is emphasized that logical principles
only apply to the language of logical reasonings that accompany mathemati-
cally constructed systems.18 Only in that limited area their applications are

14[George and Velleman 2002], page 18, 19.
15ibid, page 16, 17.
16See page 228.
17[Brouwer 1948], see also [Brouwer 1975], page 480.
18dissertation, page 132.
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reliable. They are never reliable if used as the sole means in the attempt to lay
the foundations of mathematics. In his paper The Unreliability of the Logical
Principles19 Brouwer became more specific: of the four classical logical prin-
ciples, that of identity, of contradiction, of syllogism and of tertium exclusum,
the first three are correct in mathematics, whereas the last one is valid for finite
sets only; for infinite sets this principle is ‘unreliable’ as yet, without, however,
being faced with a contradiction in case of an unjustified application. But non-
contradictority is not sufficient for the correctness of a mathematical theory.20

In 1917 in the Addenda and Corrigenda21 its applications became ‘unjustified
petitiones principii’, and in 1919 in the Intuitionistische Mengenlehre22 Brouwer
arrived at a complete rejection:

Meiner Ueberzeugung nach sind das Lösbarkeitsaxiom und der Satz
vom ausgeschlossenen Dritten beide falsch und ist der Glaube an
diese Dogmen historisch dadurch verursacht worden, dass man zu-
nächst aus der Mathematik der Teilmengen einer bestimmten endlich-
en Menge die klassische Logik abstrahiert, sodann dieser Logik eine
von der Mathematik unabhängige Existenz a priori zugeschrieben
und sie schliesslich auf Grund dieser vermeintlichen Apriorität un-
berechtigterweise auf die Mathematik der unendlichen Mengen ange-
wandt hat.23

It may therefore be obvious that Brouwer’s rejection of logic as a basis for
mathematics and his subsequent development of intuitionistic mathematics, is
not a result of the paradoxes that appeared in mathematics which was based on
logic alone.24 Brouwer’s rejection is more fundamental, although he frequently
mentioned the paradoxes as an example of what can happen in case of too great
a trust in logic.

Moreover, Brouwer was certainly not a logician; in fact he never published
on logic and took little interest in it.25 Intuitionistic logic was later formal-
ized by Kolmogorov and Heyting,26 and because this logic basically contains
Brouwer’s foundational ideas, its proof interpretation which was published a
few years later is now generally referred to as the Brouwer-Kolmogorov-Heyting
interpretation.27 Brouwer of course knew this formalization and he agreed with

19[Brouwer 1908a]; for a more detailed discussion of this foundational paper see page 247.
20[Brouwer 1912], see also [Brouwer 1919c].
21[Brouwer 1917b], item 7, see also [Dalen 2001], page 197.
22[Brouwer 1919b].
23ibid, footnote 4; see also [Brouwer 1975], page 231.
24E.g. Russell’s paradox as a result of Frege’s improper use of the axiom of extension.
25The reader may check [Dalen, D. van 1997], the annotated bibliography of Brouwer.

Note, however, that in his paper Intuitionistische Zerlegung mathematischer Grundbegriffe
([Brouwer 1925]) he proved in plain language that ¬¬¬p ↔ ¬p.

26See [Kolmogorov 1925] and [Heyting 1930]; see for comment [Troelstra 1978].
27Or the BHK proof-interpretation for short. This form of logic is in agreement

with, and implicit present in Brouwer’s constructivism, e.g. in his treatment of nega-
tion in [Brouwer 1923b]; see also [Dalen, D. van, A.S. Troelstra 1988], page 31. See also
[Brouwer 1929], the first Vienna lecture.
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it. There is, however, an important difference between the proof-interpretations
of Heyting and of Kolgomorov, as they were originally published in Heyting’s28

and in Kolmogorov’s29 papers. For Heyting the principle of ex falso sequitur
quodlibet is a valid one, though not explicitly mentioned as such:

Aus diesen Gründen sind die Formeln30

2.14 ` b→ (a→ b) und 4.1 ` ¬a→ (a→ b)

aufgenommen.

The latter includes the ex falso principle.31

In contrast to this, Kolmogorov explicitly stated several years earlier:

Hilbert’s first axiom of negation, ‘Anything follows from the false’,
made its appearance only with the rise of symbolic logic, as did
also, incidentally, the first axiom of implication. But, while the first
axiom of implication follows with intuitive obviousness from a cor-
rect interpretation of the idea of logical implication, the axiom now
considered does not have and cannot have any intuitive foundation
since it asserts something about the consequences of something im-
possible: we have to accept B if the true judgement A is regarded
as false.

Thus, Hilbert’s first axiom of negation cannot be an axiom of the
intuitionistic logic of judgement, no matter which interpretation of
negation we take as a point of departure.32

The ‘BHK-interpretation’ in its present form33 does accept the ex-falso prin-
ciple. We will see in the introduction to his third chapter that Brouwer’s view

28See [Heyting 1980], page 191.
29[Kolmogorov 1925], see [Heijenoort 1967], page 414.
30The grounds being that, after having proved a → b, one discovers that b is always true.

The symbol → has then to be interpreted in such a way that the formula a → b remains valid,
even if a is always false.

31The justification in this paper of the ex-falso principle is not convincing, but in a personal
communication Heyting told Van Dalen that in 1927 he was in the possession of a proof inter-
pretation of this principle. See also [Bertin and Grootendorst 1978], in which [Heyting 1930]
in included, with a comment by A. Troelstra.

32[Heijenoort 1967], page 421. However, in a later publication by Kolmogorov (Zur Deutung
der intuitionistischen Logik, [Kolmogorov 1932]), he accepted Heyting’s axiom ` ¬a → (a →
b) on the following grounds:

[page 62] Was insbesondere die Aufgabe 4.1 betrifft, [i.e. the above given axiom
from Heyting] so ist, sobald ¬a gelöst ist, die Lösung von a unmöglich und die
Aufgabe a → b inhaltlos.

and he argued a few pages earlier in the same paper:

[page 59] Der Beweis, daß eine Aufgabe inhaltlos ist, wird weiter immer als ihre
Lösung betrachtet werden.

33e.g. as published in Van Dalen’s Logic and Structure [Dalen, D. van 1994], chapter 5.
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on logic is rather different, in the sense that it only forshadows the BHK proof-
interpretation and that the ex falso-principle is implicitly rejected in Brouwer’s
dissertation.

In Points and Spaces from 1954 we find one of the rare occasions (possibly the
only one) where Brouwer himself employed the term intuitionistic mathematical
logic:

However, notwithstanding this rejection of classical logic as an in-
strument to discover mathematical truths, intuitionist mathematics
has its general introspective theory of mathematical assertions, a
theory which with some right may be called intuitionistic mathe-
matical logic, and to which belongs a theory of the principle of the
excluded middle. In intuitionism this principle is also called the prin-
ciple of judgeability.34

Considering the year of publication of this paper, we may assume that Brou-
wer was referring to Heyting’s formalisation of intuitionistic mathematical logic,
but in none of his later papers, including the Addenda and Corrigenda to his
dissertation35 and the two short papers Addenda and Corrigenda and Further
Addenda and Corrigenda (both dating from 1954) to the paper On the sig-
nificance of the principle of the excluded middle in mathematics, especially in
function theory from 1923,36 did Brouwer withdraw his implicitly different in-
terpretation, which will be elaborated in the next section.

Our aim with this chapter

Brouwer begins his third chapter with a general introduction to logic and its
role in a mathematical construction. Mathematics is, for its construction, not
depending on any laws of logic, not even when the opposite seems to be the
case, viz. in a mathematical construction on the basis of a hypothesis.

We will argue that 1) in the most literal interpretation of his argument, this
implies the rejection of the ex falso principle, and 2) this literal interpretation
must be the proper one. Brouwer mentioned three examples which are not
elaborated, but we will present a few more.

Four different subjects are worked out by Brouwer, all four lending them-
selves to illustrate his arguments against the foundational role that is often
granted to logic in the construction of the mathematical building.

The first one is about the axiomatic foundation of mathematics. The in-
teresting aspects in this subject can be found towards the end, mainly in a
footnote, about Brouwer’s claim that consistency is not a sufficient condition
for the existence of a mathematical sub-building. Only a successful construction
guarantees us this. A consistent set of axioms does not give automatically an
existent mathematical system.

34[Brouwer 1954c], page 3; see also [Brouwer 1975], page 524.
35[Brouwer 1917b].
36Respectively [Brouwer 1923c], [Brouwer 1954a] and [Brouwer 1954b].
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The second one is about Cantor’s theory of transfinite numbers, and it is
this one that deserves most of our attention (also Brouwer spent most space to
this subject). In particular the notion of the ‘denumerably infinite unfinished
set’ is worth a long treatment. We will argue that:

1) A close analysis leads to the conclusion that Brouwer’s definition of this
type of set and its cardinality is at least incomplete because of the theorem that
he claims as fundamental for the cardinality of this set.

2) A slightly modified definition can solve this problem of incompleteness.
The notion of ‘unfinished mapping’, which is introduced without definition,

will turn out to be even more problematic. It can have two interpretations, both
giving rise to problems.

For the third subject, the logic of Peano–Russell, a shorter discussion will
be sufficient. The main point of interest for us is Brouwer’s counter-argument
against the well-known Russell paradox and against Russell’s proposed solution
to it.

The fourth subject is about the logical foundation of mathematics after
Hilbert. The main topic to be discussed is Hilbert’s formalistic approach (see
e.g. his definition of the system of the real numbers on page 296) versus Brou-
wer’s constructivistic modus operandi.

7.2 Brouwer’s introduction to chapter III

The third chapter of Brouwer’s dissertation bears the title Mathematics and
logic; it intends to investigate the mutual influence of logic and mathematics; in
fact Brouwer’s intention is to show that this influence is one-sided, in the sense
that logic is depending on mathematics and not the converse.

We want to show, that mathematics is independent of the so called
logical laws, (laws of reasoning or of human thought). This seems
paradoxical, for usually mathematics is expressed, orally or in writ-
ing, in the form of argumentation, deduction of properties, by means
of a chain of syllogisms.37

For Brouwer the mental construction in mathematics comes first and the
written or otherwise expressed proof or reasoning, in which the rules of logic are
followed, belongs to the accompanying language and is just an aid to one’s own
memory or a way of communicating its content to others. Intuitionistic logic
preserves constructibility, but does not create new constructions.38 Logic turns
out to be an unreliable instrument in the creation of a mathematical building.39

37Dissertation, page 125: We willen tonen, dat de wiskunde onafhankelijk is van de zoge-
naamde logische wetten, (wetten van redenering of van menselijk denken). Dit schijnt para-
dox, want wiskunde wordt gewoonlijk gesproken en geschreven als bewijsvoering, afleiding van
eigenschappen, en in de vorm van een aaneenschakeling van syllogismen.

38See the ‘Einleitung’ of [Heyting 1930].
39See [Brouwer 1908a], [Brouwer 1954a] or [Brouwer 1954b]; see also the previous and the

next section of this chapter.
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We have remarked earlier that, when discussing a mathematical theory or
theorem, Brouwer often employed the metaphor of the construction of a building
from its constituent parts.40 It is more or less his standard figure of speech to
describe the act and the result of doing mathematics. This metaphor serves very
well the purpose of stressing the difference with the realist concept of mathemat-
ics.41 Of course in the end every comparison falls short, but clearly a building
is not merely composed of its bricks and its other construction materials alone,
but includes the way in which, according to the architect’s design, the con-
stituent parts are laid and connected to form the resulting structure. Likewise a
‘mathematical building’ does not, e.g. in the case of geometry, consist of points
and lines alone, but includes the defined relations between those elements. The
deduced relations (geometrical theorems) then are the properties of the relevant
mathematical building. Such a property and its proof is a construction of its
own, a sub-building within the original building. Hence in general a theory
may be seen as constituting a building, and a mathematical theorem is then a
relation between the parts of that building and may be considered to become
a separate part itself in the form of a sub-building. Also the logical structure
in the accompanying language which describes a mathematical building, can
itself be viewed as a building: a linguistic building. A construction element of
a mathematical building may be composed of more elementary parts and the
relations between these elementary parts may very well consist of simple and
basic tautologies.

After this small digression on the building metaphor (we will come back to
this comparison on page 231) we will now resume the thread of Brouwer’s ar-
gument about the role of logic.

The relation between the main parts of the resulting building may turn out
to be too complicated for an immediate insight, but may reveal itself as the
result of a chain of simple tautologies:

The proofs which we gave in Chapter I for the very first theorems
of mathematics, taught us to read these theorems as tautologies.
The fact that in more complicated cases a theorem is not imme-
diately clear, but is only understood after a chain of tautologies,
proves merely that we construct our buildings too complicated to be
comprehended in one view.42

Brouwer then pointed out that there are chains of syllogisms giving the
impression of a purely logical reasoning instead of a mathematical construction.
We will quote the first part of the relevant paragraph:

40In the collected works, volume 1 [Brouwer 1975] the Dutch word gebouw is translated as
structure, but we prefer the more literal translation building.

41See e.g.[Maddy 1990], page 20 ff., and [Penrose 1989], page 96.
42diss. page 125, 126, see also [Brouwer 1975], page 72: De bewijzen, die we in het eerste

hoofdstuk van de allereerste stellingen der wiskunde gaven, bestonden in het leren lezen van
die stellingen als tautologieën. Dat in meer gecompliceerde gevallen een stelling niet direct
duidelijk is, maar eerst na een reeks van tautologieën wordt ingezien, bewijst alleen, dat wij
onze gebouwen ingewikkelder bouwen, dan we ineens kunnen overzien.
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In one particular case the chain of syllogisms is of a somewhat dif-
ferent kind, which seems to come nearer to the usual logical figures
and which actually seems to presuppose the hypothetical judgement
from logic. This occurs when a building is defined by some rela-
tion in another building, while it is not immediately clear how to
effect its construction. Here it seems that the construction is sup-
posed to be effected, and that starting from this hypothesis a chain
of hypothetical judgements is deduced.43

In the first paragraph of his third chapter,44 Brouwer emphasized the fact
that the chains of syllogisms form only the linguistic accompaniment of a mathe-
matical construction and not the construction itself. Mathematics really consists
of objects, given by their relations with simple or composed construction parts
of a mathematical building. This building, in turn, has of course to be the result
of a proper mathematical construction, with the ur-intuition of mathematics as
the fundamental construction step. The given relations with the construction
parts are then, by subsequent reasoning in the form of chains of tautologies,
transformed into relations with other parts of the building. This is what is
usually called a ‘logical proof’ of a new theorem.

Now, the important observation in the last quoted fragment is that after a
proper interpretation of its terms A and B in the mathematical building under
consideration, and a correct logical derivation of B from the hypothesis A (i.e.
a logical proof of A→ B), the logical figure of the hypothetical judgement ‘as-
sume A, then B’ is not automatically recognized by Brouwer as a mathematical
theorem. Close reading of the quote results for us in the following interpreta-
tion: A building is defined in another building by some relation (i.e. a relation
between the newly defined building and the original one), but it is not imme-
diately clear (i.e. from that definition) how to construct it (i.e. the ‘building in
the building’). One assumes it to be constructed (i.e. still the sub-building; the
consequent of the hypothetical judgement is still not under discussion), and on
the basis of that assumption one deduces a chain of hypothetical judgements
(i.e. a theorem about the sub-building in the building; only now the conclusion
of the hypothetical judgement appears!). Hence in the hypothetical judgement
A→ B, A is the newly defined, and as yet unconstructed sub-building, and B is
some theorem about that sub-building, in the form of the chain of hypothetical
judgements.

43diss. page 126, 127, see also [Brouwer 1975], page 72: Er is een bijzonder geval, waar
de aaneenschakeling van syllogismen een enigszins ander karakter heeft, dat aan de gewone
logische figuren meer nabij schijnt te komen, en werkelijk het hypothetische oordeel der logica
schijnt te vooronderstellen. Dat is, waar een gebouw in een gebouw door enige relatie wordt
gedefinieerd zonder dat men daarin direct het middel ziet het te construeren. Het schijnt, dat
men daar onderstelt dat het gezochte geconstrueerd was, en uit die onderstelling een keten
van hypothetische oordelen afleidt.

44The first quote of this section.
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This seems to us the proper interpretation of Brouwer’s text,45 which implies
the implicit rejection of the ex falso principle.46

We will devote the remainder of this section to Brouwer’s building metaphor
in general, and its use in this chapter in particular. In a subsequent section we
will work out several examples as an elucidation.

The reader of the third chapter of Brouwer’s dissertation will find that ‘build-
ing’ is a somewhat overburdened term. In the opening paragraph ‘building’
means exactly what it should: a structured conglomerate of mathematical ob-
jects, relations and operations (which may also be considered as objects), satis-
fying certain definitions, axioms and rules of operation (which form the ‘design’
of the building, thus being an essential part of it). Thus e.g. the computa-
tion of the greatest common divisor of two integers is a mathematical building,
consisting of certain integers and operations on those integers in some specific
order.

Also the ring of integers is a mathematical building, consisting of the integers
and the basic arithmetical operations.

The proof of the theorem that the sum of two odd numbers is an even number
is a building, consisting of certain numbers and operations, resulting in certain
other numbers.47

A few pages later the concept of the ‘luinguistic building’ is introduced.48

So here the descriptions in a suitable language of the erection of mathematical
buildings become themselves building blocks for another kind of building. In this
sense one could say that the language in which, say, group theory is explained,
is a building. We will meet this concept again at the end of this section.

45On the basis of our interpretation of Brouwer’s text we cannot agree with Van Atten’s
more ‘liberal’ interpretation of the hypothetical judgement, as published in [Atten 2004], page
22, where the actual construction of the antecedent, in which all given data are included, is
not strictly required.

(page 22) An answer in general terms [to Griss’ arguments for a negationless
mathematics] would be that, to see that one construction is possible on the as-
sumption of another, there is no need actually to carry out the assumed one. It
suffices to consider its intentional content or meaning, which can be done in ab-
straction of any evidence or counterevidence for the construction thus intended.

Van Atten gives the following example:

‘If something is a square circle, then it is a square’. If we did not see this
truth, it would be inexplicable how we could come to see that ‘square circle’ is
a contradictory concept.

For the logician this is a correct reasoning (see the elaborated examples on page 241 ff.), but
not for Brouwer, at least not in 1907. In an attempt to construct the antecedent A of some
theorem concerning a property B of a square circle (viz. that it is square), the constructive
mathematician concludes to the impossibility to construct A, and therefore the hypothetical
judgement A → B is mathematically an invalid theorem. The defined sub-building in which
the theorem applies, cannot be constructed.

46See also the discussion on page 234.
47All these three examples can also be viewed as sub-buildings in the mathematical building

of arithmetic.
48‘Taalgebouwen’ in Dutch. See dissertation, page 132; see also below.
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A crucial role is played in Brouwer’s considerations by the ‘fitting of a build-
ing into another building’. This is something of such a great generality, that
it will be rewarding to give some more detailed examples after the following
remarks about the character of the defintion of a sub-building.

A building in another building can be given either extensionally or inten-
sionally. As a simple example, take the mathematical building of the ring of
the integers and the sub-building of the squares of the integers.49 If a is the
construction of a specific integer α and f the operation to be performed on a to
get the square β of α then we can represent this in symbols as: a : α→ f(a) : β.
Now the extensional definition of the sub-building of all squares consists of the
set of all pairs {< x, x2 > |integer(x)}. The intensional definition consists of
the operator f , operating on the construction of the integers. This second defi-
nition results in a ‘dynamical building’, with open places in it, to be filled by the
operator f when operating on an integer as argument, instead of in the ‘fixed’
result from the extensional definition.

In the intensional case the operators are an essential part of the sub-building,
in fact they are defining the sub-building (or even, they are the sub-building).
This fits best the fragmentary comments of Brouwer on the building concept,
since it is in agreement with his constructive approach: for every construction
a of a part of the premise A, the (part of the) sub-building f(a) is subsequently
constructed. Note that we can consider the operator f as the sub-building, but
that we can equally well view each individual case f(a) as a sub-building in the
building of, for instance, the squares, which, in turn, is then a sub-building in
the larger building of the integers. This small excursion emphasizes the gener-
ality of the concept under discussion now.

On page 240 ff. we will work out several examples in order to illustrate
and clarify Brouwer’s constructive concepts of the ‘hypothetical judgement’ and
‘building-in-a-building’ for the ‘particular case’. For the moment we will restrict
our attention to the general case, where the construction of A gives no extra
problem. Let us therefore take as an introductory example the following ele-
mentary case:

‘If n is an even number, then n is the sum of two odd numbers.
Hence in the hypothetical judgement A → B, A stands for ‘n is even’ and

B for ‘n is the sum of two odd numbers’. The logician is satisfied with the
following proof: if n is even, then n−1 is odd; also 1 is odd and (n−1)+1 = n,
which completes the proof for the logician. However, the constructive mathe-
matician asks for a construction, which results in an even number n, or a proof
that a given number is even. Departing from that construction or proof, two
odd numbers have to be constructed whose sum is again n. So take an arbitrary
number. A number is even if its last digit is even, in other words, if the last
digit is 0, 2, 4, 6 or 8. If one of those conditions is satisfied, so if n is for instance
326, then we may construct the two numbers n− 1 and 1 as the two odd ones,

49In fact, we see here the main building of arithmetic, in it the sub-building of the ring of
integers, and in that sub-building the sub-sub-building of the squares of the integers.
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and the constructive proof is completed.

Brouwer is only satisfied with a construction of (the proof for) B, hence this
construction has to be carried out, and this requires first of all a construction of
(the proof for) A. Brouwer’s compelling argument for this interpretation must
be that if f is a construction of the sub-building A → B (symbolically written
as f : A→ B) and if a proves A (in symbols a : A, a is the construction of the
sub-building A), then f(a) : B that is, f(a), the proof of B, is B’s construction.
Now, if we accept f as a construction which actually can be carried out, then
also f(a) must be actually and successfully performable and this is only possible
if we take a seriously as a performable construction. Hence for the successful
construction of A→ B and of B, A has to be constructed first.

Note that in this view the modus ponens (that is, from A→ B and A follows
B), is an accepted technique; however, the derivation [x : A] ` f(x) : B, with
an open assumption x, is not acceptable, since it does not provide a concrete
proof-building for B.

Compare this (and note the diffenence) with the proof interpretation of intu-
itionistic mathematics as formulated by Kolmogorov and by Heyting.50 In this
proof interpretation, ‘if A, then B’ has the character of a ‘promise’: ‘I promise
to give a proof of B for any proof of A you give me’. This was at the time of the
dissertation unacceptable to Brouwer: neither with a promise, nor with a ‘for
the time being missing part A’ one can successfully construct the sub-building
B.51

Kolmogorov expressed his interpretation as follows:

The meaning of the symbol A → B is exhausted by the fact that,
once convinced of the truth of A, we have to accept the truth of B
too.

(...)

Thus the relation of implication between two judgements does not
establish any connection between their contents.52

The first part of this quote forms the core of Kolmogorov’s argument, the
second part is a sort of concluding afterthought.

Heyting explicitly stated in the earlier mentioned ‘Einleitung’ to his 1930-
paper:

50See the earlier mentioned [Kolmogorov 1925] and [Heyting 1930]; see also for a concise
overview [Dalen, D. van 1994], chapter 5.

51Note the difference between, firstly, the naive logicist, whose reasoning simply takes for
granted the actual existence of the building and of the building-in-the-building, secondly,
the traditionalist, whose reasoning consists of strings of logical arguments without asking
for a possible construction of the premise-building, and, thirdly, Brouwer’s requirement of a
successful construction of the premise-building.

52[Kolmogorov 1925], II, § 2.
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Die Formel a → b bedeutet im allgemeinen: Wenn a richtig ist, so
ist auch b richtig.

In the modern formulation of the BHK proof-interpretation the hypothetical
judgement runs as follows:

a proves ϕ → ψ := a is a construction that converts any proof p of
ϕ into a proof a(p) of ψ.53

Brouwer’s condition for a hypothetical judgement to be a theorem is there-
fore more strict than the one from the (later) proof interpretation for intuition-
istic mathematics: an actual construction, instead of a ‘promise’, is demanded.

For this reason the ‘Ex Falso’ principle (⊥ → A for any A) is implicitly
rejected by Brouwer since the premise ⊥ of this hypothetical judgement can-
not be the result of a proper mathematical construction. Brouwer insisted on
a construction that in the end produces a proof for B (or in the case of a
negative statement, a concrete blocking of every intended construction) and
such a construction cannot depart from an inconsistent statement A. We noted
earlier in the introduction to this chapter that the principle was adopted in
[Heyting 1930], but that Kolmogorov argued for its rejection in his formaliza-
tion of Intuitionistic Logic.54

So Brouwer not only asked for a construction to get B from an assumed A,
but also the construction of A itself, followed by the result of the construction
of B when the operation to construct B is fed with the one for A. Brouwer
missed, so to speak, the higher order aspect of implication. If the construction
of the implication is viewed as a manipulation on constructions, but not as
constructions itself, one gets into trouble in Brouwer’s view.

The nature of the conditions for the validity for A → B to be a theorem
becomes clear in the remainder of the quoted paragraph:

But this is no more than apparent; what actually happens is the
following: one starts by setting up a structure which fulfills part
of the required relation, thereupon one tries to deduce from these
relations, by means of tautologies, other relations, in such a way that
these new relations, combined with those that have not yet been
used, yield a system of conditions, suitable as a starting point for
the construction of the required structure. Only by this construction
will it be proved that the original condition can be fulfilled.55

53See e.g. [Dalen, D. van 1994], chapter 5.
54His later acceptance was for reasons of epistemic closure; see the footnote on our page

226.
55Maar meer dan schijn is dat niet; wat men hier eigenlijk doet, bestaat in het volgende:

men begint met een systeem te construeren, dat aan een deel der geëiste relaties voldoet,
en tracht uit die relaties door tautologieën andere af te leiden zó, dat ten slotte de afgeleide
zich met de nog achteraf gehoudenen laten combineren tot een stelsel voorwaarden, dat als
uitgangspunt voor de constructie van het gezochte systeem kan dienen. Met die constructie
is dan eerst bewezen, dat werkelijk aan de voorwaarden kan worden voldaan.

(We note that Brouwer speaks of the ‘initial use’ of part of the required relations, later on
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The particular case which was mentioned in the quote on page 229, amounts
to the following (Brouwer’s style is always very briefly worded):

Suppose we have an existing mathematical structure M and some relation
a between parts of the structure M which defines a substructure A of M . M
might be for instance a theory like Euclidean solid geometry with as building
blocks lines, triangles, cubes etc. and its definitions and theorems; A can be the
premise of some complicated theorem (which premise itself can be a theorem)
or even a complete subtheory (e.g. Euclidean plane geometry as a substructure
of the Euclidean solid geometry).

In our ‘particular case’ the construction of A from its defining relations a
is, according to the quoted text, not immediately clear; one may suppose A to
be constructed and on the basis of that supposition one deduces a hypothetical
judgement A→ B.

But the actual construction of the premise A is required before accepting
the form A→ B as a mathematical theorem, this in contrast with the sketched
and quoted BHK proof interpretation from later years. The difference between
the interpretation of the traditional logician and Brouwer’s concept of the hypo-
thetical judgement can be shown in the following summary of a proof of A→ B.

The ‘traditional’ logician’s argument runs as follows:
– Assume A and, departing from this assumption, logically deduct B.
– In case of success we have proved A→ B, or, symbolically ` A→ B.
– In case of failure 6` A→ B.
– If the validity of A cannot be assumed because of an internal contradiction,
then we succeed in the proof ` A→ B on the basis of Ex falso.

Brouwer’s argument goes as follows:
– Construct A.
– If the construction of A is not immediately clear we try to get more informa-
tion, which is needed for its construction, from derived properties and relations
for A. At first sight we seem to have not enough direct data to compose the
srtucture A.
– In case of success, then, departing from this successful construction, construct
B.
– If this is successful, then ` A→ B,
– If every construction of a proof of B, departing from A fails, then 6` A→ B.
– If we cannot construct (the proof of) A, then the proof of A → B cannot be
performed either, it simply becomes impossible.

What actually happens, in Brouwer’s view, can best be explained by means
of the examples, presented below, in which also the idea behind the ‘new rela-
tions, combined with those that have not yet been used’ will become clear. In

followed by the application of ‘those that have not yet been used’. Apparently, in the end all
given relations are used in the construction of the antecedent, which, again, rules out the ex
falso principle.)
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addition, Brouwer’s concept of a building and a building-in-a-building can be
further clarified together with these examples.

Brouwer himself mentioned three examples of what he exactly meant,56 and
we will now give a rough sketch of the third example about a theorem in plane
geometry:

The problems of Apollonius concern the construction of a circle, tangent
to three given circles (or, in fact, tangent to any given combination of three
from point, lines, or circles, but the former two are special cases of circles).
The building is that of plane geometry, the ‘building in the building’ is the
circle A, defined to be tangent to the three given circles, which forms then the
antecedent of the hypothetical judgement A → B. The consequent B is then
a theorem, expressing some property of the tangent circle. The content of B is
of no importance in the argument. The relevant thing is that A is only defined
by the given relations of tangency to the three circles, and not yet constructed.
B, as the consequent of the hypothetical judgement A→ B, does not yet have
the status of a mathematical theorem, despite its logical construction from the
assumed construction of A.

But ‘one starts by setting up a structure which fulfills part of the required
relations (...)’. Which required relations? Clearly the relations that define A,
being the only relations coming up in the discussion so far. The result is a
set of new relations, of relevance to the possible construction of A. Of course,
properties of the consequent B may give clues for the desired construction of A.
Only after the completion of the construction of A, B becomes the result of a
proper construction, and by that a mathematical theorem.

The following quote is an additional remark by Brouwer, as if to cut the
ground from under the logicians feet and to deprive him of the argument that
the logical figure of the ‘principium contradictionis’ proves the impossibility of
a construction, hence that logic teaches us the failure of a construction:

‘But’, the logician will retort, ‘it might have happened that in the
course of these reasonings a contradiction turned up between the
newly deduced relations and those that had been kept in store. This
contradiction, to be sure, will be observed as a logical figure, and
this observation will be based upon the principium contradictionis.’
To this we can reply: ‘The words of your mathematical demonstra-
tion merely accompany a mathematical construction that is effected
without words. At the point where you enounce the contradiction,
I simply perceive that the construction no longer goes, that the re-
quired structure cannot be embedded in the basic structure. And
when I make this observation, I do not think of a principium con-
tradictionis.57

56See page 240.
57Dissertation, page 127: ‘Maar’, zal de logicus zeggen, ’het had ook kunnen zijn, dat bij

de redeneringen een strijdigheid tussen de afgeleide en de nog wachtende voorwaarden was
voor de dag gekomen, en die strijdigheid wordt toch waargenomen als logische figuur en bij
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Brouwer obviously intended to stick to his constructivistic point of departure,
but his argument in this quote is rather vague and not very persuasive. Its
only (and probably unintended) merit is that it sketches the logician’s way of
working, together with that of the constructivist, which comparison certainly
does not end up in favour of the constructivist. Whereas the logician observes
a contradiction between two relations, and therefore stops his proof procedure,
the constructivist gets stuck in his attempt. The logician may even claim to
have gone the more ‘elegant’ road, but both will encounter a block.

But in favour of Brouwer we can state that at least he was consequent in his
constructivism, and that he did not need any logical principles. In this single
case his consistency required some extra labour. Notice that he did not mention
the ex falso principle; he either rejected it here implicitly, or he simply did not
think of it. If A cannot be constructed because of an internal inconsistency,
then the construction of A→ B cannot even be attempted because any chance
of success is completely out of the question. In this sense the quote argues
against the ex falso principle. This implicit rejection later on changed into an
implicit acceptance, since Heyting clearly accepted this principle in his published
formalization of intuitionistic logic, with which Brouwer agreed.

7.2.1 The notebooks on the building metaphor and on the
hypothetical judgement; the ‘building in a building’

The metaphor of mathematics as a ‘building’ or a ‘construction’ occurs fre-
quently in the nine notebooks. Here are some examples, just as an illustration:

(II–31) Hardly ever (just occasionally, cf. Hilbert) one can know
whether the undefinables and their axioms are independent, except
from the buildings shown.58

This quote, just like the next one, illustrates Brouwer’s constructive and anti-
formalist approach to mathematics. In fact the whole concept of the building
metaphor includes this attitude:

(V–32) A relation, found in a mathematical building, is itself a new
building, which could find a place in the old one.59

Here we see the concept of the ‘building-in-a-building’, which we meet fre-
quently in the quotes. It has to be interpreted, as we will see, as a sub-theory in
a larger theory, or as one specific problem in a theory. Note, however, that the

het inzicht van die strijdigheid steunt men op het principium contradictionis.’ Waarop kan
worden geantwoord: ‘De woorden van uw wiskundig betoog zijn slechts de begeleiding van een
woordloos wiskundig bouwen, en waar gij de strijdigheid uitspreekt, merk ik eenvoudig, dat
het bouwen niet verder gaat, dat er geen plaats is te vinden in het gegeven grondgebouw voor
het opgegeven gebouw. En waar ik dat merk, denk ik aan geen principium contradictionis’.

58En ook zal men bijna nooit (een enkele maal, cf. Hilbert) kunnen weten of de undefinables
en hun axioma’s onafhankelijk zijn, anders dan uit de getoonde gebouwen.

59Een in een wiskundig gebouw gevonden betrekking is zelf een nieuw bouwwerk, dat in het
oude een plaats kon vinden.
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accompanying linguistic building has to be distinguished from the mathematical
one:

(VI–30) Because the mathematical language talks about exact ob-
jects, that language can be made exact itself (by logistics for a lim-
ited existing mathematical totality). However, when mathematics is
constantly extending, then the system of signs has to be extended
too, albeit in just a limited building in which repeatedly new small
buildings are constructed.60

It is clear that only a consistent stock of building blocks makes a construction
possible. In case of inconsistency, the constructive mathematician simply con-
cludes to the impossibility of the construction, because his constructing activity
is blocked.

In the eighth notebook it is emphasized that also the completeness of a set
of axioms can only be concluded from the resulting construction; if two different
constructions, satisfying the same set of axioms, are possible, then clearly the
axiom set is not complete, that is, it can be extended without inconsistency or
redundancy. This reflects the old idea that a set of axioms can determine a
structure uniquely. If that is the case, then the axiom set is called ‘categorical’;
if no structure satisfies the set of axioms, it is called ‘vacuous’, and if more struc-
tures satisfy, the set is called ‘ambiguous’.61 The Skolem-Löwenheim theorem
teaches us that for every model, satisfying a set of axioms, always another and
larger model can be given which satisfies the same set, hence that no categorical
set of axioms exists.

(VIII–31) The ‘major terms’ which are used in mathematical syllo-
gisms may be nothing else, but tautologies.

(...)

Likewise the axioms. Mathematical theorems then are constructions
within the large building, of which the remotely separated parts can-
not be surveyed at once intuitively. They serve as self-constructed
road signs within that building.

(...)

Now, the axioms can be either complete or not, i.e. it can either or
not be the case that other constructions are possible, satisfying the
same axioms. The latter is the case [i.e. no other construction possible]
if I had faithfully followed the building process itself in its totality.

(...)

60Omdat de taal der wiskunde handelt over exacte dingen, daarom kan die taal zelf ook
exact gemaakt worden (door de logistiek, voor een bestaand beperkt wiskundig geheel). Maar
breidt de wiskunde zich steeds uit, dan moet ook het tekensysteem steeds worden uitgebreid,
zij het ook in het beperkte gebouw, waarin alleen telkens nieuwe gebouwen worden gemaakt.

61See [Kleene 1952], chapter II, § 8.
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I sometimes can observe that it [i.e. the set of axioms] is not complete,
because I indicate another building, clearly different from the given
one (...) and still satisfying the axioms.62

In V–17 Brouwer discussed a typical and specific example of the empirical
judgement which is not yet classified under a mathematical hypothesis: ‘if it’s
freezing, then just planted trees will die’. About this type of judgement (which
is, because of its empirical character, in fact a causal sequence), Brouwer com-
mented as follows, thereby clearly referring to empirical hypothetical judgements
in general which are excluded from this type of purely logical judgements:

(V–17) This is not the logical implication ı̀f ..., thèn ..., but merely
a simple coordination, albeit that it is often used as logic.63

But, Brouwer said, in case of an unjustified application of logical reasoning
to empirical facts, mathematics would be degraded to an empirical science:

(V–17) However, the wise man reads them [this type of judgement in

mathematics] as tautologies, as two different approaches constructed
about the same topic. Therefore its proof involves both predicates
in one and the same building.64

In the sixth notebook Brouwer discussed again the hypothetical judgment
on a few occasions and, just as in the last quote, usually on the basis of its
‘application to the world’, that is, the empirical hypothetical judgement, which
is in fact an empirical causal sequence.

7.2.2 Conclusions about Brouwer’s concept of the hypo-
thetical judgement

Several options suggest themselves as an explanation or a reason for his different
standpoint in regard to the hypothetical judgement, compared to the later proof

62De ‘maioren’, waarvan bij de wiskundige syllogismen wordt gebruik gemaakt, mogen niet
anders zijn dan tautologieën.

(...)
Zo ook de axioma’s. De wiskundige stellingen zijn dan samenbouwsels uit het grote gebouw,

waarvan de ver van elkaar verwijderde delen niet zo direct intüıtief zouden zijn te overzien;
zijn dus zelfgebouwde wegwijzers in dat gebouw.

(...)
Nu kunnen die axioma’s volledig zijn of niet, d.w.z. het kan zijn, dat er nog andere gebouwen

mogelijk zijn, die aan dezelfde axioma’s voldoen, of niet. Het laatste is het geval, als ik met
de axioma’s trouw het bouwen zelf geheel heb gevolgd.

(...)
wel kan ik soms merken, dat het niet volledig is, doordat ik een ander gebouw aanwijs,

d.w.z. een gebouw, dat duidelijke verschillen heeft met het gegevene, en toch aan de axioma’s
voldoet.

63Dit is niet het logisch implicerende àls ..., dàn ..., maar een eenvoudige coördinatie, al
wordt het vaak als logica gebruikt.

64De wijze leest ze echter als tautologieën, twee verschillende benaderingen over hetzelfde
opgebouwd. Het bewijs vergt dan ook beide leden in eenzelfde gebouw.



240 CHAPTER 7. THE ROLE OF LOGIC

interpretation by Kolmogorov and Heyting. There is, however, not an obvious
or a unique interpretation to be found.

First of all we can observe that neither in the published Addenda and Cor-
rigenda65 nor in any other paper did Brouwer correct this, in comparison with
the BHK proof-interpretation, very strict form of constructivism, in which a
premise actually has to be constructed before applying it in the derivation of
other theorems.

Since Brouwer certainly was one of the first consistent constructivists, and
probably also because this type of judgement is in the notebooks usually experi-
ence-based and drawn from daily life (hence a causal sequence), which is then
given a mathematical expression only afterwards, it becomes understandable
that he went, in hindsight, too far in his constructivism. In addition to that
(or as a separate clarification) it could very well be that this type of judgement
was not of fundamental importance to Brouwer, and was added just for com-
pleteness’ sake. The unprejudiced reader of the first pages of Brouwer’s third
chapter will agree that Brouwer’s comment on hypothetical reasonings is more
or less meant as a side remark, inserted to correct the rather short-sighted view
on the application of the hypothetical judgement in mathematical reasoning. It
certainly cannot be taken as illustrative for his later and more mature views.
This ‘not carrying too much weight’, this lack of fundamental importance makes
it at least comprehensible why he did not correct it, or return to the topic on
some later occasion.

On the other hand, Brouwer did accept hypothetical judgements in general.
They are, after all, closely related to causal sequences. Also Brouwer highly
appreciated Heyting’s work in logic, in which this type of judgement holds a
prominent position. Apparently, if only because of refraining from criticism,
Brouwer consented with Heyting’s interpretation of hypothetical judgements.66

7.2.3 Elaboration and examples of the ‘particular case’ of
the concept of ‘building-in-a-building’

The examples below are meant to clarify the meaning of the building metaphor.
From the main text it is not immediately clear on what scale Brouwer was think-
ing. On the one hand we can imagine the macro version of the Euclidean plane
geometry as a substructure, defined in the building of the Euclidean solid geome-
try. On the other hand there is the sub-building of the premise of an arithmetical
theorem defined in the building of arithmetic. But the reader should note that
in a footnote Brouwer mentioned three examples of a seemingly defined building
in a mathematically constructed building, which examples suggest that, at least
in this section, he was rather thinking in terms of the smaller scale of theorems
and their proofs as the sub-building, defined in the larger building of a theory.
The mentioned examples are:

65[Brouwer 1917b]; see [Dalen 2001], page 195.
66[Heyting 1930].
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1. The proof of unicity by Hilbert and Lie for transformation groups with
given properties.

2. The elementary construction problems in projective geometry, like the
construction of a common harmonic pair to two given pairs of points.67

3. The problems of Apollonius.68

Hence, in Brouwer’s third example, we should indeed view as the original
building that of plane geometry. The sub-building then is the tangent circle to
the three given circles, as earlier sketched on page 236.

We will not further discuss the other two rather complicated examples, but
we will present, after some further clarification of the building-concept, a few
simple and small-scale examples instead, which may equally well illustrate Brou-
wer’s intentions (possibly even better in view of their simplicity).

As a first example we will have a look at one of the last letters from the
Brouwer-Korteweg correspondence, in which Brouwer discussed the purpose of
the third chapter: to clarify the fundamental difference between logical reasoning
and mathematical reasoning and to show that ‘mathematics, for the lack of a
pure language, had to make do with the language of logical reasoning, whereas
its thoughts do not proceed as a logical reasoning but as mathematical reasoning,
which is something quite different’.69 Improper use of the logical language in
mathematics had already led to false notions in set theory.

Brouwer presented the following example:

The theorem: ‘if a triangle is isosceles it is an acute triangle’70 is
expressed as a logical theorem: the predicate ‘isosceles’ in the case
of triangles is considered to imply the predicate ‘acute’, i.e. one
imagines all the triangles of a given plane represented by the points
of an R6 and one then sees that the domain of R6 representing
isosceles triangles is contained in the domain representing all acute
triangles. This is in fact true, and logical formulation and logical
language can therefore safely be applied.

But the thoughts of the mathematician, who because of the poverty
of his language formulated this theorem as a logical theorem, proceed

67See for this example [Kindt 1993] for an introduction on involutions and [Prüfer 1939],
page 122 ff. for the required construction.

68‘Problems’ is the term used in the English translation by W.P. van Stigt; in Brouwer’s
original Dutch text it says the ‘werkstukken van Apollonius’, which could be translated indeed
as the ‘problems’ or as the ‘projects’ of Apollonius. In the English literature on this topic
the term ‘tangency problems’ is frequently used. This problem concerns the construction of
a circle which is tangent to any combination of three from lines, points or circles; see e.g.
[Molenbroek 1948], page 506 ff.

69Letter from Brouwer to Korteweg, dated 23rd January 1907. See [Stigt 1990], page 503;
for the Dutch text see [Dalen 2001], pge 25.

70The reader has to overlook the defective formulation: ‘isosceles’ may have been a slip of the
pen for ‘equilateral’, or, in case he did have an isosceles triangle in mind, he was referring to the
equal base angles which are of course acute. None of this matters for the argument, keeping in
mind the pressure of time and the informal occasion. Korteweg apparently understood what
Brouwer meant to say.
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in a way quite different from the above interpretation. He imagines
that he is going to construct an isosceles triangle, and then finds that
either at the end of the construction all angles appear to be acute or
that on the postulation of a right or obtuse angle the construction
cannot be executed. In other words, he thinks the construction
mathematically, not in its logical interpretation.71

The intention and the content of this quotation will be clear. The theorem
is presented as a hypothetical judgement in the first sentence of the quote. The
subsequent reasoning in the first paragraph is a logical one and can be viewed as
a syllogism: the predicate ‘isosceles’ implies the predicate ‘acute’ and therefore
any isosceles triangle will also be acute. The fact that this logical reasoning
leads to the correct result is no guarantee for the correctness of logic as a basis
for mathematics; a correct mathematical result can only be given by a proper
construction.

The second paragraph gives the mathematician’s construction, which can be
interpreted in the building metaphor: the construction within the building of
all triangles (which can itself be seen as a sub-building in the building of the
plane geometry) results in the sub-building of the isosceles triangles. He begins
with the execution of a construction and either observes the correct result or
concludes to the impossibility of the construction when departing from two right
or obtuse angles at the basis.

The ‘mathematician’s reasoning’ again gives us the feeling that in case of
a failure of the construction, the logical reasoning might be judged to be more
elegant, compared to the blocked construction of the mathematician (compare
page 237). That this is not a common conclusion for all hypothetical judge-
ments, but rather an exception instead, can be seen in the examples below.
Also notice that the last part of the argument seems to use the ‘tertium non
datur’ argument: suppose the angles are not acute; this blocks our construction,
hence the angles are acute.

For a further clarification of Brouwer’s ideas, especially in regard to the ‘par-
ticular case’, we will present some examples of a simple arithmetical character,
which may even look trivial but which, however, do require some basic and
easily demonstrable constructions, and for that reason serve the purpose of an

71De stelling: Als een driehoek gelijkbenig is, is ze scherphoekig wordt gebruikt als een
logische stelling – het predikaat gelijkbenig wordt voor driehoeken beschouwd, het predikaat
scherphoekig te impliceren, d.w.z. men denkt zich alle driehoeken (van een plat vlak b.v.)
afgebeeld door de punten van een R6, en ziet dan, dat het gebied van R6 dat de gelijkbenige
driehoeken representeert besloten is in dat wat de scherphoekige driehoeken representeert.
Dit is in casu werkelijk waar, de logische formulering en de logische taal kan hier dus veilig
worden gebruikt.

Maar de wiskundige, die de genoemde stelling door armoede van taal met een logische
stelling formuleert, denkt zich iets anders, dan de genoemde logische interpretatie. Hij denkt
zich, dat hij een gelijkbenige driehoek gaat construeren, en dan hetzij dat na afloop der
constructie de hoeken als scherp voor de dag komen, hetzij dat het blijkt dat bij postulering
van een rechte of stompe hoek de constructie niet gaat.
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elucidation.

First we will take the building M of arithmetic with as constituent parts
the natural numbers, and as defined objects addition, multiplication, and ex-
ponentiation. Next we define the sub-building A as the, for the time being
hypothetical, premise of the theorem: If a is a power of 4 ànd of 6, then a is
even. Hence the sub-building A consists of the (construction of) all natural
numbers, which are at the same time power of 4 and of 6. The conclusion B in
the hypothetical judgement A → B is then ‘a is even’. Note that the ‘chain of
syllogisms’ (as Brouwer called the consecutive links in his chain of reasonings
in the quoted paragraph on page 229) in this and in the following case has only
one ‘link’, viz. the immediate conclusion ‘a is even’.

The correctness of this hypothetical judgement can, in its logical form, easily
be seen: if a is a power of 4 and a power of 6, then it certainly is a power of
4; every power of 4 is even, hence all such a are even, regardless of the actual
existence of a; the logical form of the implication is satisfied but we do not know
whether or not there is such an a. The logician is satisfied but not so Brouwer.
The latter might argue as follows: It is not immediately clear whether or not
the building A, the antecedent of the hypothetical judgement A → B, can be
constructed. If a number a, being at the same time power of 4 and of 6, exists,
then it certainly will be even; but this does not guarantee us the existence
of such an a. We have to deduce other properties, not immediately evident,
which have to be satisfied by the elements of A, and which should make the
actual construction of A possible, thereby raising it above the level of merely
‘hypothesis’.

Well, we know that a has to be a power of 4, hence a = 4m, which can
be written as a = 22m. We also know that a has to be a power of 6, or
a = 6n = (2 · 3)n = 2n · 3n. Since both properties have to be satisfied in A,
22m = 2n · 3n, or 22m−n = 3n. One can easily verify that 2m − n is a positive
natural number, and now we apply the ‘unused relation’ that every power of 2
is even and every power of 3 odd, and we conclude that this equation has no
solutions and that therefore A is empty. Hence the sub-building A cannot be the
result of a construction in M . Therefore, in Brouwer’s present interpretation,
the theorem is neither true nor false, despite its logical correctness; all we can
say is that Brouwer’s proof procedure breaks down. Neither the theorem, nor
its negation can be proved.

In view of Brouwer’s remark about the ‘logician’s retort’ on page 127 of his
dissertation, which was briefly discussed on page 237 (Brouwer’s introduction
to chapter III), we can say that the logician, in his view, might encounter in
subsequent deductions a contradiction between the deduced relations, seen by
him as a logical figure based on the principium contradictionis, but that the
mathematician has already at an early stage concluded to the impossibility of
the construction of the premise, without the need of a principium contradictio-
nis or of any other logical figure.

As a second simple example, looking even more trivial, we depart from the
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same building as in the previous example, but now we define the sub-building
A as the hypothetical premise of the theorem: If a is a power of 4 and at the
same time a power of 8, then a is even.

The logician immediately concludes to the correctness of this implication for
the same reason as in the previous example, viz. all powers of 4 are even, hence
a is even.

The constructivist again argues as follows: To fix the required deduced re-
lations for the construction of A we note that all powers of 4 are even, hence
the condition is already satisfied, and it remains valid after application of the
second condition, namely that it also has to be a power of 8. But again we
have the ‘unused relation’ (the relation between the powers of 4 and of 8) which
can give us information about the content of the building. We know that all
powers of 4, say 4m, can be written as 22m. The second condition that a also
is a power of 8 gives the following information: all powers of 8, say 8n, can be
expressed as 23n. Now in order to satisfy 4m = 8n, also 22m = 23n has to be
satisfied, which results in a non-empty sub-building satisfying both conditions.
The constructivist has shown that he can construct numbers of the required
type and that the result of any such construction is an even number.72

7.2.4 Concluding remarks about the introduction to chap-
ter III

Brouwer’s conclusion is that logic is dependent on, and subordinate to mathe-
matics, and not the other way round. First mathematics as a mental construc-
tion comes into being and only after that its accompanying language which
describes the construction process; the language of logical reasoning is a special
case of the latter. The choice of the mathematical language and its accompa-
nying signs is a rational choice, directed by economy, purpose and use, and is
determined by culture and environment. So it is easily conceivable

that, given the same organisation of the human intellect, and conse-
quently the same mathematics, a different language would have been
formed, into which the language of logical reasoning, well known to
us, would not fit. Probably there are still peoples, living isolated
from our culture, for which this is actually the case. And no more it
is excluded that in a later stage of development the logical reason-
ings will lose their present position in the language of the cultural
peoples.73

72The reader may contemplate for himself the arguments of the traditional logician versus
those of Brouwer in the case of the numbers 3 and 5 in the above given examples; if a is at
the same time power of 3 and of 5, then a is even. This is only seemingly worse. Another
example is formed by the same hypothetical judgement for the numbers 4 and 7.

73Dissertation, page 129: dat bij dezelfde organisatie van het menselijk intellect, dus bij
dezelfde wiskunde, een andere taal van verstandhouding ware ontstaan, waarin voor de ons
bekende taal der logische redeneringen geen plaats zou zijn. En waarschijnlijk zijn er nog wel
buiten het cultuurverband levende volken, waarbij dat werkelijk het geval is. En evenmin is
voor de taal der cultuurvolken uitgesloten, dat in een ander ontwikkelingsstadium de logische
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Hence mathematics as a constructed science is universal as far as the human
intellect is such, but the accompanying language is certainly not universal. The
mistake that, according to Brouwer, was made by the logicians was caused by
the fact that they were looking at the language of logical reasoning in a mathe-
matical way, as if that language itself was mathematics. As a result theoretical
logic came into being. After that, mathematical language in particular was
studied in a mathematical way which resulted in logistic, but both, theoretical
logic and logistic, are empirical sciences and teach us nothing about the human
intellect. The most they can teach us about is our own culture. Brouwer makes
the comparison:

And the language of logical reasoning is no more an application
of theoretical logic (...) than the human body is an application of
anatomy.74

As one of the examples of logical forms, Brouwer discussed the syllogism and
compared it with the principle of the excluded middle:

While in the syllogism a mathematical element could be discerned,
the proposition:

A function is either differentiable or not differentiable

says nothing; it expresses the same as the following:

If a function is not differentiable, then it is not differentiable.75

In classical logic the two statements are equivalent qua truth value, both
being always true as can be concluded from their truth tables. Whereas the
first one provides a useful insight, the second equivalent statement is completely
devoid of interest.

We should, however, keep in mind that Brouwer must have had a construc-
tive interpretation for the logical forms, hence there must have been another
reason or a certain influence to state the given quote in this form. Van Dalen
offered the following explanation of Brouwer’s second reading of the principle:76

Bellaar-Spruyt, the resident philosopher in Amsterdam, had incorporated in his
philosophy course a treatment of traditional logic. It is likely that Brouwer
attended the course, or obtained notes of it. Bellaar-Spruyt illustrated in his
course the principle of the excluded middle by an instructive example:

redeneringen er hun plaats zullen verliezen.
74Dissertation, page 130: En de taal der logische redeneringen is zomin een toepassing van

de theoretische logica (...) als het menselijk lichaam een toepassing der anatomie is.
75Dissertation, page 131: Was in het syllogisme nog een wiskundig element te onderkennen,

de stelling:
Een functie is òf differentieerbaar òf niet differentieerbaar

zegt niets; drukt hetzelfde uit, als het volgende:
Als een functie niet differentieerbaar is, is ze niet differentieerbaar.
76See for this interpretation [Dalen, D. van 1999], page 106 or [Dalen, D. van 2001], page

96.
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‘If you deny that Alexander was a great man, well, then you have
to acknowledge that he was not a great man. Both opposite judge-
ments, A. was a great man and A. was not a great man, cannot both
be false.’77

From here it is only one step to Brouwer’s second formulation.

Its content is empty, Brouwer claimed, but the logician turns it into the
‘principle of tertium non datur’. Note that Brouwer did not yet reject the
‘tertium non datur’ for reasons of principle, but that he merely brushed it aside
as useless. The rejection will only follow later (see the next section). As for
syllogisms, he continued, they are a valid method of reasoning in the language
of logical arguments, but they produce only a reliable outcome when used within
a mathematically constructed system, just as the other logical principles are only
reliable within such a structure. At this stage Brouwer introduced the earlier
mentioned ‘linguistic building’:

On the basis of linguistic images which accompany basic mathemat-
ical truths in actual mathematical structures, it is somtimes possible
to build up linguistic structures, sequences of sentences, proceeding
according to the logical laws. If it turns out that such a structure
can never produce the linguistic form of a contradiction, then all
the same it belongs to mathematics only in its quality of a linguis-
tic structure, and it has nothing to do with mathematics outside of
it, such as ordinary arithmetic or geometry ([handwritten addition]:
except as an accompaniment, of which one can never be absolutely
certain).78

Hence mathematical buildings are constructed and the descriptions of these
constructions become building blocks for a different kind of building: the lin-
guistic one. For instance, if we take the logical derivation in the form of natu-
ral deduction of B from a number of assumptions, which include A, then this
construction is a building of the linguistic type. We have seen that Brouwer
emphasized that this only describes a mathematical building after a proper
mathematical construction of the premise A, which includes first of all that A
has to have a ‘mathematical content’, i.e. that its most fundamental ‘atomic’
building blocks are formed by the ur-intuition of mathematics.

77[Bellaar-Spruyt 1903], page 18: Ontkent gij, dat Alexander een groot man was, welnu,
dan moet gij erkennen, dat hij geen groot man was. Beide tegengestelde oordelen: A. was een
groot man, A. was niet een groot man, kunnen niet beide vals zijn.

78Dissertation, p 132: En wanneer het gelukt taalgebouwen op te trekken, reeksen van
volzinnen, die volgens de wetten der logica op elkaar volgen, uitgaande van taalbeelden, die
voor werkelijke wiskundige gebouwen, wiskundige grondwaarheden zouden kunnen accom-
pagneren, en het blijkt dat die taalgebouwen nooit het taalbeeld van een contradictie zullen
kunnen vertonen, dan zijn ze toch alleen wiskunde als taalgebouw en hebben met wiskunde
buiten dat gebouw, bijv. met de gewone rekenkunde of meetkunde niets te maken [dan als
accompagnement, dat nimmer geheel zeker is.]
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Logic cannot provide this and therefore it is impossible to establish a general
foundation of mathematics with the help of logic alone.

Brouwer’s concept of logic is now applied to the following four subjects:
1. The foundations of mathematics on axioms,
2. Cantor’s theory of transfinite numbers,
3. The logic of Peano–Russell,
4. The logical foundations of mathematics after Hilbert.79

Before extensively elaborating on some of these subjects (the others will be
more or less briefly discussed), we will have a short look at, and spend a few
remarks on, one other paper about the role of logic, viz. the Unreliability of the
Logical Principles from 1908.

7.3 The unreliability of the logical principles

Immediately after obtaining his doctorate, Brouwer continued to work out his
ideas on logic, especially on its use and applications in the area of the founda-
tions of mathematics. He rapidly developed a more critical attitude, ending in a
complete rejection on principle grounds of the principle of the excluded middle.

Already in the year 1908 he published a paper in the Dutch journal Tijd-
schrift voor Wijsbegeerte, entitled De Onbetrouwbaarheid der logische principes.80

In 1919 it appeared in reprint in the collection Wiskunde, Waarheid en Werke-
lijkheid,81 where it opens with the following added line:

This essay could have been written today in the same form. The
defended views have not found many supporters so far.82

In this essay, in which his mystic attitude again can be recognized, he dis-
sociated himself from his view on the principle of the excluded middle, as laid
down in his dissertation (see page 245). According to his new views in the paper
under discussion now, a mathematical system which arises independent of any
observation, but, departing from scientifically accepted premises, develops by
logical reasoning alone, may very well lead to unreliable conclusions. Moreover,
one should be very cautious when applying logical principles to mathematical
systems which are ‘void of life content’,83 (that is, which are not the result of a
successful mental construction, based on the human ur-intuition), since in that
case paradoxes may very well arise.

79See Brouwer’s dissertation, page 133.
80The unreliability of the logical principles, [Brouwer 1908a], also included (in English) in

[Brouwer 1975], page 107 – 111.
81Mathematics, Truth and Reality, [Brouwer 1919c].
82Dit opstel zou ook thans nog in dezelfde vorm geschreven kunnen zijn. Medestanders

hebben de er verdedigde opvattingen nog weinig gevonden.
83van levensinhoud vrije systemen.
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[It can be shown that paradoxes] originate where regularities in the
language which accompanies mathematics are extended to a lan-
guage of mathematical words which is not connected with mathemat-
ics. Further we see that logistics is also concerned with the language
of mathematics instead of with mathematics itself, consequently it
cannot throw light on mathematics. Finally all the paradoxes vanish
when we confine ourselves to speaking about systems which can be
built up explicitly from the basic intuition, in other words, when
we consider mathematics as presupposed in logic, instead of logic in
mathematics.84

In this paper the following question is raised:

Is it allowed, in purely mathematical constructions and transforma-
tions, to neglect for some time the idea of the mathematical system
under construction, and to operate in the corresponding linguistic
structure, following the principles of syllogism, of contradiction and
of tertium exclusum, and can we then have confidence that each
part of the argument can be justified by recalling to the mind the
corresponding mathematical construction?85

The syllogism is considered to be a valid mode of reasoning; in fact it amounts
to b ⊂ c, a ⊂ b =⇒ a ⊂ c, which is merely a tautology, as Brouwer put it.

Also the principle of contradiction is incontestable. However, the principle
of the excluded middle requires that every assumption is either true or false and
this is equivalent to the statement:

that for every supposed embedding of a system into another, sat-
isfying certain given conditions, we can either accomplish such an
embedding by a construction, or we can arrive by a construction at
the unfeasibility of the process which would lead to the embedding.86

The validity of this principle is claimed to be equivalent to the validity of

84[Brouwer 1975], page 108, also [Brouwer 1908a], page 8. [Aangetoond kan worden dat
paradoxen] ontstaan waar regelmatigheid in de taal, die wiskunde begeleidt, wordt uitgebreid
over een taal van wiskundige woorden, die geen wiskunde begeleidt; dat verder de logistiek
eveneens zich bezighoudt met de wiskundige taal in plaats van met de wiskunde zelf, dus de
wiskunde zelf niet verheldert; dat ten slotte alle paradoxen verdwijnen, als men zich beperkt,
slechts te spreken over expliciet uit de oer-intüıtie opbouwbare systemen, m.a.w. in plaats
van logica door wiskunde, wiskunde door logica laat vooronderstellen.

85[Brouwer 1975], page 109, also [Brouwer 1908a], page 8. Kan men bij zuiver wiskundige
constructies en transformaties de voorstelling van het opgetrokken wiskundig systeem tijdelijk
verwaarlozen, en zich bewegen in het accompagnerend taalgebouw, geleid door de principes
van syllogisme. van contradictie en van tertium exclusum, in vertrouwen dat door tijdelijke
oproeping van de voorstelling der beredeneerde wiskundige constructies telkens elk deel van
het betoog zou kunnen worden gewettigd?

86[Brouwer 1975], page 109, also [Brouwer 1908a], page 9: dat van iedere onderstelde in-
passing van systemen op bepaalde wijze in elkaar hetzij de beëindiging, hetzij de stuiting op
onmogelijkheid kan worden geconstrueerd.
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the statement that every mathematical problem has a solution, and, as Brouwer
put it, there is not a shred of evidence for this statement.87

To understand this claim we should again depart from a constructivistic
point of view and from the BHK proof-interpretation. If someone advances the
correctness of A∨¬A for every statement A, then the BHK interpretation asks
for a decision procedure to know which one, A or ¬A, is the case, and for a
proof of the valid case. Hence if A is some mathematical theorem, then A∨¬A
expresses in the BHK proof interpretation Brouwer’s representation of Hilbert’s
belief.

The fact that for finite discrete systems the principle is a valid and reliable
one (we can check in finitely many steps the possibility or impossibility of an
embedding), does in no way guarantee its reliability in case of a generalization
of its use to arbitrary non-finite sets. However, an unjustified application of
the principle to infinite systems will, according to Brouwer’s conviction in 1907,
never lead to a contradiction.

Brouwer mentioned as an example the generally accepted and trusted the-
orem that in the theory of transfinite numbers every number is either finite or
infinite; but this theorem was never proved, and neither did its application ever
lead to a contradiction.

Another example is the following problem:

Do there occur in the decimal expansion of π infinitely many pairs
of consecutive equal digits?88

Brouwer explicitly stated that, as long as this problem remains unsolved, we
cannot claim that one of the two possibilities certainly must be the case.

In a way, this is a prototype of the so-called Brouwerian counterexamples,89

although the decimal expansion of π is not yet applied to disprove a hitherto
accepted mathematical theorem.90 Brouwer will eventually prove the incorrect-
ness of the statement that the principle of the excluded middle is a generally
valid principle. This proof proceeds by means of counterexamples of classically
valid theorems: it is false to state that every real number is either rational or

87In a footnote in his dissertation, Brouwer claimed Hilbert’s conviction to be that un-
solvable mathematical problems do not exist. However, Hilbert’s claim is that for every
mathematical problem either a solution can be given, or that a proof can be presented that no
such solution exists. This is almost, but not exactly what Brouwer said, unless one considers
the proof that no solution exists also as a solution. This, in fact, is Kolmogorov’s position in
1932; see the footnote on page 226.

88Komen bij de decimale ontwikkeling van π oneindig veel paren van gelijke opeenvolgende
cijfers voor?

89It is sometimes claimed that Borel was the first to apply the technique of counterexamples.
See e.g. Von Plato’s review of [Dalen, D. van 1999] in the Bulletin of Symbolic Logic, vol. 7,
nr. 1 from March 2001. Von Plato refers to Les Paradoxes de la Théorie des Ensembles
([Borel 1908a]; see also [Borel 1972], page 1274; observe, however, that Borel’s use of it is
rather vague, compared to that by Brouwer. Moreover, Borel mentioned his example just in
passing, without making any use of it in the strong way Brouwer did, viz. to disprove familiar
and classically accepted theorems.

90We may refer to this type as a ‘weak couterexample’.
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irrational, or that every real number, which is unequal to zero, is either positive
or negative, or that every natural number is either finite or infinite etc.91

7.4 The notebooks on the role of logic

The references in the notebooks are numerous, but in regard to the present
subject there is hardly any interesting development in Brouwer’s ideas, like
there is in the case of sets and their cardinalities. Already in the first notebook
the great distance between formal logic and ‘living mathematics’ is emphasized:

(I–7) Mathematical logic deprived mathematics of all illusions of
‘truth, which is in contact with life’, and one notices to have worked
only with a chimera; a chimerical extract, applied to reality, but not
in direct contact with it.92

The expression in this fragment ‘truth, which is in contact with life’ shows a
strong similarity with the phrase we met earlier: ‘there are no non-experienced
truths’. The two clearly express the same intention.

In this first notebook the questions about foundations of mathematics mostly
refer to geometry; the possibility of a logical foundation of arithmetic shows up
in later notebooks, when discussing the arithmetical aspects of Russell’s Princi-
ples of mathematics. Meanwhile the logical-linguistic accompaniment of math-
ematics can play its useful role in communicating the result of a mathematical
construction:

(II–30) The logical construction is only needed to prevent harm to
the mutual understanding between two persons, caused by a possi-
ble different intuition. That is why axioms are needed in the old
instinctive Euclidean geometry.

And that was caused by the fact that persons, who have a mutual
understanding, did not reconstruct the whole system, but only some
parts of it, which parts were held together by vague impressions;
these parts then have to be made precise by axioms.93

But logic plays its limited role, outside the realm of pure mathematical thought
in which the mental constructions are made on the basis of the ur-intuition alone
and independent of any language or linguistic accompaniment:

91These are the ‘strong counterexamples; see e.g. [Brouwer 1921b], [Brouwer 1923c] and
[Brouwer 1930b].

92De mathematische logica ontnam aan de wiskunde alle illusie van ‘waarheid die het leven
raakt’, en men merkt, met niets anders dan met een hersenschim te hebben gewerkt; een
hersenschimmig extract, dat op de werkelijkheid is ‘toegepast’, maar haar niet raakt.

93Die logische opbouw is alleen nodig, om te voorkomen, dat eventuele verschillende aan-
schouwing bij twee personen schade zou doen aan de verstandhouding. Zo waren in de oude
ondoordachte Euclidische meetkunde axioma’s nodig.

En dát komt omdat de verstandhoudende personen vaak niet het hele systeem zelf hebben
nagebouwd, maar alleen enkele delen, welke delen door vage indrukken worden samenge-
houden; die dienen dan wel gepreciseerd door axioma’s.
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(V–2) Mathematical logic might trace and show some mistakes (al-
though it is itself also a logical ‘construction’ in which mistakes can
be made). But it stands outside the great intuitive logical recapitu-
lations (which, on their own, might be difficult to analyze logically),
with which science operates; hence it would throw away the essential
in mathematical thought.94

The dependence of logic on mathematics, and the secondary role that logic
plays in relation to mathematics, is expressed in the following paragraph, in
which only a blocked construction is a foreboding of a contradiction in its lin-
guistic accompaniment:

(VII–24) It is certainly not possible to deduce the symbolic ‘contra-
diction’ for a symbol that accompanies a mathematically existing
object; since in that case there would have been a contradictory
construction-force during the construction, and the object could not
have existed. Conversely, if we can show for an object which has to
be constructed mathematically, that no symbolic contradiction can
be deduced in the symbolic system, then the object can exist.95

The last sentence of this quote illustrates that, occasionally, Brouwer is still
very far from his view in the dissertation. Popularly reformulated it says ‘if an
object figures consistently in a symbolic system, then it can exist’. Here he is
still rather close to Poincaré, whose only criterium for existence of a mathemat-
ical object is consistency. Although Brouwer in this quote only claimed that
such an object can exist, this is still more or less in contrast with page 132 of
his dissertation where Brouwer stressed that a logical and logically consistent
structure has nothing to do with a mathematical structure.

But other quotes from earlier and later notebooks show us that a mathe-
matical construction remains primal to all logic:

(VIII–19) The ‘rule of contradiction’ should only be applied to what
is ‘self-constructed’, and likewise all laws of logic.96

As for the relation between language and logic, Brouwer is very brief:

94De mathematische logica kan misschien wel hier of daar fouten opsporen en aantonen,
ofschoon ze zelf even goed een logisch ‘bouwen’ is, waarin je fouten kunt maken. Maar de grote
intüıtieve logische samenvattingen die alleen zeer lastig logisch geheel te ontleden zouden zijn,
waarmee de wetenschap werkt, daar staat ze buiten; de hoofdzaak in het wiskundig denken
zou ze dus wegwerpen.

95Voor een symbool, dat een wiskundig bestaand ding begeleidt is dan zeker niet mogelijk,
de symbolische ‘contradictie’ af te leiden; immers dan zou contradictoire bouw-dwang bij het
bouwen zijn geweest, en het ding had niet kunnen bestaan. Aan de andere kant, kúnnen we
voor een wiskundig te bouwen ding aantonen, dat geen symbolische contradictie is af te leiden
in het symbolisch systeem, dan is het ding bestaanbaar.

96De ‘Satz vom Widerspruch’ laat men alleen gelden omtrent het ‘zelf opgebouwde’, en
evenzo alle logische wetten.
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(IX–2,3) Language is not logical, but it is an understanding by means
of sounds in coarse-material things, shaped by habit.

(...)

But it is nonsense to view your own language mathematically.97

The synopsis

In the summarizing synopsis of the notebooks, there are a few remarks about
the role of logic in the construction of mathematics:

(from chapter 1) In the deductions of mathematical logic one lacks
all guiding stimulus if one does not keep in mind the meaning. It
has always to be viewed as abstracted from something living, and
that is only successful for something mathematical.98

In this, as well as in the following two quotes, a comparison with literature
can be made. Writing a novel without any ‘contact with life’ results in an empty
collection of words and phrases, in which no reader will perceive any recognizable
situation, despite the possible grammatical and syntactical correctness of the
composing sentences.

‘Contact with life’ in mathematics then means ‘born out of the intuition’.

(from chapter 6) Logic never can (...) be of any help in explaining
life, since it is abstracted from life, and only from life which is viewed
mathematically.99

(from chapter 6) One should not compare mathematics with ordinary
logic, since logic is itself second order mathematics.100

7.5 The founding of mathematics on axioms

At the end of the introduction of his third chapter Brouwer mentioned four sub-
jects, to be discussed in more detail in explanation of his claim that mathematics
in independent of logical laws as we sketched this in the introduction to his third
chapter.101 We will limit the discussion of the beginning of the first subject to

97De taal is niet logisch, maar een verstandhouding door klanken in grof-materiële dingen,
door gewoonte gevormd.

(...)
Maar het is onzin, je eigen taal wiskundig te bekijken;
98Bij het afleiden in de mathematische logica zonder aan de betekenis te denken, mist men

alle leidende stimulans. We moeten haar telkens weer geabstraheerd denken uit iets levends,
en dat gaat alleen voor iets wiskundigs.

99Logica kan (...) nooit het leven helpen verklaren, want is geabstraheerd uit het leven, en
nog wel alleen uit het door een wiskundige bril geziene leven.
100Met gewone logica moeten we wiskunde niet vergelijken, want die logica is zelf wiskunde

(der tweede orde).
101See page 247.
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a concise summary of its content. However, towards the ending Brouwer made
some interesting remarks, which deserve a more detailed treatment.

Understandably, Brouwer’s main claim and conclusion will be that a suc-
cessful completion of a construction of a mathematical building is a proof of its
consistency and that no axiomatic foundation is needed for this. A consistent
set of axioms on itself is not a sufficient condition for the existence of the mathe-
matical system described by that axiom set.102 Hilbert, as formalist, proved the
consistency of geometry, thereby taking consistency of arithmetic for granted.
A proof of the latter then has to be completed with the help of logic, which for
that reason requires an independent development, parallel to arithmetic.

Brouwer agreed with the geometers of his day that the five axioms of Euclid
are insufficient as a foundation for the logical building of geometry that was
named after him. He is explicitly referring here to the linguistic accompaniment
of the mathematical structure of geometry. Brouwer proposed two possible
explanations for Euclid’s omission in the axiomatization, which shows that the
axiom-concept is in itself a sensible one for him, albeit that axioms only serve a
practical purpose in the solution of problems and in communication to others.103

In this limited sense they can be useful, as long as we are aware of the fact that
they can never be the ultimate foundation of the mathematical structure of
geometry, but that they only play their role in the structure of the linguistic
building that describes the mental construction of geometry.

The place of the axioms in the mathematical hierarchy is expressed in the
synopsis of his notebooks as follows:

It is just as foolish to view a tree merely as a weight of planks, as it
is one-sided to view mathematics as an axiomatic system.104

Hence, first comes the mathematical structure and only thereafter, if needed,
the axiomatic foundation for its accompanying linguistic structure.

It did not cost the mathematicians too much trouble to improve the linguistic
building. After all, they were not operating in mathematics proper, but in its
linguisitic and logical description. Especially Pasch and Hilbert added many,
hitherto tacitly assumed, axioms to the original set of five.105 However, Hilbert’s
building became, like the buildings of other mathematicians of those days, in
Brouwer’s terms a ‘linguistic building of pathological geometries’. But, Brouwer
stated, the reproach at Euclid about the incompleteness of his axiom set is
dropped in the following cases (of which especially the first one fits Brouwer’s
ideas about the role of axioms):

102Compare this to Gödel’s completeness theorem for predicate logic; see further page 255.
103See page 261, the quote II–35.
104Even dwaas als het is in een boom slechts een gewicht aan planken te zien, even eenzijdig

in de wiskunde een axiomasysteem.
105For instance for Hilbert, see Die Grundlagen der Geometrie, [Hilbert 1899a]. The third

edition of this work, with the addition of seven appendices, appeared as his Festschrift in 1909
under the official title Grundlagen der Geometrie, [Hilbert 1909].
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– Euclid conceived his mathematical structure of geometry as a mental con-
struction which was finished beforehand, his reasonings about it merely serving
as an elucidation of his already constructed building.

– Another possibility, this time not fitting Brouwer’s concept of the purpose
of axioms, is that Euclid made the mistake that so many others have made, who
thought that they could reason logically about other subjects than mathematical
structures built by themselves.

In Brouwer’s view, the geometries of Lobatchevski and Bolyai were just
logical-linguistic buildings, and only Riemann showed the proper way in found-
ing geometry by viewing space as a ‘Zahlenmannigfaltigkeit’. Of course Brouwer
saw this as the proper way because it allowed him to return to the ur-intuition
as the ultimate foundation; but, as Brouwer regretfully established, this way
was not followed consequentially to the end by Riemann.

Intuitive mathematics was introduced by Hilbert (and by others) only for a
proof of consistency and for a proof of independence.106 Both proofs proceed,
in modern terminology, by presenting a model, or, in Brouwer’s terminology, for
the case of a proof of consistency by:

(...) indicating a system with the property that a certain set of
axioms, and consequently all the theorems deduced from it, can be
held to express properties of that system.107

and for the proof of independence:

In order to prove that some axioms cannot be logically deduced
from some other axioms, a mathematical system is indicated such
that the latter axioms can, but the former cannot be held to express
properties of that system.108

This short summary covers the essentials of the main text of the first sub-
ject, but some noteworthy remarks follow in a long footnote, as well as in the
remainder of the main text, which deserve extra attention, although they are
no longer only concerned with the foundation of mathematics on axioms.

A first remark which merits a closer analysis is made by Brouwer in the
footnote with the phrase in the main text about the requirement to present
a model in order to prove consistency. In this footnote Brouwer gave an im-
portant elaboration and clarification of this idea, which takes on an interesting
character in the light of much later revolutionary developments, in particular in
106(dissertation, page 85) In his hand-corrected copy of the dissertation, Brouwer added the

remark that the investigations by Schur, Hilbert and Pasch did not have, as an addition to
Euclid, any mathematical value. At the most (some) logical value may be ascribed to their
investigations.
107(dissertation, page 137) (...) aangeven van een systeem, waarvan een zeker stelsel logische

axioma’s en dus ook alle eruit afgeleide stellingen kunnen worden beschouwd, eigenschappen
uit te drukken.
108dat men, om aan te tonen, dat een zeker axioma uit zekere andere niet logisch is af te

leiden, een wiskundig systeem aangeeft, waarvan de laatste wel, het eerste niet, beschouwd
kunnen worden eigenschappen uit te drukken.
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Gödel’s work. Brouwer stressed that ‘indicating a mathematical system’ (that
is, defining a sub-building in a mathematical building), such that the axioms
correspond to certain properties of that system, suffices to prove the consistency
of that set of axioms and their corollaries.

It is clear that indicating a mathematical system such that the ax-
ioms might accompany properties of that system, suffices to prove
that never two contradicting theorems can be deduced from the ax-
ioms, for contradictory theorems cannot hold for a mathematical
building.109

Although the presentation of a model, according to Brouwer, only proves
the existence of the logical structure (so one sensed intuitively that a math-
ematical structure needs no proof for its existence), this method was general
practice in nineteenth-century geometry. However, Hilbert had to give up these
modeltheoretic constructions, when he started to consider formal arithmetic.
In 1904 Hilbert lectured about ‘die Grundlagen der Logik und der Arithmetik’
at the Heidelberg mathematical conference. We will not go into te details of
this lecture now,110 but Hilbert sketched there his ‘program’: When founding
geometry, certain difficulties of arithmetical nature could be left aside for the
moment, but for a solid foundation of both, geometry and arithmetic, the latter
had to be axiomatized. And for a proof of consistency of arithmetic with the help
of logic, the laws of logic and arithmetic had to be developed simultaneously,
but independently from one another, to avoid unintentional use of arithmetical
concepts in logic. This consistency proof was initiated in the Heidelberg lecture,
but the axiomatization of arithmetic was introduced already five years earlier
in Hilbert’s paper Über den Zahlbegriff,111 and Brouwer explicitly mentioned
and referred to this paper in the long footnote under discussion now. In the
said paper Hilbert argued that the concept of number and the basic operations
on numbers usually are introduced by a genetic method, whereas in the con-
struction of geometry an axiomatic method is the familiar way of introduction.
Hilbert then raised the question whether these methods are the proper ones for
the two different branches of mathematics, at the same time answering it by
stating that both branches need a complete axiomatic foundation. Therefore a
set of axioms for arithmetic is presented.

For Brouwer the successful construction of a mathematical structure (a sub-
building in a building) is sufficient to prove the consistency or the existence of
that structure, and no axioms for its foundation are needed. He has, still in the
same footnote, the following comment on Hilbert’s procedure: The presentation
of a mathematical model (arithmetic) to prove the consistency or the existence

109(dissertation, p 137, first sentence of the long footnote) Het is duidelijk, dat door het
aangeven van een wiskundig systeem, waarvan de axioma’s eigenschappen zouden kunnen
accompagneren, bewezen is, dat nooit twee strijdige stellingen uit die axioma’s kunnen worden
afgeleid, want twee strijdige stellingen kunnen niet van een wiskundig gebouw gelden.
110These details will be discussed when treating the last subject from Brouwer’s list of four

from his third chapter; see page 296.
111See [Hilbert 1899b].
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of a logical system (geometry) might give the impression that the mathematical
model needs no existence proof. But not so for Hilbert: also arithmetic has to
be captured by an axiomatic method, and he devised a set of axioms for that
mathematical system. The theory, derived from that axiom set, required in its
turn a consistency proof, since Hilbert did not recognize ‘intuitive mathematics’
in the Brouwerian sense, that is, for him the successful construction of the
building of arithmetic is in itself not sufficient as a consistency proof.
Brouwer’s conclusion was the following:

10 he [i.e. Hilbert] has not made any progress, compared to the pre-
ceding stage, 20 the consistency of the axioms does not involve the
existence of the corresponding mathematical system, 30 even if the
mathematical system of reasonings exists, this does not entail that
it is alive, i.e. that it accompanies a sequence of thoughts, and even
if the latter is the case, this sequence of thoughts need not be a
mathematical development, so it need not be convincing.112

Brouwer ended his comment on Hilbert’s work with the following phrase (still
in the same footnote):

We will see later on how Hilbert tried to escape from this difficulty
and in how far he succeeded.113

This, again, refers to the fourth subject, ‘the logical foundations after Hilbert’
(page 296) from Brouwer’s third chapter. The main difference between Brou-
wer and Hilbert in regard to this topic is obvious: for Brouwer, a properly and
successfully built construction is a consistency proof, whereas for Hilbert the
model of arithmetic, on which the foundation of geometry is based, needs to
be axiomatized and this axiomatized system needs a consistency proof too. So,
according to Brouwer, ‘no progress is made by Hilbert’; another construction is
needed which has to prove the consistency of the axiom set of arithmetic and
its corollaries. A sort of regress threatens to set in. Of course Hilbert was aware
of that, but he took a different route; he realized that, in founding arithmetic,
no further appeal to a more basal discipline is possible. Therefore consistency
had to be proved from ‘outside’, with the help of logic; but to avoid difficulties,
the laws of logic and of arithmetic had to be developed simultaneously and in-
depently from one-another. Hence for Hilbert consistency of arithmetic had to
be proved with the help of logic (his Heidelberg lecture was an initial impetus
to this program), whereas for Brouwer logic can never be a basis for any branch
of mathematics, and consistency alone never guarantees us the existence of an

112(dissertation, p 138) 10 hij is dan nog even ver, als zo-even, 20 volgt uit de niet-strijdigheid
der axioma’s nog niet het bestaan van het bijbehorend wiskundig systeem, 30 volgt uit het
bestaan van dat wiskundig redeneersysteem nog niet, dat dat taalsysteem leeft, m.a.w. een
aaneenschakeling van gedachten begeleidt, en dán nog niet, dat die aaneenschaleling van
gedachten een wiskundige ontwikkeling is, dus overtuigingskracht bezit.
113(dissertation, page 138) We zullen beneden zien, hoe Hilbert zich hieruit heeft trachten

te redden, en in hoeverre hij daarin geslaagd is.



7.5. THE FOUNDING OF MATHEMATICS ON AXIOMS 257

accompanying mathematical structure.

So far the discussion of the first part of the long footnote (altogether stretch-
ing over four pages of the dissertation), and some direct or indirect conclusions
from it.

In the second part of this footnote Brouwer focused his attention on Dede-
kind’s Was sind und was sollen die Zahlen,114 where an attempt is made to
construct the arithmetic of the integers by means of logic, thereby departing
from the primitive concepts of a certain logical system (a ‘mathematical building
of words’), which has as axioms linguisitic representations of relations between
the primitive concepts, and which is constructed finitely (that is, without using
complete induction).

But, Brouwer stressed, in order to give a mathematical meaning to such a
logical construction, we cannot do without a mathematical proof of existence
(i.e. a construction), and such a proof needs complete induction as a tool. This
proof then results in a direct way in a much simpler and more natural system of
arithmetic, compared to Dedekind’s artificial system which has no mathematical
meaning in itself.

In Brouwer’s view, complete induction is a necessary tool in the construction
of the system of the natural numbers, of the system of the integers and of
arithmetic, and this construction is based on the ur-intuition alone, as it should.
Remember that the principle of complete induction is neither a theorem, nor an
axiom; it is a natural act of intuition-based construction instead.115

To conclude the discussion about this long, but important footnote, we em-
phasize once more that, given a set of axioms and their corollaries (a logico-
linguistic building), the consistency of that totality of axioms and corollaries is
not a sufficient basis for its existence. If, however, we can build an arithmetical
structure, of which the basic properties can be described by that axiom set, then
the success of that construction is the consistency proof of that set and of the
complete theory following from it. And for that construction the principle of
complete induction is a necessary and natural tool. The role of the axiom set is
merely that of a handy device for a concise description of that system and for
problem solving.

It is interesting to compare the conclusion about the need for a mathematical
construction in order to prove the consistency of an axiom set that describes it
with Gödel’s second incompleteness theorem:

The formal system of Peano arithmetic cannot prove its own consistency.
This claim of unprovability of the consistency of a formal system within that

formal system itself is not proved in the strict sense by Brouwer, but it is made

114[Dedekind 1930b].
115Thesis II from the list of 21 theses at the end of Brouwer’s dissertation; see also page

316. Note that in 1902 Poincaré commented on this principle in a similar way in La Science
et l’Hypothèse, judging it to be ‘une propriété de l’esprit lui-même; see page 26. Brouwer
certainly knew this comment, and agreed with it.
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a plausible conclusion from his reasoning which was based on a constructive
argument.

A second remark by Brouwer, which is worth extra attention, is made in
the main text, at the end of Brouwer’s discussion of this first subject, where
he once more underlined that the origin of the ‘pathological geometries’ lies
in the juggling with axioms in the linguistic building of geometry. But the
axiomaticians still want mathematical application for their logical system:

Now the following question arises: suppose we have proved by some
method, without thinking of mathematical interpretation, that the
logical system, built up out of certain linguistic axioms, is consis-
tent, i.e. that two contradictory theorems can occur at no stage of
development of the system; suppose further that afterwards we find
a mathematical interpretation of the axioms (which of course will
require the construction of a mathematical system whose elements
satisfy certain given mathematical relations); does it follow from the
consistency of the logical system that such a mathematical system
exists?116

Brouwer accepted for a moment the possibility to prove the consistency of
a linguistic building without appeal to a mathematical structure. But then a
mathematical interpretation of the logical consistent set of linguistic axioms and
its resulting structure still does not guarantee the existence of the corresponding
mathematical building. So the existence of a model is not guaranteed by a
mathematical interpretation of a consistent accompanying linguistic building.
As an example Brouwer mentioned that there is no proof for the fact that a
non-contradictory set of logical conditions for a finite number is sufficient for the
existence of a ‘model’ for that number. This example is not further elaborated
in the dissertation, but a specific case can be found in the technique of the
‘Brouwerian counterexamples’: Is there a number a (i.e. can we construct that
number) such that a = 0 if the Goldbach conjecture is correct and a = 1 if it is
false?
This condition is logically consistent since the Goldbach conjecture cannot be
true and false at the same time, hence from a purely logical point of view a has
to be either 0 or 1. But mathematically, a cannot be constructed as long as the

116(Dissertation page 141) Nu rijst de vraag: gesteld we hebben op een of andere manier,
zonder aan wiskundige interpretaties te denken, bewezen dat het uit enige taalaxioma’s opge-
bouwde logische systeem niet strijdig is, d.w.z. dat op geen moment der ontwikkeling van het
systeem twee strijdige stellingen komen; vinden we vervolgens een wiskundige interpretatie
voor de axioma’s, (die dan natuurlijk bestaat uit de eis, een wiskundig gebouw te construeren
met aan gegeven wiskundige relaties voldoende elementen), volgt dan uit de niet-strijdigheid
van het logische systeem, dat zulk een wiskundig gebouw bestaat?

(N.b. As a handwritten correction Brouwer replaced the beginning of this quote ‘Now the
following question arises’ by ‘Now at least these investigations would be of some importance
to a logical foundation of mathematics, if the following question had to be answered in the
affirmative’, which makes the question more imperative and directed.)
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Goldbach conjecture has not been settled. So the existence of a cannot (yet) be
confirmed.

Also the second number class does not exist as a totality, despite the fact
that the defining terms of this class form a logical consistent set of conditions.
For the construction of a mathematical building, logical consistency of its defin-
ing terms is of course a necessary condition, but not a sufficient one.

A third and last remark of importance can again be found in a footnote, this
time on page 142 of the dissertation; it is referring to the just given example
that a consistent set of conditions in the definition of a certain number does not
automatically include its existence. It shows again an interesting analogy with
Gödel’s later work:

A fortiori it is not certain that any mathematical problem can either
be solved or proved to be unsolvable, though Hilbert, in ‘Mathe-
matische Probleme’, believes that every mathematician is deeply
convinced of it.117

But for this question as well, it is of course uncertain whether it will
ever be possible to settle it, i.e. either to solve it or to prove that it
is unsolvable (a logical question is nothing else than a mathematical
problem).118

The first paragraph of the quoted footnote claims that the truth of Hilbert’s
dogma is uncertain. In regard to any properly and consistently given mathe-
matical problem, Hilbert is convinced that eventually either this problem can be
solved, or that its unsolvability can be proved. But Brouwer claimed that neither
of the two might be the case and that therefore theorems (or ‘problems’) may
117Hilbert’s conviction (the first half of the footnote) can be read in [Hilbert 1900] (See for

this also [Hilbert 1932], volume III, page 297) in the following terms. He stated as a comment
on the solutions of some long standing mathematical problems which were finally found:

(...) welche in uns eine Überzeugung entstehen läßt, die jeder Mathematiker gewiß
teilt, die aber bis jetzt wenigstens niemand durch Beweise gestützt hat – ich meine
die Überzeugung, daß ein jedes bestimmte mathematische Problem einer strengen
Erledigung notwendig fähig sein müsse, sei es, daß es gelingt, die Beantwortung
der gestellten Frage zu geben, sei es, daß die Unmöglichkeit seiner Lösung und
damit die Notwendigkeit des Mißlingens aller Versuche dargetan wird.

And on the next page, at the end of the introduction and just before the presentation of the
23 open mathematical problems in the year 1900:

Diese Überzeugung von der Lösbarkeit eines jeden mathematischen Problems ist
uns ein kräftiger Ansporn während der Arbeit; wir hören in uns den stetigen Zuruf:
Da ist das Problem, suche die Lösung. Du kannst sie durch reines Denken finden;
denn in der Mathematik gibt es kein Ignorabimus!

118Het is dus a fortiori niet zeker, dat van elk wiskundig probleem òf de oplossing kan worden
gegeven òf logisch kan worden aangetoond dat het onoplosbaar is; iets, waarvan intussen
Hilbert in ‘Mathematische Probleme’ meent, dat iedere wiskundige ten innigste is overtuigd.

Maar van deze kwestie zelf is het natuurlijk ook weer niet zeker, dat ze ooit zal kunnen
worden afgedaan, d.w.z. òf opgelost, òf als onoplosbaar aangetoond (een logische kwestie is
ook niets dan een wiskundig probleem).
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exist, of which neither the solution can be constructed, nor the non-existence of
such a solution be proved. Note that Brouwer did not prove anything here, but
merely expressed his doubts as to the possibility of a construction on the basis
of logical consistency of its conditions alone.119

If we indeed interpret the first paragraph of the last quote as expressing
that, according to Brouwer and contrary to Hilbert’s conviction, there might be
a problem, of which neither the solution can be constructed, nor the impossibil-
ity of such a construction can be proved, then the second paragraph expresses
the doubt that the first paragraph will eventually be decided. In other words,
the first paragraph claims that there may be problems of which we do not know
whether they are solvable or provably unsolvable, whereas the second paragraph
leaves open the chance that the possible existence of such undecidable problems
is itself undecidable, so that we can neither indicate such an undecidable prob-
lem, nor show that there is none.

But, with reference to this last sentence, there appears another interesting
remark, which shows that Brouwer had an argument for the ‘ignorabimus’. It
was written on one of the loose sheets, found in the ninth notebook, in the form
of the following note:

Will one ever be able to prove about a problem, that it can never
be decided? No, since such a proof should proceed via reductio ad
absurdum. One should have to say: Suppose the question is decided
for sentence a, and deduce from that a contradiction. But then one
would have proved that not a is true, and the question remained
decided.120

According to Brouwer one can never prove a concrete problem to be un-
decidable, i.e. we can never be positive that a certain problem neither can be
solved nor that its unsolvability can be proved. Hence Brouwer did not agree
with Hilbert’s dogma, but he did not go as far as a full acceptance of an ‘ignor-
abimus’ either; in other words, Brouwer is not supporting the view that every
mathematical problem will be decidable (i.e. that there is no ignorabimus), but
he is neither defending the other extreme that there is ignorabimus, i.e. that
there are problems that are provably undecidable. He just leaves open its pos-
sibility, he accepts it as an option.
119Later, Brouwer will give counterexamples of numbers of which one cannot decide whether

they are positive or negative (or equal to zero), hence that neither a claim about this number,
nor the negation of this claim can be proved (at least as long as some outstanding mathematical
problem remains unsolved; in case of a solution, however, such a problem can always be
replaced by another unsolved one). None of the mentioned possibilities can, in that case,
claimed to be true!
120Zal men nu ooit van een vraag kunnen bewijzen, dat ze nooit uitgemaakt kan worden?

Neen, want dat zou moeten uit het ongerijmde. Men zou dus moeten zeggen: Gesteld dat
het was uitgemaakt in zin a en daaruit afleiden, tot een contradictie kwam. Dan zou echter
bewezen zijn, dat niet a waar was; en de vraag bleef uitgemaakt.

(Heyting was the first to put this in print in [Heyting 1934], page 53 ff. A more de-
tailed treatment can be found in the paper by Martin-Löf Verificationism then and now
in [Pauli-Schimanovich and Stadler 1995], pp. 187–196.
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It cannot be stated with certainty that he held this view already in 1907
when taking his doctoral degree so that at least the content of the loose sheet
from the ninth notebook was familiar to him at that time. Perhaps this view ma-
terialized only after February 1907, and perhaps before that time Brouwer was
just attacking Hilbert’s belief as being unfounded, without, however, resorting
to the opposite position of an unconditional ignorabimus.

Anyway, Brouwer was not certain whether or not unsolvable mathemati-
cal problems exist. Only Gödel’s first imcompleteness theorem can be viewed
as an answer to this doubt: There exist in Peano Arithmetic, or in any decid-
able ω-consistent extension of P.A., true sentences that cannot be proved in P.A.

In addition to the notes and arguments on the ‘loose sheet’, we can add the
following comment: In the first place, it is written on a loose sheet, found in
a notebook. Since the last pages of the last notebook contain notes, definitely
written after the date of the defence of the dissertation, it is not certain when
exactly these notes were made. In the second place, and even more important,
the fragment just quoted is crossed out on the relevant page, it never appeared
in print and Brouwer never returned to it. One can wonder why Brouwer crossed
it out and why he did not come back to it on some later occasion; it certainly
proves something. One can hardly imagine that Brouwer would not have seen
its importance. As Van Dalen noted in his comment, it explains why Brouwer
never tried to find some absolutely undecidable problem.121

Note that Brouwer’s argument does not disprove Hilbert’s conviction; it just
argues that there might be ignorabimus in mathematics. It does not disprove
Gödel’s incompleteness theorem either, since Gödel only referred to true sen-
tences in a system, which sentences can be neither proved nor disproved within
the system itself.

7.5.1 The notebooks on Axiomatic foundations

There is, again, hardly any development in Brouwer’s point of view in regard to
the foundation of mathematics on axioms. Already in the second notebook he
wrote that the independence of a set of axioms can only be shown by the result
of a construction, i.e. by a model:

(II–31) Almost never can one be sure of the independence of the
undefinables and their axioms, except for the demonstrated con-
structions.122

In the same notebook the cause of man’s need for axiomatization is said to be
due to the need to communicate the result of a construction to others, with,
additionally, the certainty that the hearer obtains the same mental picture of
the construction:
121Extract from a footnote from [Dalen 2001], page 174.
122En ook zal men bijna nooit kunnen weten of de indefiniabelen en hun axioma’s onafhanke-

lijk zijn, anders dan uit getoonde gebouwen.
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(II–35) It is the words that cause axiomatization, to hold together
the will of the individuals. Because it turns out that those words
cannot be fixed securely, and in order to keep them secure, one
axiomatizes them.123

But then, still in the second notebook, one should be warned that axio-
matization is fundamentally different from a mathematical construction. Only
the latter gives us a mathematical building, which, by virtue of its existence,
guarantees consistency. Axiomatization is, in fact, leading us away from the
living mathematics which is essentially languageless:

(II–38) In mathematics, just as in the arts, it is dangerous to depart
from the ‘Schaffe Künstler, rede nicht’, since also here the basic
principles cannot be expressed, but can only be read between the
lines.124

Brouwer’s general attitude towards axiomatization can also be read in the fol-
lowing paragraph, which is about arithmetic that needs no axiomatization since
it is a direct result of the ur-intuition. Brouwer is referring to Vahlen’s Abstrakte
Geometrie,125, page 14 ff. Zahlensysteme:

(IV–16) The investigation of the possible independence of the axioms
of arithmetic makes no sense, because arithmetic is an aprioristic
system of operation.126

And to stress once more the subservient role of logic:

(IV–20) The proof of existence of arithmetic is the reality in the
partialization of the barter trade.

The proof of existence of mathematical logic is the arithmetic.

Therefore mathematical logic can only serve as a centralization of
arithmetic. It derives its life from arithmetic.127

123De axiomatisering komt vooral door de woorden; om de wil der individuen samen te
houden. Want die woorden blijken dan toch niet zeker vast te houden, en om ze toch zeker
te houden, gaat men ze axiomatiseren.
124Het is bij wiskunde, evenals bij kunst, hoogst gevaarlijk af te wijken van het ‘schaffe

Künstler, rede nicht’, want de grondprincipes zijn ook hier niet te zeggen, alleen tussen de
regels te lezen. (According to the ‘Levensbericht Lidy van Eijsselstijn’ in the ‘Jaarboek van
de Maatschappij der Nederlandse Letterkunde te Leiden’, 1986-1987, page 77–83, the German
quote originates from Goethe).
125[Vahlen 1940] of which the first edition was published in 1905.
126Het onderzoek naar eventuele onafhankelijkheid van de axioma’s der rekenkunde is onzin,

want rekenen is een aprioristisch operatiesysteem.
127Het Exstenzbeweis voor de aritmetik is de werkelijkheid in de partiëring van de ruilhandel.
Het Existenzbeweis voor de mathematische logica is de aritmetik.
Zo kan die mathematische logica alleen als een centralisering gelden van de arithmetik,

ontleent haar leven aan de aritmetik.
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Again: the completeness of a set of axioms can only be concluded from the
resulting building if this building is unique, that is, if there is only one build-
ing satisfying the axioms.128 The next quote from notebook eight shows that
Brouwer’s ideas on this topic were not liable to much change during the years
of preparation of his dissertation. Here he compares the role and the status of
axioms for a building with that of the ‘major terms’ in syllogisms, which are
just tautologies. Likewise the status of an axiom is merely a concise description
afterwards, rather than something new.

(VIII–31) The ‘major terms’ which are used in mathematical syllo-
gisms may be nothing else, but tautologies.

(...)

Likewise the axioms. Mathematical theorems then are construc-
tions within the large building, of which the parts that are remotely
separated, cannot be surveyed at once intuitively. They serve as
self-constructed road signs within that building.

(...)

Now the axioms can either or not be complete, i.e. it can either or
not be the case that other constructions are possible, satisfying the
same axioms. The latter is the case [i.e. no other construction possible]
if the construction was completely governed by the axioms.

(...)

I sometimes can observe that it [i.e. the axioms system] is not com-
plete, because I can point to another building, clearly different from
the given one (...) and still satisfying the axioms.129

In the last quote we can point to another example of the principle of the
excluded middle: ‘it can either or not be the case (...)’. Brouwer recognized and
admitted this, realizing that old habits often have a long life.

As a concluding remark we once more underline that the most interesting
aspect of the discussion of this first subject from Brouwer’s list of four hardly
lies in the development of Brouwer’s ideas in this field, but for the greater part
in the content and corollaries of some of the footnotes.
128This a categorical axiom set; see page 238.
129De ‘maioren’, waarvan bij de wiskundige syllogismen wordt gebruik gemaakt, mogen niet

anders zijn dan tautologieën.
(...)
Zo ook de axioma’s. De wiskundige stellingen zijn dan samenbouwsels uit het grote gebouw,

waarvan de ver van elkaar verwijderde delen niet zo direct intüıtief zouden zijn te overzien;
zijn dus zelfgebouwde wegwijzers in dat gebouw.

(...)
Nu kunnen die axioma’s volledig zijn of niet, d.w.z. het kan zijn, dat er nog andere gebouwen

mogelijk zijn, die aan dezelfde axioma’s voldoen, of niet. Het laatste is het geval, als ik met
de axioma’s trouw het bouwen zelf geheel heb gevolgd.

(...)
wel kan ik soms merken, dat het niet volledig is, doordat ik een ander gebouw aanwijs,

d.w.z. een gebouw, dat duidelijke verschillen heeft met het gegevene, en toch aan de axioma’s
voldoet.
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7.6 Cantor’s transfinite numbers

7.6.1 The second number class

The second item from the list of four, discussed by Brouwer to clarify his view
on logic, is Cantor’s theory of transfinite numbers and the (in Brouwer’s eyes
often unjustified) role that logic plays in it. The first part of this item, a
discussion of the second number class, can be treated briefly since it contains
hardly any new ideas which were not worked out by Brouwer in his first chapter,
where he already reached the conclusion that there are no other sets than those
with cardinalities finite, denumerably infinite, and that of the continuum, which
latter is a separate cardinality.130 The limitation to only three cardinalities is
the result of the restrictions, dictated by the admissible modes of constructing
a set. The definition of a set must be in the form of an algorithm for the
construction of its individual elements and the term ‘and so on’ may only refer
to the repeated application of the same rule of construction.

The main point of discussion in this section will be Brouwer’s fourth and
most problematic cardinality, the ‘denumerably infinite unfinished’ one, which,
however, becomes an acceptable notion when viewed, as Brouwer does, not
as the cardinality of an intensionally finished set, but as the cardinality of a
‘process of continued and never (not even intensionally) finished growth’. But
it will turn out that Brouwer’s definition for this concept is incomplete.

Even more difficulties are caused by the notion of ‘unfinished mapping’. This
is introduced in a footnote, not completely worked out and perhaps not well-
thought up either.

It is not hard to show that sets, constructed according to Brouwer’s modes,
do not yield any form of decidability, which is the property that for every arbi-
trary entity it can be decided whether or not it belongs to a given set.131 This

130See chapter 4 of this dissertation.
131P. Maddy’s, in Realism in Mathematics ([Maddy 1990], page 16), claims that Brouwer,

because of his disbelief in an objective reality of mathematical entities, turns to verificationism,
that is the view that for every statement a verification condition exists to decide on its truth.
This implies that for every statement of the form ‘an arbitrary mathematical entitiy a belongs
to a set A’, a verification on its truth is possible, and this again includes the principle of the
excluded middle, which is, in Brouwer’s eyes, a non-valid principle.

Brouwer himself objected in 1930 in a review on Fraenkel’s Zehn Vorlesungen über die
Grundlegung der Mengenlehre against the way Fraenkel described Brouwer’s concept of a set;
([Fraenkel 1927]; for Brouwer’s review see [Brouwer 1930a], also in [Brouwer 1975], page 441)
he specifically objected in this review against the aspect of decidability for sets, which Fraenkel
ascribed to him:

(S.44) daß der Mengenbegriff von Brouwer eingeengt worden sei auf entschei-
dungsdefinite Gesamtheiten, für die die Frage, ob es darin Elemente von
vorgegebener Eigenschaft gibt, stets, und zwar auf konstruktiven Wege,
entscheidbar sei;

(S.58) daß die Intuitionisten mittels einer ganz engen Mengendefinition kurzer-
hand einen großen Teil der Analysis vom mathematischen Gesamtkörper am-
putieren;
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property would require the principle of ‘tertium non datur’. For Brouwer the
elements for sets may only be determined by their defining algorithm.132

Brouwer accepted the existence of well-ordered sets according to Cantor’s
definition, first of all the order type ω of the sequence of finite order types,
which may be viewed as finished in the intensional sense. On the basis of the
repeated application of Cantor’s first two generation principles (the successor
operation and the closure by ω of all finite natural numbers), Brouwer was
also able to construct numbers of the second number class, but by restricting
himself to those two prinicples only, he was not able to view this class as a
finished totality, not even in the intensional sense.

Cantor’s third principle (Hemmungsprinzip) enabled the Cantorians to view
the second number class (as well as e.g. the power set of a denumerable set)
as a finished totality (Inbegriff); therefore it also allowed them to express the
continuum hypothesis as a concrete and possibly solvable problem. This third
principle was rejected by Brouwer: Cantor speaks about something without
giving a concrete construction rule for it, because the and so on is no longer
limited to the continued same operation and its closure by ω. For Cantor this
was no limitation but then he should at least, according to Brouwer, first prove
that the ‘Inbegriff’ is a logically sound concept; but he proved nothing of that
kind. In Brouwer’s words: ‘So Cantor loses here mathematical ground’.133 The
fact that paradoxes, like those of Russell, Burali-Forti and Richard, were the
result of the unrestricted use of those princples, was certainly not the reason for
Brouwer’s restriction to only the first two, but the paradoxes were brought up
by him afterwards to illustrate what can happen in case of an ill-founded (that
is, non-constructive) set theory.134

From a constructivist’s point of view it is not possible to consider the second
number class as a completed totality, and neither is it possible to speak of it,
since every sequence, which is definable in the second number class by means
of the two generating principles, has a limit within that class,135 hence always
larger numbers can be constructed without reaching a closure for this class, let
alone entering a third class. The only thing one can say about it is, in Brouwer’s
view, the following triviality:

If the logical entity T (power of the second number class) is intro-
duced, then the axiom T = A (A is the power of ω) will lead to a
contradiction in the logical structure; likewise the introduction of a
logical entity I, playing the part of a cardinal number, which would
be supposed to satisfy the axioms A < I < T . This is the logical re-
sult, without any value for mathematics, of these proofs by Cantor.

132Around 1907 the set definition was purely constructive. Elements are constructed and
not selected from an available stock, hence Zermelo’s Aussonderungsaxiom can play no role.
In his Begründungspapers [Brouwer 1918] and [Brouwer 1919a], the species concept appears,
and then a set becomes a property. See page 134.
133Dissertation, page 46: Cantor verliest hier dus de wiskundige bodem.
134See page 144 of Brouwer’s dissertation.
135[Schoenflies 1900b], page 46.
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If one wishes to look at it in the light of mathematics, then one finds
no more than the following : The next two statements are false:

10 The second number class is conceivable and denumerable.

20 The second number class is conceivable and there is a cardinal
number between its power and that of the first number class.

But that these two statements are false, we knew already, for we
knew that the first part of both (the second number class is conceiv-
able) is false.136

Brouwer gave no proof for the non-existence of the second number class.
There was no need for such a proof either, since the two principles only result
in denumerable ordinals, and Cantor proved already that the second number
class, which he was able to view as a totality, is non-denumerable.

So the only result consists of negative statements. A set with a cardinality
greater than ℵ0 does not exist; the maximum cardinality of a constructible set
is denumerably infinite. But nevertheless Brouwer felt the need for an extra
status for ‘sets’ like the second number class, that is, he wanted a special char-
acterization for a class of objects that can grow unlimited without ever reaching
some form of ‘being completed’, not even intensionally. We may describe them
as a process of the construction of increasing ordinal numbers, all with the same
cardinality and without a closure. It is, as it were, a ‘pseudo set’, a set ‘by way
of speaking’. This will be the subject for the next subsection.

7.6.2 The denumerably unfinished sets

Despite the restriction of the cardinalities for sets to the mentioned three (finite,
denumerably infinite and the continuum), Brouwer made one further step. He
intended to include as a possible cardinality the concept of an always repeated
process of extending a set, thereby departing from a denumerably infinite set
and one specific algorithm. Clearly, it is introduced by him as the only way to
speak in some way of the ‘totality of the well-ordered numbers’. Its cardinality is
said to be denumerably infinite unfinished, but in order to speak of this totality,
one has to reconsider the concept of ‘totality’ or of ‘set’:

The power of the totality of well-ordered numbers is denumerably
unfinished; here we call a set denumerably unfinished if it has the

136(dissertation page 147, see [Brouwer 1975], page 82.) Wordt de logische entiteit T
(machtigheid der tweede getalklasse) ingevoerd, dan zou het axioma T = A (A is de
machtigheid van ω) in het logisch gebouw tot een contradictie voeren; evenzo de invoering
van een logische entiteit I, die de logische functie van een machtigheid zou moeten vervullen,
en aan de axioma’s A < I < T zou moeten voldoen. Dat is het logische, voor de wiskunde
waardeloze resultaat dezer bewijzen van Cantor. Wil men het in wiskundig licht bezien, dan
kan men niet anders vinden dan de volgende uitspraak: Onwaar zijn de beide stellingen:

10 De tweede getalklasse is denkbaar en aftelbaar.
20 De tweede getalklasse is denkbaar, en er ligt een machtigheid tussen de hare, en die der

eerste getalklasse.
Maar dat deze twee stellingen onwaar zijn, wisten we al, want we wisten al dat het eerste

deel van beide (de denkbaarheid der tweede getalklasse) onwaar is.
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following properties: we can never construct in a well-defined way
more than a denumerable subset of it, but when we have constructed
such a subset, we can immediately deduce from it, following some
previously defined mathematical process, new elements which are
counted to the original set. But from a strictly mathematical point
of view this set does not exist as a whole, nor does its power exist;
however we can introduce these words here as an expression for a
known intention.137

The examples given for this type of set are, in addition to the totality of the
well-ordered numbers, also the totality of definable points on the continuum and
the totality of all possible mathematical systems.138

Now, the term totality should not be interpreted as if, e.g., all well-ordered
numbers form a completely defined set, since such a totality is just what Brouwer
objected to and contested. It should rather be viewed as a process of growth,
starting, for instance, from the well-ordered denumerably infinite set of the
natural numbers, and extending this by means of an algorithm, in this case the
first two generation principles, into the second number class. Since the third
principle (the ‘Hemmungsprinzip’) is not accepted by Brouwer, the resulting set
keeps its unfinished character; we might label it as a ‘pseudo-set’.

One initial remark has to be made: We note that the only places where the
concept of the denumerably infinite unfinished set is mentioned and more or
less briefly discussed, are the dissertation and the Rome lecture Die mögliche
Mächtigkeiten.139 On a few later occasions it was only mentioned, e.g. in a
footnote in the inaugural address of 1912, Intuitionism and Formalism, and in
the second Vienna lecture Die Struktur des Kontinuums,140 on page 3, where
Brouwer was speaking of ‘abzählbar unfertigviele Elemente’, and on a few
other places. The concept was not withdrawn in the Addenda end corrigenda
of 1917,141 but in Brouwer’s major papers dealing with the set concept, the
Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlosse-

137page 148 of the dissertation, see also [Brouwer 1975], page 82. De machtigheid van het
geheel der welgeordende getallen is aftelbaar onaf; we verstaan dan onder een aftelbaar on-
affe verzameling een, waarvan niet anders dan een aftelbare groep welgedefinieerd is aan te
geven, maar waar dan tevens dadelijk volgens een of ander vooraf gedefinieerd wiskundig pro-
ces uit elke zodanige aftelbare groep nieuwe elementen zijn af te leiden, die gerekend worden
eveneens tot de verzameling in kwestie te behoren. Maar streng wiskundig bestaat die verza-
meling als geheel niet; evenmin haar machtigheid; we kunnen deze woorden echter invoeren
als willekeurige uitdrukkingswijzen voor een bekende bedoeling.
138‘Het geheel der welgeordende getallen, het geheel der definieerbare punten op het con-

tinuüm en a fortiori het geheel van alle mogelijke wiskundige systemen’.
139[Brouwer 1908b]. In this lecture, held by Brouwer at the International Mathematical

Congress in 1908 in Rome, the possible cardinalities of sets are analyzed in a similar way
as in the third chapter of his dissertation, viz. by approximating the points of the set to be
investigated, via the branching method. The presentation in this lecture, however, is more
precise and also more abstract.
140[Brouwer 1930b].
141Addenda and corrigenda over de grondslagen der wiskunde, [Brouwer 1917b], see also

[Dalen 2001], page 195.
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nen Dritten142 it was not named any more as a possible cardinality. Heyting
did not speak of the concept either in his survey De telbaarheidspraedicaten van
Prof. Brouwer.143 The early papers which did deal with the concept, empha-
sized the fact that this concept refers to a method and not to a (potentially or
intensionally) finished set.

We also note that for this type of ‘set’ the starting point is always a denumer-
able set, constructed in a well-defined way, together with a previously defined
mathematical algorithm to create new elements. Hence the original well-defined
denumerable basic set becomes, during the process of growth, a subset of the
growing denumerably infinite unfinished set.

From the text of the dissertation it is not clear whether this whole denumer-
able basic set has to be employed for the construction of the first new element,
and whether the basic set plus the so far constructed new elements has to be
used for the construction of the next new element, or that any denumerable
subset of the basic set or the so far constructed unfinished set will do as well.
The latter seems more likely and the Rome lecture, Die mögliche Mächitgkeiten,
confirms this in the following terms:

Man kann eine Methode zur Bildung eines mathematischen Systems
angeben, die aus jeder gegebenen zum Systeme gehörigen abzählbaren
Menge ein neues gleichfalls zum Systeme gehöriges Element erzeugt.
Mit einer solchen Methode sind aber wie überall in der Mathe-
matik nur abzählbare Mengen zu construieren, das ganze System
ist niemals zu construieren, weil es eben nicht abzählbar sein kann.
Es ist unrichtig, dieses ganze System eine mathematische Menge zu
nennen, denn es ist nicht möglich, es aus der mathematischen Ur-
Intuition fertig aufzubauen. Beispiele sind: das Ganze der Zahlen
der zweiten Zahlenklasse, das ganze der definierbaren Punkte auf
dem Continuum, das Ganze der mathematischen Systeme.144

Hence at any stage during the construction of the unfinished set, any denu-
merable subset of it (which subset may then of course contain earlier constructed
new elements) may be employed for the process, and will result, after the ap-
plication of the algorithm, in a new element for the system.

But now another question emerges:
If we have a denumerably infinite unfinished set, e.g. the set of the definable

points on the continuum, which has as its basic set the well-defined denumerable
set η of the rationals (see below for an elaboration of this example), together
with an algorithm to construct new elements from η or every well-defined denu-
merable subset D thereof, is it then a requirement that the newly constructed
element, which, by definition, is not an element of D but does belong to the set
of definable points, is not an element of η, that is, is not a rational point?

142the Begründung papers, for short. See [Brouwer 1918] and [Brouwer 1919a].
143[Heyting 1929].
144See [Brouwer 1975], page 102; my emphasis.
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Judging by the German text above the answer seems to be affirmative: a
mathematical system is constructed, which creates from every denumerable sub-
set of the system a new element for the system. For instance, in case of ‘the
system of the definable points on the continuum’, the well-defined part of it is
the η-scale of the rationals and the application of the algorithm to every well-
defined subset of the η-scale results in a new element for the system, hence in an
irrational number. This conclusion seems justified, but the Inaugural Address
(1912) gives a clear, but different answer:

Calling denumerably unfinished all sets of which the elements can
be individually realized, and in which for every denumerably infinite
subset there exists an element not belonging to this subset, we can
say in general, in accordance with the definitions of the text: All
denumerably unfinished sets have the same power.145

Hence, according to this phrase, not every denumerably infinite subset of the
η-scale needs to result in an irrational number, and, similarly, not every denu-
merably infinite subset of N needs to result in a member of the second number
class. We will adopt this interpretation as being the most ‘common sense’ and
practical one for the following analysis. But, clear as the answer may seem,
exactly this interpretation will create difficulties, as we will see.

The conclusion so far is that a set A is denumerably infinite unfinished if
there exists an algorithm F , such that for every denumerable and well-defined
subset B of A, F assigns an element of A to B, not being an element of B. In
symbols:

∃F∀B{B ⊆ A ∧B denumerable ⇒ F (B) ∈ A−B}

Obviously, it is not forbidden that different subsets may lead to the same
new element and thus that for a definable point on the continuum or for an
arbitrary element of the second number class the subset leading to that point
or to that element can not always be uniquely determined. See for this the
examples that Brouwer gave and which are elaborated below.

Then Brouwer presented arguments for what we will call on this occasion
and in this chapter Brouwer’s lemma:

All denumerable unfinished sets have the same power.
This conclusion was already mentioned at the end of the quoted footnote

from the inaugural address (see above). Brouwer’s arguments in his dissertation
for this lemma are simple:

145[Benacerraf and Putnam 1983], page 86 or, in Dutch, [Dalen 2001], page 188: Verzamelin-
gen van construeerbare elementen, waarin naast elke aftelbaar oneindige deelverzameling een
daartoe niet behorend element kan worden aangegeven, als ‘aftelbaar onaf’ kwalificerend, kan
men in de zin van de tekst algemeen formuleren: Alle aftelbaar onaffe verzamelingen zijn
gelijkmachtig.
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While constructing, without ever coming to an end, a denumerably
unfinished set, we can map the elements in succession on the se-
quence of the well-ordered sets, which likewise is never exhausted.
Extending the notion of equality in power, so that it may be applied
to this case, we can say: All denumerably unfinished sets have the
same power.146

So, if there exists an algorithm to construct the irrationals in a systematic
way, one by one, from the set of the rationals (on the interval (0, 1)), then we can
map the successively constructed irrationals on the sequence of the well-ordered
sets, i.e. on the successive elements of the second number class ω + 1, ω + 2, ....
This construction is possible, but it fulfils only partially Brouwer’s definition for
the denumerably infinite unfinished set (see for this page 278).

But there are also arguments which, in the light of more recent develop-
ments, make the claim ‘all denumerably unfinished sets have the same power’
an implausible one. To see this, let us consider the recursive reals, which is a
subset of the definable reals, since not every definable real needs to be recur-
sively definable.147 Let a real number α be given as the limit of a convergent
sequence of nested intervals, each interval being defined by a pair of rationals.
If f is a function such that f(0), f(1), f(2), ... gives a convergent sequence of
nested intervals, defining the real number α, we say that f represents α. (If
we have a fixed effective coding of pairs of rationals onto N, f(n) may have as
output code numbers for the rational intervals). The real number α is called a
recursive real if it is represented by a recursive function; z is the index for the
recursive real α if ϕz represents α. But there is no effective procedure by means
of a decision function, given any x and y, to decide whether ϕx = ϕy,148 hence
equality of recursive reals is undecidable. However, equality of elements of the
second number class is decidable. Therefore the two unfinished sets, the re-
cursive reals and the second number class, must have a fundamentally different
structure.

Now there are many non-recursive algorithms to define irrational numbers
as new elements for the unfinished set, but the consideration just given makes
it at least doubtful that between any two denumerably infinite unfinished sets
always a one-to-one mapping can be given.

It will turn out that the actual execution of a ‘one-to-one mapping onto’ for
the two given examples (viz. the well-ordered numbers and the definable points
on the continuum, in combination with a specified algorithm for each of the two
sets) creates difficulties, and may even lead to the conclusion that Brouwer’s
definition for this type of set (which has to satisfy the lemma mentioned above)
is not adequate.
146Bij het nooit klaarkomend opbouwen van een aftelbaar onaffe verzameling kunnen we al

voortbouwende naar opvolging afbeelden op de rij der welgeordende verzamelingen, die even-
eens nooit uitgeput raakt; het begrip van gelijkmachtigheid uitbreidend, om het hier toepas-
baar te houden, kunnen we zeggen: Alle aftelbaar onaffe verzamelingen zijn gelijkmachtig.
147See [Rogers 1987], page 371.
148ibid, page 33.
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Before discussing these examples, we first draw the reader’s attention to the
following remark that Brouwer added in a footnote to his lemma:

Still, in a certain sense, one can say that denumerably unfinished sets
have the same power as denumerable sets, for every denumerably
unfinished set can be mapped on ω2 (every part which I add in the
course of the construction of the denumerably unfinished set, can be
mapped on ω, for it is denumerable; constructing such a mapping for
each constructed part, I map the unfinished set on ω+ω+ω+ ... =
ω2); only this mapping remains always unfinished; the proof that a
mapping of a denumerably unfinished set on a denumerable set is
impossible, holds only for a finished mapping.149

Brouwer explained in this argument that a denumerably infinite unfinished
set is denumerable ‘in a certain sense’, but that the relevant mapping is then
necessarily an unfinished one. However, the concept ‘unfinished mapping’ is
neither defined, nor explained. Two interpretations present themselves, both
involving questionable implications:

On the one hand we can define it as a mapping of which the domain is
a denumerably unfinished set. But then, if this mapping is one-to-one, the
range necessarily has to be a denumerably unfinished set too. To see this,
suppose that F is a one-to-one mapping from a denumerably unfinished set A
onto a denumerable but (intensionally) finished set B, hence F−1 : B → A is
defined too. But B is denumerable, hence F−1B is denumerable, and is assumed
to be composed of all elements of A since the mapping is one-to-one onto.
But now the algorithm for the creation of new elements for the denumerably
unfinished set A may be applied to F−1B, being a well-defined set of elements
of A. This results in a new element a ∈ A with a /∈ F−1B (according to the
definition of a denumerably infinite unfinished set), hence Fa /∈ B. This is a
contradiction, based on the assumption that B is denumerable. Therefore B
must be denumerably unfinished too.

So an unfinished mapping (according to this first interpretation) of a denu-
merable unfinished set onto ω2 is impossible, and in this case Brouwer’s argu-
ment fails.

On the other hand we can imagine a one-to-one mapping of A onto B (both
infinite sets, but either both (intensionally) finished or both unfinished) to be a
finished mapping if for every a ∈ A its image Fa ∈ B can be uniquely determined
and, conversely, for every b ∈ B its image F−1b ∈ A. This definition also applies
149dissertation, page 149: Intussen kan men in zekere zin ook zeggen, dat aftelbaar onaffe

en aftelbare verzamelingen gelijkmachtig zijn, daar elke aftelbaar onaffe verzameling is af te
beelden op ω2 (immers elk gedeelte, dat ik telkens weer toevoeg, als ik de aftelbaar onaffe
verzameling opbouw, is af te beelden op ω, immers aftelbaar; construeer ik zulk een afbeelding
voor elk toegevoegd gedeelte, dan beeld ik de onaffe verzameling af op ω + ω + ω + ... = ω2);
alleen is deze afbeelding steeds onaf; het bewijs, dat een afbeelding ener aftelbaar onaffe
verzameling op een aftelbare onmogelijk is, geldt dan ook alleen voor een affe afbeelding.
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if A and B are both denumerably unfinished, viz. if the original denumerable
parts are mapped one-to-one and if extensions of A and B, each by a new
element according to its own algorithm, are mapped onto each other (this is,
contrary to Brouwer’s theorem, only sometimes possible, under conditions as
specified on page 278; see also the remark about McCarty’s approach on page
277).

In this light, then, we have to find an interpretation for the concept ‘un-
finished mapping’, an interpretation that does (at least partly) justice to the
quoted paragraph. When building up the denumerably infinite unfinished set of
the second number class, departing from N, we easily can, at any stage, prove
the denumerability of the result so far. For instance, after the construction of
n+1 new elements ω, ω+1, ..., ω+n of the unfinished set of the second number
class (which is then composed of the elements 1, 2, 3, ..., ω, ω+ 1, ..., ω+n, since
the second number class is cumulative to the first class), we prove its denumer-
ability by ordering them as ω, ω + 1, ..., ω + n, 1, 2, 3, ... and by mapping these
elements respectively on 1, 2, ..., n+ 1, n+ 2, n+ 3, n+ 4, ....150

Hence, to prove its denumerability for different values of n, no fixed (or
‘finished’) mapping is available. For each next value of n, that is, for each
new element of the second number class, a different mapping onto N has to be
devised, so under this interpretation an unfinished mapping necessarily refers to
a mapping between an (intensionally) finished set and an unfinished one (both
denumerably infinite).

It seems reasonable to suppose that Brouwer had such an interpretation in
mind for the concept ‘unfinished mapping’, but it still remains a misleading
term, since it simply is not a mapping. In the text he claims that ‘every de-
numerably infinite unfinished set can be mapped on ω2 (and thus on ω). This
cannot be true since an unfinished mapping is not a mapping of two sets onto
each other. A mapping of one set onto another either has to proceed via a
finished mapping, or is impossible, And in the case of an ‘unfinished mapping’
of a denumerably unfinished set onto ω2, this is merely a per element changing
finished mapping of the part of the denumerably infinite unfinished set so far
constructed, onto ω2. So there cannot exist a mapping of the second number
class (or any denumerably unfinished set) onto ω2.

A positive outcome of this analysis is, that it clearly demonstrates the fun-
damental difference in cardinality between a denumerable and a denumerably
unfinished set.

Brouwer made some remarks about unfinished mappings in his eighth note-
book, thereby referring to work of Bernstein and Hardy. But neither of them
used the expression ‘unfinished mapping’ as such; the term is Brouwer’s (see
page 284).

Brouwer’s concluding remark on the subject of the denumerably infinite
unfinished sets is the following:

150Different techniques of mapping apply after any denumerable infinite number of con-
structed elements.
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Thus we distinguish for sets the following cardinal numbers, in order
of magnitude:

1. the various finite numbers.

2. the denumerably infinite.

3. the denumerably unfinished.

4. the continuous.151

In a handwritten remark in his own copy of the dissertation, Brouwer noted
that the highest possible cardinality seems to be the continuum of a ‘denu-
merably unfinished number of dimensions’. The remark continues somewhat
enigmatically:

But the continuum of two and more dimensions can only be con-
ceived as a continuous cardinality, if an unknown point can be ap-
proximated in a denumerable sequence (in all coordinates together,
for if I want to handle one coordinate first, that would never ter-
minate, and the other coordinates never got their turn). But that
approach is only possible if the decimal sequence ω is ordered as a
certain ordinal number, so that all coordinates are treated in turn.
Hence the sequence of coordinates is a part of that denumerable
number, so it is also denumerable. And the denumerably unfinished
number of dimensions is a part of it.152

Hence the continuum of a denumerably unfinished number of dimensions also
has the cardinality of the continuum.

We will now analyze the first two of the three examples that were mentioned
on page 148 of Brouwer’s dissertation: the second number class and the definable
points on the continuum. In both examples we will encounter some difficulties.

Example 1: the second number class

For all denumerably unfinished sets the requirement applies that only a well-
defined denumerable subset of it, together with a previously defined algorithm,

151Dissertation, p. 149: We onderscheiden dus dan voor verzamelingen naar volgorde van
grootte de volgende machtigheden:

1. de verschillende eindige.
2. de aftelbaar oneindige.
3. de aftelbaar oneindig onaffe.
4. de continue.

152Maar het continuüm van 2 en meer dimensies kan als continue machtigheid alleen worden
gezien, als een onbekend punt in een aftelbare reeks, kan worden benaderd (in alle coördinaten
tezamen; want als ik eerst een wou doen, kwam ik daarmee nooit klaar, en kwamen de andere
niet aan de beurt). Maar die benadering kan alleen als de decimaalreeks ω is gerangschikt als
een bepaald ordinaalgetal, om zo alle coördinaten op hun beurt een beurt te geven. De reeks
der coördinaten is dus een deel van dat aftelbaar getal, is dus ook aftelbaar. En het aftelbaar
onaffe aantal dimensies is een onderdeel daarvan.
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is the point of departure for the construction of a new element. In the case of the
second number class the choice of N, the set of the natural numbers, or of any
denumerably infinite well-defined subset B of N as a well-defined subset, seems
to be the obvious one, together with the successor operation as the algorithm
F , to be applied to the supremum of the original set.

There is of course no difference in the resulting element if we take as the
original set any denumerably infinite subset of N and if we define the first new
element ω to be the supremum of that set. Every subsequent element after the
first one is then defined to be the successor of the supremum of the denumerable
subset.153

Symbolically, for the first new element:
ω = sup{α|α ∈ N} or ω = sup{α|α ∈ B,B ⊂ N, B infinite}.

And for subsequent new elements we have:
αnew = sup{α|α ∈ S}+1, where S is the denumerable result of the construc-

tion so far, or an infinite subset thereof which contains as one of its elements
the last constructed element.

Note that with this algorithm every denumerably infinite subset with the
same supremum results in the same new element.

The obvious alternative is to consider as algorithm the application of both
generating principles of Cantor, which indeed results in every desired number
of the second number class. Rejection of Cantor’s third principle (the Hem-
mungsprinzip) then guarantees us the unfinished character of this class. But this
algorithm involves the idea of the ‘transfinite application’ of a rule or a combina-
tion of rules, a problem which Borel encountered in his attempt to define the sec-
ond number class.154 Nevertheless this is the only possible way if one maintains
that every number of the second number class has to be a possible candidate
for a new element of the unfinished set. At any moment during the process of
growth, the set reached at that stage can be viewed as a new basic well-defined
denumerable set. So every ordinal number m1ω

p1 +m2ω
p2 + ...(pr > pr+1) is,

for every mi and pi, point of departure. Conversely every number of the second
number class can now be viewed as a result of the algorithm, thus preventing
the problem of running into the barrier of ω2 after ω times the application.

Example 2: the definable points on the continuum

We now consider the set of the definable continuum, that is, the totality of all
points that can be defined with the help of some fixed algorithm, to be applied
to a well-defined subset of that set. The rational scale η on the continuum is
the most natural and obvious point of departure for its construction.

153If we take for the subsequent element only the supremum of the defining subset, we would
not create any new element since the supremum of, say, {1, 2, ...ω, ω + 1} is ω + 1, which is
already in the defining set.

The definition for the first new element ω has to be just the supremum; otherwise we would
never get ω, since sup{n|n ∈ N}+ 1 = ω + 1.
154See [Borel 1950], page 112 ff, La croissance des fonctions et les nombres de la deuxième

classe.
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Suppose we have a well-defined denumerable subset D of the rational scale.
We now seek an algorithm G, such that G(D) results in a new element, i.e.
an element not belonging to D. This algorithm G will turn out to have the
character of a ‘diagonalization’ procedure or of a ‘spoiling argument’.155

By a simple transformation we can, without loss of generality, restrict our
analysis to the open scale (0, 1), as the most general interval, since, if D is
the unbounded rational scale, we can transform it into an equivalent bounded
subset D′ by the transformation x′ = 1

π arctanx, with x′ ∈ D′ and x ∈ D. D′

is then bounded on the open interval (0, 1).
Since D is denumerable, we can write its elements as an infinite sequence

(a0, a1, a2, ...), all on the interval of rationals (0, 1). A suitable algorithm now
consists of the following procedure: we split the interval of rationals into three
parts of equal magnitude (the boundaries being rational numbers), resulting in
three half-open or open segments (or possibly one closed segment). At least one
of the three segments will not contain a0 as an inner point (possibly exactly
one, if a0 is on the boundary between two segments).156 Select a segment not
containing a0 as inner element, in the preferred order: 1) the middle segment of
the three, 2) the right one, 3) the left one. The preference for the middle segment
is needed to preclude the possibility that the resulting new point will either be
0 or 1, which numbers fall outside the interval. Again split the selected segment
into three equal parts; at least one of the three segments will not contain a1

as inner element (possibly neither of the three will contain a1 as such a point),
and again select such a segment in the same preferred order. Proceeding in
this way ω times results in a set of nested intervals with an ultimate width
smaller that any positive rational number, thus defining a new point, in virtue
of its algorithmic construction belonging to the definable continuum, but not
belonging to D. Note that the resulting point may very well be a rational point
and, in fact will be a rational point if we end up, after finitely many steps, in
a segment which is nowhere dense, i.e. which contains only a finite number of
elements, as the reader may verify.

Now it is of course a condition to be an element of this type of denumerably
unfinished set that it is defined by means of the given algorithm G, but we can
prove that every element of the definable continuum (every point which is well-
defined in some way) can also be defined by applying our algorithm G on some
well-defined denumerable subset of the definable continuum. The question now
is to establish such a subset. Observe that the Cauchy-sequence which defines
the point concerned, does not automatically satisfy the requirements of the
defining denumerable subset that we are looking for, since the application of
the algorithm G to the Cauchy-sequence most likely will result in a different

155See page 5.
156For the sake of simplicity we will avoid in this way the question in which segment exactly

the point a0 is. Since the boundary certainly belongs to one of the segments (one of the two
segments being open, the other being half-open or closed), a0 belongs to that segment too,
but now we need not define which of the two neighbouring segments is the open one and which
the closed one. The boundary simply belongs to one of the segments, without specifying to
which one.
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point, as the reader may verify. Therefore, for some defined point A on the
bounded open continuum (0, 1) we proceed as follows:

Split the interval (0, 1) into three equal (half open or open) segments C1, C2

and C3,
1. If A is in C1, select a0 on the boundary of the segments C2 and C3, (i.e.

the rational 2
3 , this boundary of course does belong either to C2 or to C3; note

that this also applies, without explicitly mentioning it, to the following options
under 2, 4 and 5),

2. If A is on the boundary of the segments C1 and C2, select a0 in the middle
of the segment C3 (i.e. the rational 5

6 ),
3. If A is in C2, select a0 in the middle of the segment C1 ( 1

6 ),
4. If A is on the boundary of C2 and C3, select a0 in the middle of C1 ( 1

6 ),
5. If A is in C3, select a0 on the boundary of C1 and C2 ( 1

3 ).
Now split the segment containing A into three equal parts and repeat the

same procedure to select the point a1, etc. After ω repetitions we obtain the
denumerably infinite subset of rationals (a0, a1, a2, ...), which, after application
of the algorithm G, results in a set of nested intervals, which will define the
same point A again, as can again be verified by the reader

On the basis of the first part of this analysis of the ‘definable continuum’ one
might get the impression that the intuitive continuum itself (or, anachronisti-
cally, the full continuum of the reals) is also denumerably unfinished,157 since
by means of the everywhere dense scale η any irrational point on the continuum
should be definable by means of a denumerable subset of the rationals according
to the just given procedure. Applying the algorithm G to this subset will result
again in the given ‘arbitrary point’.

But this analysis does not hold for the (intuitive) continuum, since, at this
stage of Brouwer’s development, there is no ‘arbitrary element’ on the contin-
uum; the vast majority of points on it cannot be ‘named’ by some defining
algorithm, or by some well-defined set.

In one of Brouwer’s notebooks this is stated as follows:

(VII-3) I cannot name the points of the linear continuum, but just
point at them (or rather imagine myself that I point at them).158

On the equivalence of denumerably infinite unfinished sets

Now, on the basis of Brouwer’s argument it seems as if we can map the elements
of the denumerably infinite unfinished sets of the second number class and of the
definable points of the continuum one-to-one onto each other in the following
way:

157See also below, under Mannoury’s comment on this concept.
158Ik kan de punten van het lineair continuum niet noemen, maar aanwijzen (of althans mij

denken dat ik ze aanwijs).
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Denumerable subsets of both sets can be mapped one-to-one onto each other
because of their denumerability (in the examples: B ∼ D), and the newly
defined elements F (B) and G(D) are subsequently mapped onto each other.

This mapping seems to be complete, since every element of the second num-
ber class and of the definable continuum can be determined by their respective
algorithms, to be applied on a suitable denumerable subset.

Now, it is indeed the case that, in the given examples both algorithms create
from a denumerably infinite well-defined subset of the second number class, or of
the definable continuum respectively, a new element, different from the elements
of the well-defined subset. But we must realize that every well-defined denumer-
ably infinite subset of N, including N itself, will, with the given algorithm, result
in the same new element ω, and never in another finite number different from
the elements of the defining subset, whereas not every well-defined subset of η
will result in an irrational number, let alone the same irrational number. Many
subsets of the rationals will have another rational as a result; in many cases
even the same rational will result from an infinite number of different subsets
of η (of course this new rational is always different from the rationals of the
defining subset).

In fact one can easily define two different denumerable sets of rational num-
bers, giving rise to two different rationals or two different irrationals or one
rational and one irrational, whereas the corresponding denumerable subsets of
N, which result from the mapping of η onto N, both give rise to the same new
element ω.

However, we must call to mind Brouwer’s argument leading to his lemma
(as we baptized it just for this chapter), which was the following: During the
construction of the elements of any denumerably infinite unfinished set we can
map every next element on the next element of the, always denumerable but
always unfinished, sequence of the well-ordered sets, i.e. the second number
class. Then the two sets certainly remain of the same power, without the need
to alter the mapping after every next step. But in this case, it is a strict
condition for a complete one-to-one mapping that the definable numbers on
the continuum are constructed in a systematic way, hence that there exists a
system according to which the definable infinite subsets of the rationals for the
construction of the successive definable numbers are also given in a systematic
(algorithmic) way, or, which amounts to the same, that all definable subsets of
the rationals on the unit interval can be coded in order to give them a sequence
number. This coding and its corresponding sequence number is required to
identify the subset of the rationals of which the resulting irrational is mapped on
a certain given number of the second number class. McCarty, in his dissertation
Realizability and Recursive Mathematics, gave construction rules for this coding.
In its Introduction he wrote:

If recursive mathematics is a field of mathematics all of whose ob-
jects and all of whose basic morphisms are computable, then the
early undecidability results, for arithmetic and logical validity, can
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be viewed as setting limits to that field, as long as computability is
understood as recursivity.

(...)

It was natural to ask how much mathematics could be accomplished
within the limits and to wonder what its character might be.

(...)

More significantly, the restriction to coded domains is not as severe
as might first appear.

(...)

Any subset of ω, the set of natural numbers, is, in this sense, auto-
matically coded and set-theoretic operations on Pω, the powerset of
ω, affords prime candidates for ‘recursive’ investigation.159

But this only refers to subsets of the scale of the rationals, thus excluding the
newly constructed irrationals, hence this mode does not fully satisfy Brouwer’s
definition of the unfinished set. Of course, when McCarty states ‘any subset of
ω ...’, he is referring to ‘any definable subset of ω ’, since we cannot speak of
other subsets; but his subject is recursive mathematics, and therefore he speaks
about recursively definable subsets. And we emphasized earlier that equality of
elements on ω1 (the second number class) is decidable, in contrast to equality of
recursively defined elements on the definable continuum, which is not decidable.

On top of that, we still have the additional problem that not every definable
subset of the η-scale will result in an irrational number, whereas every definable
subset of N produces an element of the second number class, as we explained
above.

So, despite the fact that the point of departure is a well-defined denumerable
set and an algorithm (a ‘generating function’) to construct new elements, there
still seems to be a missing condition in Brouwer’s definition of the denumerably
infinite unfinished set: only irrational results have to be mapped on the succes-
sive members of the second number class, and an irrational number as a result
of the application of the algorithm can only occur if after every next step the
selected segment contains at least one limit point, not being a rational itself.

A possible way out of this dilemma

But there remains one positive property of the denumerably infinite unfinished
set to be discussed: the second number class can be embedded one-to-one into
the definable continuum (or in every denumerably infinite unfinished set for that
matter). This may allow us to straighten out the problems we encountered at
the previous pages.

Suppose we have the same algorithm G which enables us to construct from
every denumerably infinite subset of the η-scale a new element, not belonging
159[McCarty 1984], page 7, 8.
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to that subset. We now begin the construction of a new definable number by
the application of G to the whole η-scale; this results in a new number, not
belonging to the η-scale, hence an irrational number i1, which we map on ω+1.
Next we put i1 as the first element in the denumerable arrangement of the η-
scale, hence in front of the enumeration of the rationals. Applying G again
to this scale, i.e. on the ‘η-scale-plus-one’, gives us a second irrational number,
different from the first one, and we map this second irrational number on ω+2.
Proceeding in this way, including a closure after ω times the application of the
algorithm and then followed by the ω+1st application, and so on, will result in
a one-to-one mapping of the second number class onto a subset of the definable
continuum.

If Brouwer’s definition of the denumerably infinite unfinished set is altered in
such a way that the first application of G should be on the whole denumerably
infinite set (and not on a well-defined proper subset of it), and subsequent
applications of G then are on the ‘result so far’, with the newly constructed
elements put in front of the original defining denumerably infinite set, then a one-
to-one mapping between the second number class and the definable continuum
(defined according to this revised algorithm) becomes feasible.

The stated condition of page 148 of the dissertation:

‘(...) we can never construct in a well-defined way more than a
denumerable subset of it’

should then be interpreted as follows: the ‘subset constructed in a well-defined
way’ is the original denumerable set, which is now viewed as a subset of the al-
ways growing denumerably infinite unfinished set under the successive addition
of the newly constructed elements in front of its enumeration.

But note that the interpretation which we sketched earlier, viz. that the
newly constructed elements in their order of construction (the choice of the
subset on which G is applied then being necessarily a random one), are mapped
on ω+1, ω+2, ω+3, ..., also remains a valid interpretation, be it that the result
is not uniquely determined, and that only the irrational results of the algorithm
G count (which irrational result will always be the case if the subset to which
G is applied, is everywhere dense).

But it is highly unlikely that Brouwer had this interpretation in mind, be-
cause, in view of the random character of the result, the same objections apply
now as the ones that Brouwer raised against the axiom of choice.

7.6.3 The Mannoury review on the denumerably unfin-
ished sets and Brouwer’s reply to it

It is in one of the two reviews that Mannoury wrote about Brouwer’s disser-
tation,160 that the denumerably infinite unfinished cardinality showed up once
more in a published paper.
160Both reviews are included in [Dalen, D. van (ed.) 1981b] and in [Dalen 2001]. The first

review was published in 1909 in the Nieuw archief voor Wiskunde. This review is the one of
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He raised objections to more topics than the one under discussion now, but
we will confine ourselves to his comment on this type of cardinality.

For Mannoury the concept of ‘denumerably unfinished’ implies a certain
vagueness and indefiniteness. After quoting verbatim the definition (or charac-
terization) of the denumerably infinite unfinished set from Brouwer’s disserta-
tion (page 148) Manoury commented:

If we understand it correctly, this definition (?) is satisfied by all
point sets with a higher cardinality than that of denumerably infinite
(Cantor’s first cardinality), but the author gives as an example the
totality of the definable points on the continuum, i.e. of those points
or numbers, each of which can be defined by a finite number of
symbols, either digits, signs or words.161

According to Mannoury, this last phrase has to be interpreted in the sense
that Brouwer’s ‘unfinished sets’ are just denumerable ones, ‘arranged or de-
fined in a special way’. Mannoury’s concluding remark about the denumerably
unfinished cardinality is then:

Anyway, the expatiation of the author about the unconceivability
of Cantor’s second number class can only be made to correspond
with this interpretation (which interpretation is, however, in direct
contradiction with the inclusion on the list of possible cardinalities
of the ‘unfinished’ sets).162

About the second number class Mannoury agreed with Brouwer that Can-
tor’s definition of this class is at least incomplete. The ‘Inbegriff aller’163 is
too vague a concept in Mannoury’s eyes for a proper mathematical definition.
But for him the insufficiency of the definition by Cantor does not imply the
impossibility of a better and more precise one:

The much more strict introduction of higher cardinalities with the
help of the ‘assignment’ or transfinite exponentiation is discussed in
passing by the author, but not in the least refuted.164

interest to us now. The other one is a more popular and less mathematical-technical review,
and was published in 1907 in De Beweging.
161Aan deze definitie (?) nu voldoen, als wij haar goed begrijpen, alle puntverzamelingen van

hogere machtigheid dan die van het aftelbaar oneindige (Cantors eerste machtigheid), doch de
schrijver noemt als voorbeeld het geheel der definieerbare punten op het continuüm, d.i. van
die punten of getallen welke ieder afzonderlijk door een eindig aantal symbolen, hetzij cijfers,
tekens of woorden, kunnen worden gedefinieerd.
162op. cit. page 162: Trouwens alleen met deze bedoeling (welke dan evenwel in lijnrechte

strijd is met het opnemen van de ‘onaffe’ verzameling in de reeks der mogelijke machtigheden)
kan in overeenstemming worden gebracht schrijvers uitvoerig betoog, dat Cantors tweede
getalklasse ondenkbaar is.
163See [Cantor 1932], page 197; see also section 1.1.5. of this dissertation.
164op. cit. page 162: De veel strengere invoering der hogere machtigheden door middel der

‘belegging’ of transfiniete machtsverheffing, wordt door schrijver dan ook wel terloops bespro-
ken, doch allerminst weerlegd.
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Brouwer’s reply, in which Mannoury’s review is discussed step by step, is
included in the mentioned two books.165 Item 3e of Brouwer’s reply is about
the denumerably infinite unfinished cardinality and he only examined the con-
tradiction that was observed by Mannoury: on the one hand, one of Brouwer’s
examples of a denumerably infinite unfinished set is the totality of the definable
points on the continuum; on the other hand, (and Mannoury agreed with this
claim) this set is just denumerably infinite.

For Brouwer there exists no contradiction here. For a denumerably infinite
system, use is made of the possible combinations of a finite number of earlier in-
troduced symbols. He thereby referred to page 170 of his dissertaton, apparently
to the first footnote on that page:

For the set of all combinations of a finite number of signs (in which
the sign = is included and which are finite in number for each math-
ematical theory) remains denumerable, a fortiori this holds for the
set of those special combinations of signs which may be read as true
equations.166

However, for the totality of definable points on the continuum new symbols
may be introduced, time and again, indefinitely many times, replacing an infi-
nite number of earlier introduced symbols, if so desired.

So far Brouwer’s comment on the relevant part of Mannoury’s review. But
Brouwer could have said more in his reply to Mannoury, so it seems.

On the basis of Brouwer’s definition alone (although we concluded to its
possible incompleteness), Mannoury inferred that all point sets of higher car-
dinalities than the first one, i.e. higher cardinalities than denumerably infinite,
have the denumerably infinite unfinished cardinality. Only as a result of the
examples that Brouwer gave for sets of this cardinality, Mannoury changed his
conclusion and declared the denumerably unfinished sets to be just denumerable
sets, arranged in a special way.

But both conclusions are wrong, and they are wrong precisely on the basis
of Brouwer’s definition and characterization.

Let us consider first Mannoury’s conclusion that all sets of higher cardinality
than the first belong to the class of the denumerably unfinished sets. Hence
according to him the continuum is denumerably unfinished. ‘Continuum’ can,
and (in 1907) should be read as ‘intuitive continuum’. In that case the answer
is clear: It is a separate cardinality, not comparable to any other.

In case we read it (again anachronistically) as the ‘full continuum of the
reals’, the following summary of our earlier argument about this point applies:

165[Dalen, D. van (ed.) 1981b] and [Dalen 2001]. This reply was published in 1908 in the
Nieuw Tijdschrift voor Wiskunde.
166Immers het geheel van alle combinaties van een eindig aantal der ingevoerde tekens (waar-

toe het teken = behoort, en die eindig in aantal zijn voor elke wiskundige theorie) blijft
aftelbaar, a fortiori dus het geheel van die bijzondere der tekencombinaties, die als ware
vergelijkingen zijn te lezen.
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Every well-defined denumerable subset of the continuum results, when the
prescribed algorithm is applied to it (including our proposed ‘improvement’ on
it; see page 278), in an irrational number, not belonging to the denumerably
unfinished set constructed so far, but certainly belonging to the continuum.
However, the converse does not apply. Indeed, for every definable irrational
number on the continuum a denumerable subset can be constructed which,
when the algorithm is applied to it, again results in that definable irrational
number. But the vast majority of points on the continuum is not definable, i.e.
cannot be specified by a denumerably infinite well-defined sequence of rationals
and therefore the continuum is not denumerably infinite unfinished. But the to-
tality of definable points on the continuum certainly has that property, since for
the definition of its elements (i.e. for the definition of the definable irrationals)
always new symbols may be introduced, as Brouwer explained in his reply.

But also Mannoury’s revised conclusion that denumerably infinite unfinished
sets are merely denumerably infinite sets, defined or arranged in a special way,
is contestable. This interpretation does not do justice to the concept of this
type of set or cardinality either. Brouwer stated explicitly that

from a strictly mathematical point of view this set does not exist as
a whole, nor does its power exist; however we can introduce these
words here as an expression for a known intention.167

Hence this type of set is an expression for a process of extending a well-
defined denumerably infinite set with always more new elements, not belonging
to the denumerable set, but which are definable in terms of denumerably many
elements of that set. And this is certainly not one of the two interpretations,
given by Mannoury.

Brouwer did not go into these details of Mannoury’s misinterpretation of this
type of set; he limited his comment to the given short argument, although, in
our view, he had better ones to counter Mannoury’s objections. A reason could
be that Brouwer already started to distance himself from the whole concept.
He made clear that there was little use for the concept in his intuitionistic
mathematics; it disappeared for all practical purposes. It only turned up a few
times in passing after the year of publication of this reply (although the concept
was not retracted in the ‘Addenda and Corrigenda to the dissertation’ from
1917).

One of the last publications in which the concept returned is Brouwer’s
Inaugural Address Intuitionism and Formalism from 1912 on the occasion of his
nomination to professor in mathematics at the Amsterdam University. There are
three published versions of this lecture:168 the academic version, the commercial

167dissertation, page 148: Maar streng wiskundig bestaat die verzameling als geheel niet;
evenmin haar machtighied; we kunnen deze woorden echter invoeren als willekeurige uit-
drukkingswijzen voor een bekende bedoeling.
168See [Dalen 2001], page 177.



7.6. CANTOR’S TRANSFINITE NUMBERS 283

edition and the English translation by A. Dresden, which latter was published
in the Bulletin of the American Mathematical Society.169

In this lecture the question is asked:

The formalist further raises the question, whether there exist sets of
real numbers between 0 and 1, whose power is less than that of the
continuum, but greater than aleph-null, in other words, ‘whether the
power of the continuum is the second smallest infinite power’, and
this question, which is still waiting for an answer, he considers to
be one of the most difficult and most fundamental of mathematical
problems.170

One of the possible, and for the intuitionist obvious, answers goes as follows:

If we restate the question in the form: ‘Is it possible to establish
a one-to-one correspondence between the elements of a set of de-
numerably infinite ordinal numbers on the one hand, and a set of
real numbers between 0 and 1 on the other hand, both sets being
indefinitely extended by the construction of new elements, of such
a character that the correspondence shall not be disturbed by any
continuation of the construction of both sets?’ then the answer must
also be in the affirmative, for the extension of both sets can be di-
vided into phases in such a way as to add a denumerably infinite
number of elements during each phase.

[with, in a footnote, the addition: ]

Calling denumerably unfinished all sets of which the elements can
be individually realized, and in which for every denumerably infinite
subset there exists an element not belonging to this subset, we can
say in general, in accordance with the definitions of the text: ‘All
denumerably unfinished sets have the same power’.171

169For the academic version see [Brouwer 1912], the commercial version is included in
[Brouwer 1919c]. Both Dutch editions are brought together in a very surveyable way, by
means of insertions and footnotes, and is included in [Dalen 2001]. For the English transla-
tion see [Brouwer 1913], also included in [Benacerraf and Putnam 1983], page 77 et. seq.
170[Benacerraf and Putnam 1983], page 85, 86; Dutch text [Dalen 2001], page 187: [De for-

malist] stelt de vraag, of er verzamelingen van reële getallen tussen 0 en 1 bestaan, waarvan
de machtigheid kleiner is dan de continue, doch groter dan aleph-nul, m.a.w. ‘of de con-
tinue machtigheid op één na de kleinste machtigheid is’, en beschouwt deze vraag, die nog
steeds geen oplossing heeft gevonden, als een der moeilijkste en fundamenteelste wiskundige
problemen.
171See [Benacerraf and Putnam 1983], page 86; in Dutch [Dalen 2001], page 188: Preciseert

men de vraag in de vorm: ‘Kan men, onbepaald voortbouwend enerzijds aan een verzameling
van aftelbaar oneindige ordinaalgetallen, anderzijds aan een verzameling van reële getallen
tussen 0 en 1, een door de voortzetting der constructie niet gestoorde één-éénduidige corres-
pondentie tussen de elementen der beide verzamelingen tot stand brengen?’ dan moet het
antwoord eveneens bevestigend luiden; immers voor beide verzamelingen kan men de con-
structie in zodanige fasen verdelen, dat gedurende elke fase een aftelbaar oneindig aantal
elementen aan de verzameling wordt toegevoegd.

[Met in een voetnoot de toevoeging:]
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In intuitionistic set theory the concept denumerably infinite unfinished set
subsequently disappeared; it is not mentioned anymore in Heyting’s survey
[Heyting 1929]. The reason for this is the different approach towards the set
concept with the help of choice sequences, in which there is no place any more
for this type of cardinality. A set becomes a law. However, it was mentioned
occasionally, e.g. in the second of the Vienna lectures, as we noted earlier on
page 267.

In 1917 the concept was also mentioned in one of the theses at the end of the
doctoral dissertation of B.P. Haalmeyer, a student of Brouwer. He claimed that
either this type of cardinality is not basically a new one and therefore has to be
removed from the list of four possible powers, or, if one wants to view it as a
new cardinality, then its place in the order of magnitudes is unjustified. There
is, of course, no further explanation given (typical for this type of statements),
but undoubtedly Haalmeyer did not consider it as a separate cardinality, and
simply placed it under the denumerably infinite one since the result is always
denumerable (which is very well defensible).

But an interesting coincidence is that a copy of Haalmeyer’s list of theses
is kept in the Brouwer archives, and that this copy is filled with a number of
handwritten comments by Brouwer on some of the theses. Interesting for the
present discussion is the fact that one of the comments is about thesis 8, the
one under consideration now. In his comment Brouwer still defended this type
of cardinality. He claimed that the denumerable unfinished set A1 ‘überdeckt’
the denumerable set A.172 Moreover, the elements of A and A1 are ‘finished’,
contrary to the arbitrary elements of the continuum C. Hence C > A1 if at
least, according to Brouwer, the ‘unfinished mappings’ of Bernstein and Hardy
are admitted (see page 271). This last remark by Brouwer is a comment on
Bernstein’s Untersuchungen aus der Mengenlehre173 and most likely on Hardy’s
paper A theorem concerning the infinite cardinal numbers, published in the
Quarterly Journal of Mathematics 1903, page 87.174 But note that, despite
references to this type of cardinality as late as 1930 (in the second Vienna lecture
and even later) it did no longer play any role in intuitionistic mathematics. In
the first Begründung paper, page 7, the denumerable cardinality is subdivided
in abzählbar, zählbar, auszählbar, durchzählbar and aufzählbar.

Verzamelingen van construeerbare elementen, waarin naast elke aftelbaar oneindige
deelverzameling een daartoe niet behorend element kan worden aangegeven, als ‘aftelbaar
onaf’ kwalificerend, kan men in de zin van de tekst algemeen formuleren: ‘Alle aftelbaar
onaffe verzamelingen zijn gelijkmachtig’.
172The notion ‘überdeckt’ is defined in [Brouwer 1918], page 11.
173[Bernstein 1905].
174This conjecture is based on notebook 8, pages 47, 48 and 80. On these pages of this

notebook Brouwer discussed Bernstein’s proof of the theorem Das Kontinuum ist äquivalent
der Gesamtheit O aller Ordnungstypen einfach geordneter Mengen erster Mächtigkeit (see
[Bernstein 1905], §8 and 9). But, Brouwer commented and criticized in his notebook, in
his comparison of cardinalities Bernstein only spoke of (and could only speak of) unfinished
mappings.

Also Hardy, in his proof of 2ℵ0 ≥ ℵ1 in the mentioned paper (cf. [Hardy 1979], page 427
ff.) defines a correspondence between numbers of the second number class and sequences of
numbers (from the first or the second number class). This mapping also is unfinished.
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7.6.4 The notebooks on Cantor’s transfinite numbers

Transfinite numbers also have to be based on the mathematical ur-intuition,
which excludes, as we saw, higher cardinalities than ℵ0:

(II-29) Transfinite numbers have to be built intuitively in full given-
ness; after that one can reason about them logically; but they differ
in nature from a logical system.175

Brouwer’s view on Cantorian numbers follows from the several discussions
we presented earlier, and this view is not basically different from what is said
about these numbers in the notebooks. Towards the end of the sixth notebook
several pages are devoted to the discussion of the Cantorian cardinalities. In the
following quote the existence of elements of the second number class is admitted,
but not the cardinality of their totality:

(VI-37) I shall thus have to demonstrate that Cantor’s Aleph-eins
makes no sense. No, his higher numbers certainly exist; only I just
know certain defined individuals among them, and the few defined,
which I can indicate, are denumerable.176

That is: numbers larger than ω exist, hence elements of the second number
class exist, but, lacking an algorithm to collect them in one, they do not exist
as a finished totality, and all elements of the second number class are of the
same cardinality ℵ0. There is no such thing as the completed second number
class. The idea of an ‘unfinished cardinality’ turned up for the first time in the
seventh notebook. This paragraph was quoted earlier in a different context, but
it will be repeated here:

(VII–4) I can say, from the point set, that I build the continuum,
but I cannot speak of its ‘cardinality’, since this set, in its construc-
tion from individuals, simply is the second number class, and then
‘denumerable’ and ‘not finished’.177

The existence of unfinished sets is also emphasized in the following paragraph
(also quoted earlier); note that ω is here assumed to be finished:

(VII-16) T [the second number class] cannot be mapped on ω by a
finite law; neither can T be completed by a finite procedure; but
during the construction of T in an infinite time it remains possible

175De transfiniete getallen moeten aanschouwelijk intüıtief opgebouwd worden; redeneren er
dan achteraf, maar logisch over: maar ze zijn iets anders dan een logisch systeem.
176Ik zal dus moeten kunnen aantonen, dat Cantor’s Alef-eins zinloos is.
Neen, zijn hogere getallen bestaan zeker; alleen, ik ken niet andere, dan bepaalde individuen

er uit, en de enkele bepaalde, die ik kan aanwijzen, zijn aftelbaar.
177Ik kan uit de Punktmenge wel zeggen, dat ik het continuüm opbouw, alleen kan ik niet

spreken van de ‘machtigheid’ er van, want deze Menge is in haar opbouw uit individuen gewoon
de tweede getalklasse, en dan ‘abzählbar’ en ‘nicht fertig’.
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to map it on ω. And that is all I can say. Of course T remains
unfinished. ω is finished (by our innate mathematical induction).178

This seems to refer again to the unfinished mapping, which we discussed on
page 271. ω may be viewed to be finished, but not so T and the mapping of
T onto ω is always an unfinished mappinng in a Brouwerian sense (hence, is in
fact no mapping at all).

And finally a fragment from the eigth notebook (quoted earlier in chapter
4), which is also stressing the unfinished character of the second number class
T :

(VIII-16) For everything that we can create mathematically, is de-
numerable; if we want to create T , we find out that our creating is
never finished by giving isolated acts; and laws, which are denumer-
able sequences of facts; but for that reason we may not postulate
that there are more things apart from what we can create.179

7.6.5 The notebooks on the denumerably unfinished set

There is one very interesting paragraph in the eighth notebook, concerning the
unfinished set of the mathematical theorems.
In VIII–44 the following theorem is claimed:

(VIII–44) The totality of mathematical theorems also, among other
things, constitutes a set, which is denumerable but never finished.180

One can interpret this statement as a rudimentary form of Gödel’s theorem,
(despite obvious differences between the two). Gödel’s theorem was mentioned
earlier (see page 261); it states that there exist in Peano Arithmetic, or in any
decidable ω-consistent extension of P.A., theorems which are true, but not prov-
able from the set of axioms for that system. In other words: Peano arithmetic
(and any axiomatizable extension) is incomplete, and the set of theorems is ef-
fectively denumerable, but remains unfinished due to the incompleteness of the
system (in technical terms: it is ‘productive’). Compare this conclusion with the
content of the quote above: the totality of mathematical theorems constitutes
a denumerable but unfinished set.

178T is niet op ω af te beelden door een eindige wet; maar T komt ook niet klaar door een
eindig werk; maar, T vormende in oneindige tijd, blijft zij onder haar vorming steeds op ω
afbeeldbaar. En dat is het enige wat ik kan zeggen. T is uit dien aard der zaak onaf; ω is af
(door de mathematische inductie, die in ons is).
179Want alles, wat wij wiskundig kunnen scheppen, is aftelbaar; willen we T gaan scheppen,

dan merken we, dat ons scheppen nooit klaar komt met het geven van gëısoleerde daden; en
wetten, dat zijn aftelbaar oneindige feitenreeksen; maar daarom mogen we niet postuleren,
dat er nog dingen zijn buiten hetgeen wij scheppen kunnen.
180Het aantal wiskundige stellingen is o.a. ook een Menge, die aftelbaar is, maar nooit af.
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Gödel’s own proof of his theorem is modeled on the reasoning involved in
the paradoxes of Richard and of the ‘Liar’.181

A proof of Brouwer’s statement turns out to be problematic. If we specialize
Brouwer’s claim to arithmetic, then the number of arithmetical theorems is said
to be denumerably infinite unfinished. Since Brouwer knew Richard’s paradox
and the liar paradox, it is not impossible that, if pressed, he would have argued
along those lines. In fact, when he was informed about Gödel’s incomplete-
ness theorem, he said that it did not surprise him at all, and that he had, on
conceptual grounds, come to the same conclusion.182 But speculation of this
sort belongs to retrograde science fiction, as long as no substantial support is
obtained.

In the dissertation the ‘totality of all possible mathematical systems’ is men-
tioned as one of the examples of a denumerably unfinished set, and this is ex-
pressed in similar terms in the two foundational publications from 1908, his
lecture Die mögliche Mächtigkeiten and the paper The unreliability of the logi-
cal principles. In the dissertation Brouwer argues that a proof has to proceed
by referring to the second number class.

Now, an arithmetical theorem can be identified with its proof, which is the
construction of a sub-building in the building of arithmetic, and can therefore be
viewed as a ‘mathematical system’. Of course every arithmetical identity yields
an arithmetical theorem. We can also consider the extension of the building of
arithmetic to include operations on the elements of the second number class,
which makes the total number of elements of the extended building denumerably
unfinished. If we now consider the infinitary language of the second number class
(as Brouwer woud have allowed), then there are at least as many theorems as
there are elements of the second number class. Hence this would show that the
collection of all mathematical theorems is denumerably unfinished.

Of course, this falls short of Gödel’s precise and technical theorem (and
proof). We must realize the difference between the argument we just presented
and Gödels way of reasoning: Gödel made use of the fixed and well-defined lan-
guage of arithmetic of the Principia Mathematica, whereas with Brouwer the
mathematical universe as well as its language are open ended. We usually em-

181See Gödel’s paper On formally undecidable propositions of Principia Mathematica and
related systems, [Gödel 1931]. See for this [Heijenoort 1967], page 598:

The analogy of this argument with the Richard antinomy leaps to the eye. It is
closely related to the ‘Liar’ too.

With in a footnote the addition:

Any epistemological antinomy could be used for a similar proof of the existence
of undecidable proposistions.

182As a historical note we may add that Gödel was influenced by Brouwer’s ‘inexhaustibility
of mathematics’ (and that thus, from a constructivistic viewpoint, the principle of the excluded
middle becomes untenable). See [Wang 1987], page 50, where the author is quoting from
Carnap’s diary. On page 57 the author remarks that Brouwer informed him during a visit
at his [Brouwer’s] house that ‘the conclusions [of Gödel’s incompleteness results] had been
evident to him [Brouwer] for a long time before 1931’. An interesting remark in the light of
the notebook quote VIII–44.
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ploy theories with a recursively enumerable set of axioms, or a language with a
recursively enumerable alphabet. But the second number class requires a denu-
merably unfinished alphabet, since otherwise this class would be denumerable,
which is not the case. We might attempt to extend the language of the second
number class, together with the class itself, but this solution does not apply for
standard languages. Hence the theorem is not so obvious as it seems.

See also Brouwer’s criticism on Bernstein,183 when the latter gave, on the
basis of the properties of the ‘ordering functions’ (Ordnungsfunktionen), a proof
of Cantor’s theorem:184 the continuum is equivalent to the set (‘Gesamtheit’) O
of all ordertypes of simply ordered sets of the first cardinality.185 In a reaction
to this Brouwer claimed:

(VIII–45) If I speak of e.g. the set of all simply ordered types of
cardinality ℵ0, then I first should ask: ‘can I imagine that?’ and if
the answer was ‘yes’, then it also appeared to be like a constructible
type according to a number T or c. Hence in this case one should
say: order the cardinality like ω; put down the first one; the second
in front or behind (two times); the third gives for its place three
choices, etc. In this way I gradually approximate the cardinality
1.2.3.4.... = c.

In this way Bernstein construes it in Math. Ann. 61, page 140 ff.
But it is not true that one can see in this way the growth of all order
types; no matter how far one continues this process, different ways of
progress never give rise to different order types. No matter how far
I will have continued, still I know nothing about the increasing order
type. That is only the case if all laws are formulated in advance.
But then the objection arises that one cannot speak of all laws.186

One cannot speak of the set of all laws of progression that define a point
on the continuum, its cardinality being denumerably unfinished. In VIII–46
Brouwer continued that, if one wants to define the continuum as a set of laws
of progression, (...) then one can no longer speak of its cardinality. It results
183Discussed in the dissertation on pages 156 and 157.
184[Bernstein 1905], page 135.
185Das Kontinuum ist äquivalent der Gesamtheit O aller Ordnungstypen einfach geordneter

Mengen erster Mächtigkeit.
186Als ik spreek van b.v. de Menge aller enkelvoudig geordende typen van machtigheid ℵ0;

moet ik mij eerst vragen: ‘kan ik mij dat denken?’ en is het antwoord ‘ja’ geweest, dan is het
ook gebleken te zijn als een opbouwbaar type volgens een getal T of c. Zo in dit geval zou
men zeggen: orden de machtigheid als ω; zet de eerste neer; de tweede er voor of er achter (2
keren); de derde geeft drie keuzen voor plaatsing enz. Zo benader ik langzamerhand tot een
machtigheid 1.2.3.4.... = c.

Zo vat het Bernstein op in Math. Ann. 61 p 140 vlgg. Maar het is niet waar, dat men
zo alle ordetypen naast elkaar ziet groeien; hoe ver men ook voortgaat met het proces, nooit
doet verschillende voortgang een in bepaalde zin verschillend ordetype ontstaan. Hoe ver
ik ook ben voortgegaan, nog niets weet ik omtrent het groeiend ordetype. Dat komt eerst
doordat wetten vooraf worden geformuleerd. Maar dan komt weer het bezwaar, dat men van
alle wetten niet kan spreken.
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in something between ℵ0 and c, no more than partly finished, and as such a
mathematical entity, which Brouwer called c′. That applies to all ‘denumerable
but unfinished’ sets, resulting in their equivalence. We can find this conclusion
in his dissertation. Bernstein’s proof of equivalence is false because he saw
unfinished sets as finished and was unable to fix their equivalence (VIII–47).

7.6.6 The remainder of Brouwer’s second example

Brouwer ended his discussion of the second application of the role of logic in
mathematics with the treatment of some related topics of Cantor’s theory of
transfinite numbers.

About the continuum problem: this does not contain any new viewpoints
worth a renewed discussion; the conclusion will suffice: from a logical point of
view the continuum hypothesis does not involve a contradiction, since the sets
concerned (the set of the real numbers and the second number class) are both
denumerably unfinished. Mathematically, the question was discussed in chapter
5 of this dissertation with the conclusion that every subset of the continuum is
either denumerable or of the power of the continuum.

Also the other examples of unjustified conclusions in regard to Cantor’s the-
ory, viz. the Burali-Forti paradox, the proof by Zermelo of the well-ordering the-
orem and the Bernstein-Schröder theorem (also known as the Cantor-Bernstein
theorem) do not contain any new aspects asking for a further discussion.

7.7 The Peano-Russell logistics

7.7.1 Introduction

The third example of his arguments about the role of logic bears the title The
Peano-Russell logistics; in this example Brouwer mainly commented on the first
part of Russell’s Principles of Mathematics. Since this discussion does not con-
tain any new viewpoints and because the content of this part is regarded as
common knowledge today, we just briefly mention some interesting fragments
from it. Brouwer stated that according to Frege and Russell classical logic is
not sufficient as a foundation to build the mathematical edifice on, and for that
reason the foundational basis was expanded by them to include modern propo-
sitional logic. But contrary to, among others, Frege, Russell and Couturat,
the role of logic for Brouwer remained limited to that of the linguistic accom-
paniment of a mathematical structure and just for that reason logic never led
to a contradiction as long as it was properly applied within those constraints.
But that was not what the logicians did; the well-known logical principles were
used as a starting point and were applied to a, in Brouwer’s eyes, chimerical
‘everything’ instead of to a mathematical system.
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7.7.2 The paradoxes

Exactly this non-mathematical application of the logical principles led to the
paradox, now generally known as the Russell paradox,187 which is described in
chapter X of Russell’s Principles:

In terms of classes the contradiction appears even more extraordi-
nary. A class as one may be a term of itself as many. Thus the class
of all classes is a class; the class of all the terms that are not men
is not a man, and so on. Do all the classes that have this property
form a class? If so, is it as one a member of itself as many or not? If
it is, then it is one of the classes which, as ones, are not members of
themselves as many, and vice versa. Thus we must conclude again
that the classes which as ones are not members of themselves as
many do not form a class – or rather, that they do not form a class
as one, for the argument cannot show that they do not form a class
as many.188

Russell proposed several solutions to neutralize the paradoxes, but these
solutions could not pass the standards of rigour in Brouwer’s eyes: in case of the
examples of ‘predicates which are not predicable of themselves’, this property led
to a contradiction, reason why Russell proposed not to grant them the status of
predicates, which is for Brouwer simply evading the question. The reason for us
to discuss this well-known topic is an analysis of Brouwer’s counter-arguments.

As a possible general solution Russell proposed:

Perhaps the best way to state the suggested solution is to say that, if
a collection of terms can only be defined by a variable propositional
function,189 then, though a class as many may be admitted, a class
as one must be denied. (...) We took it as axiomatic that the class as
one is to be found wherever there is a class as many; (...) A natural
suggestion for escaping from the contradiction would be to demur
the notion of all terms or of all classes. Thus the correct statement
of formal truths requires the notion of any term or every term, but
not the collective notion of all terms.190

The reader can imagine Brouwer’s comment on this solution: of course one
cannot speak of any element since ‘logical principles hold exclusively for words
with a mathematical meaning’.191 But Brouwer could have expressed himself
even stronger (which he probably also meant to say): logical principles only
apply to words that refer to objects which are the result of a mathematical
construction, the result of a free creation, based on the experience of the move
187Note that this paradox was earlier described by Zermelo; see [Rang and Thomas 1981].
188[Russell 1938], page 102.
189A propositional function is an assertion with one or more real variables, and for all values

of the variables the expression involved is a proposition. See [Russell 1938], page 13.
190l.c. page 104, 105.
191dissertation, page 163.
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of time, the ur-intuition of constancy in change or of unity in multiplicity.192

If logical reasonings are limited to those applications, then paradoxes simply
cannot occur.

Brouwer also employed, on the same page 163, a different argument to let
the ‘common sense’ repudiate the argument of Russell (we number the different
elements in Brouwer’s reasoning for easy reference in the subsequent discussion
of their validity and strength):

1) Suppose there is an ‘everything’ and a totality of relations between all
the objects and a totality of propositions, and suppose I know this ‘everything’.

2) Then it is possible for a propositional function to decide for any arbitrary
object, on the basis of its given relations, whether or not the function is satisfied
by this object, resulting into two classes of objects for each function.

3) Now, if I want to investigate whether or not the class concerned satisfies
the propositional function, then this investigation requires its completion, hence
the investigation cannot be performed, which solves the paradox.

ad. 1) Of course, Brouwer placed himself in Russell’s position to ‘fight him
with his own weapons’, but Brouwer must have found it hard to put it in these
terms. There simply is no ‘everything’; every such indefinable and algorithmless
totality is unthinkable. Nevertheless he made this shift in position in this first
argument, whereas in the third he does not, but used his own standpoint and
arguments instead.

ad. 2) Therefore there is no arbitrary object, arbitrary relation or arbitrary
propositional function.

ad. 3) Now Brouwer views the class not as a unit, not as a single variable to
which the propositional function can be applied, but as a collection of individ-
uals (which, as we saw, is undefinable). For him the application of the function
to the class requires its application to all of its composing objects separately.
Hence Brouwer did not place himself in Russell’s position in a consistent and
tactically successful way. Therefore his argument on the basis of the ur-intuition
followed by a proper mathematical construction, is better founded and is better
defensible than this ‘common-sense’ reasoning.

An older (dating from the sixth century B.C. probably being the oldest,
and ascribed to the Greek poet Epimenides) and for the general public more
famous paradox is not mentioned in the dissertation; Brouwer referred to it in
The unreliability of the logical principles193 as a warning of what can happen if
one performs logic on a language, independently of any mathematical system:

Moreover, the function of the logical principles is not to guide argu-
ments concerning experience subtended by mathematical systems,
but to describe regularities which are subsequently observed in the
language of the arguments. To follow such regularities in speech,

192See the summary of the dissertation on its last page 179.
193[Brouwer 1908a], also included in [Brouwer 1919c] as the first article.
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independently of any mathematical system, is to run the risk of
paradoxes like that of Epimenides.194

Brouwer clearly is referring to the liar-paradox.195 Not only is this paradox
(one of) the oldest known, but it is still famous and under discussion today, as
can be concluded from rather recent publications on this topic.196

The claim, as expressed by several mathematicians and stated in the begin-
ning of this section, was that, if mathematics is to be based on logic, the latter
has to be extended beyond classical logic to the logic of relations. Russell’s
Principles of Mathematics, chapter I, defines pure mathematics as the class of
all propositions ‘p implies q’. Mathematics is, according to Russell, based on
some fundamental notion of logic and a number of fundamental principles of
logic.197 The most elementary relation is the relation between an element and
its successor.

The fact that all Mathematics is Symbolic Logic is one of the greatest
discoveries of our age.198

For Brouwer, however, building mathematics on a logical foundation only is
building a construction on quicksand:

It is self-evident that in the language which accompanies mathemat-
ics, the succession of words obeys certain laws, but to consider these
laws as directing the building up of mathematics, it is therein that
the mistake lies.199

The remainder of this section in Brouwer’s dissertation is devoted to the
foundation of arithmetic, as this was developed by the logicians, especially by
Peano and Russell. Since no new foundational arguments are involved here, a
discussion of this section is omitted.
194[Brouwer 1919c], page 7: Bovendien zijn bij betogen betreffende op wiskundige syste-

men gespannen ervaringswerkelijkheden de logische principes niet het richtende, maar in de
begeleidende taal achteraf opgemerkte regelmatigheid, en zo men los van wiskundige systemen
spreekt volgens die regelmatigheid, is er altijd gevaar voor paradoxen als die van Epimenides.
195In the New Testament of the Bible, in the letter of Saint Paul to Titus, the paradox is

mentioned, perhaps without realizing that a paradox was expressed. See Titus 1:12–13, from
the King James Bible:

One of themselves, even a prophet of their own, said, The Cretans are always
liars, evil beasts, slow bellies. This witness is true. Therefore rebuke them
sharply, that they may be sound in the faith.

Saint Paul is generally regarded as a wise man and he is still read and studied today, but he
obviously was not a mathematician, nor a logician.
196See e.g. [Martin 1984] and [Barwise and Etchemendy 1989]. For a thorough analysis of

this paradox see [Visser 2002].
197l.c. page 4.
198l.c. page 5.
199see dissertation, page 165: Dat in de taal, die de wiskunde begeleidt, de opvolging der

woorden aan wetten gehoorzaamt, spreekt vanzelf; maar dié wetten als het leidende bij de
opbouw der wiskunde te beschouwen, daarin ligt de fout.
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7.7.3 The notebooks on the Russell paradox

In the notebooks Brouwer mainly commented on Russell’s Fondements de la
Géométrie200 and on the Principles of Mathematics.201 The latter is of our
main concern now. The paradox was rather extensively discussed by Brouwer
in the sixth notebook, mainly in the form of thought experiments.

We mentioned earlier about the paradoxes, that the one of Epimenides was
not discussed in the dissertation, but that it was referred to in [Brouwer 1908a].
There is also a reference to this paradox in one of the notebooks, in which
Brouwer expressed how dangerously close Dedekind came to a paradox:

(III-18) If Pete says: A Cretan said: ‘I always lie’, then Pete cannot
have an impression of true or false about the Cretan. Keep that in
mind if Dedekind wants to comprehend the totality of my impres-
sions. That is impossible since that totality is included in itself.

This leads to paradoxes like Russell’s, or crocodile-‘schluss’, ‘cannot
be repeated’ etc.202

From halfway the sixth notebook a discussion started on Russell’s Principles
of Mathematics and on the subsequent polemic in the Revue de Métaphysique
et de Morale between Russell, Poincaré and Couturat.

The Russell paradox is analyzed and explained, not always completely clearly
and transparantly, but the idea is there; remember that in the notebooks it
concerns just thought experiments about this paradox. To give an idea of how
Brouwer analyzed the problem and how he thought about the way to prevent all
paradoxes by a proper construction of sets, we present the following quotation
from the sixth notebook:

(VI-26, 27) Russell’s contradiction is based on the confusion between
if something is the case and the class of all things for which that is
the case. Imagine a finite number of things and compose from them
all possible classes; there are among them that are not one of their
own elements.

But this is the case for the class consisting of four elements, of which

200[Russell 1901], which is the French translation of [Russell 1897]. Brouwer preferred the
French edition, undoubtly because many corrections were made by Russell in this later edition.
201[Russell 1938].
202Als Piet zegt: Een Cretenzer zei: ‘Ik lieg altijd‘, dan heeft Piet van die Cretenzer geen

indruk van waarheid of leugen kunnen krijgen. Bedenk dat bij Dedekind, als die de gezamen-
lijkheid van al mijn voorstellingen wil omvatten. Dat kan niet, want dan was die verzameling
er eerst al bij.

(hier uit voortvloeiende contradicties als van Russell, krokodilschluss, ‘is niet herhaalbaar’
enz.)
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one is the class of the others.
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That is what Russell means. Now compose from a finite number of
dots all groups and groups of groups. And the paradox concerns the
question whether or not the critical group has one element which is
the class of all others.

In case of the continued construction of groups of always higher
order from those of lower order, the critical group is never reached; I
can only speak about groups which can be indicated a priori, which
don’t have to wait until everything is constructed that cannot be
constructed.

The criterium for the constructed classes is of course independent of
their union into a new class based on that criterium. The union to
the newest class is a new concept, to be deduced from the old one;
then the existence of that union can be sensed intuitively, in the
other case not. Therefore the criterium of a class of classes should
not be: it either or not belongs to its elements; except in the case of
a completed totality of classes.203

There are more of those ‘thought experiments’ in the same sixth notebook.
On one occasion Brouwer returned to this paradox in terms of propositions
about given propositions, followed by a repetition of the previous argument:

(VI-33) Put Russell’s paradox as follows: (the proper terminology).
The proposition (about given propositions):

If a proposition about given propositions does not satisfy itself. Now
ask that question about that proposition itself (that is: add it to the

203De ‘contradictie’ van Russell berust op de verwarring van als iets het geval is en de klasse
van al de dingen, waarbij dat het geval is. Stel je maar eens een eindig getal dingen voor en
vorm daaruit alle klassen; er zijn er daaronder, die niet zelf een van hun elementen zijn. Wel
b.v. de klasse bestaande uit 4 elementen, waarvan een de klasse is van de andere.

[See picture in the quoted text]
Die bedoelt Russell. Vorm nu uit een eindig getal stippen alle groepen en groepen van

groepen. En de paradox loopt er over, of de kritieke groep, al of niet één element heeft, dat
de klasse is van alle andere.

Bij het opbouwen van telkens groepen van hogere orde uit die van lagere, vormt zich de
kritieke groep nooit, en ik kan alleen spreken van groepen, die a priori zijn aan te wijzen, die
niet hoeven te wachten, tot alles is opgebouwd, wat niet op te bouwen is.

Het criterium der gevormde klassen is natuurlijk onafhankelijk van hun vereniging tot een
nieuwe klasse op dat criterium gegrond. Vereniging tot de nieuwste klasse is een nieuw concept,
dat uit de oude moet worden afgeleid, dan kan ik het bestaan van die vereniging intüıtief
voelen, anders niet. Daarom mag het criterium van een klasse van klassen niet zijn: ze hoort
al of niet tot haar elementen, dan bij een bepaald reeds afgerond geheel van klassen.
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given set of propositions), then the paradox appears in the case that
I would answer that question (which is absurd).

Because a proposition about given objects means a separation of
those objects with respect to their truth and falsity during the con-
struction of the system and its relations; hence the ‘either or not
belonging to itself’ is supposed to be convertible into symbols, that
express something completely different from the words ‘belonging
to itself’. But for our critical proposition the argumentation to the
solution should not depart from something previous, but from itself,
which is absurd, and therefore it does not come as a surprise that it
leads to its own opposite if it departs from itself.204

There are some additional smaller remarks made on ‘class of classes’, in this
notebook, in particular about a possible definition of ‘number’ as a ‘class of
classes’. To give just one example:

(VI-31) A number as class of classes makes no sense, I cannot survey
that infinity of classes; numbers as condition for classes would do
better.205

In notebook VI there is also quite an amount of general discussion on the role
of logic, about what logic can do for the mathematicians, and what it cannot
do. The discussion in this notebook is mainly based on the earlier mentioned
polemic in the Revue de Métaphysique et de Morale. This leads e.g. on page 29
to Brouwer’s conclusion:

(VI-29) Logistics, performed in its pure form, should consist of a
finite number of rules composed of symbols in a row, without further
text. It should not contain ‘etc.’, not even in the case that the
principle of induction was proved, since one should not apply this
rule on the act of writing symbolically, but only on the represented
signs.

Or shall we help the logicians by saying: Just as your ordinary hu-
man desire and calculation leads you to ‘doing mathematics’, your

204Stel de Russellse contradictie als volgt (de juiste formulering) De propositie (over gegeven
proposities):

àls een propositie over gegeven proposities niet aan zichzelf voldoet. Stel nu die vraag
over die propositie zelf. (Voeg haar dus aan het gegeven stel proposities toe.), dan komt een
paradox voor het geval, dat ik een antwoord op die vraag zou geven (wat absurd is).

Want een propositie over gegeven dingen wil zeggen een scheiding van die dingen, ten
opzichte van het waar of vals zijn van bij het opbouwen van het systeem mede opgebouwde
relaties; het ‘àl of niet tot zichzelf behoren’ wordt dus ondersteld te zijn om te zetten in
symbolen, die heel iets anders uitdrukken, dan de woorden ‘tot zichzelf behoren’. Terwijl
voor onze kritieke propositie de redenering tot de oplossing niet van iets vroegers kan uitgaan,
maar van zichzelf zou moeten uitgaan; wat widersinnig is, en niets te verwonderen, dat hij,
van zichzelf uitgaande, tot het tegendeel van zichzelf voert.
205Getal als klas van klassen is onzin (die oneindigheid van klassen kan ik niet overzien); als

voorwaarde voor klassen zou beter gaan.
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mathematical viewing of things leads you in building your chimera;
hence that chimera presupposes life and mathematics. (Therefore,
in my proofs of existence, I may only use all systems built up in
pure mathematics, that is from number, continuum and mathemat-
ical induction, but I may not use examples from life, since logic
presupposes mathematics (and not the converse).)206

7.8 The logical foundations à la Hilbert

7.8.1 Introduction

Brouwer kept his most fundamental objection against the unjustified role that
logic often played in the construction of the mathematical building for the last
item. It opens as follows:

Consistency proofs for formal systems, independent of their inter-
pretation.

The most uncompromising conclusion of the methods we attack,
which illustrates most lucidly their inadequacy, has been drawn by
Hilbert (...)207

Brouwer is referring to Hilbert’s Heidelberg lecture Über die Grundlagen der
Logik und der Arithmetik.208 In an earlier paper Über den Zahlbegriff,209 to
which Brouwer also referred in the same paragraph, Hilbert stated that usually
arithmetic is defined genetically, (i.e. via extensions from the system of the nat-
ural numbers) and geometry is defined axiomatically but that he now intended
to present an axiomatization for the system of the real numbers and their basic
operations. For this purpose Hilbert presented a list of 18 axioms, divided into
4 groups,210 and at the end of this paper he stated:

206Praktisch zuiver uitgevoerde logistiek zou moeten zijn een eindig aantal regels van sym-
bolen onder elkander, zonder tekst. Enz. mag er niet in voorkomen; want zelfs al had men
het principe van inductie aangetoond: men mag het niet toepassen op de handeling van het
symbolisch schrijven, alleen op de tekens, die er worden voorgesteld.

Of zullen we de logistici helpen en nu zeggen: Zo goed als uw gewone menselijke begeerte en
berekening u leidt bij uw ‘wiskunde doen’, zo leidt uw gewoon wiskundig de dingen bekijken u
bij het opbouwen van uw ‘chimère’; dat chimère vóóronderstelt dus het leven èn de wiskunde.
(Ik mag dan bij mijn Existenzbeweise alle in zuivere wiskunde, d.i. uit getal, continuüm en
mathematische inductie opgebouwde systeem gebruiken, maar geen voorbeelden uit het leven,
want logica vooronderstelt wiskunde, (niet omgekeerd).)
207dissertation page 169. Niet-strijdigheidsbewijzen van tekensystemen, onafhankelijk van

hun betekenis.
De zuiverste consequentie van de hier bestreden methoden, waaraan tegelijk het eenvoudigst

en helderst de ontoereikendheid er van blijkt, is getrokken door Hilbert (...)
208[Hilbert 1905], included as Anhang VII in [Hilbert 1909]. An English translation can be

found in [Heijenoort 1967], page 129.
209[Hilbert 1899b], included as Anhang VI in [Hilbert 1909].
210The ‘Axiome der Verknüpfung, der Rechnung, der Anordnung, der Stetigkeit’.
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unter der Menge der reellen Zahlen haben wir uns hiernach (...) zu
denken (...) ein System von Dingen, deren gegenseitige Beziehungen
durch das obige endliche und abgeschlossene System von Axiomen I
– IV gegeben sind, (...)

This immediately gives us a clear picture of what Brouwer is going to dispute:
the system of the real numbers is defined formally instead of constructed out of
the ur-intuition. This contrast between Hilbert’s and Brouwer’s approach will be
the main topic of this section. Brouwer’s analysis of Hilbert’s method (especially
the method used in the Heidelberg lecture) will be that this turns out to be an
accumulation of identifications of, on the one hand, mathematical techniques
and, on the other, their descriptions in the accompanying languages.

But, as one may expect from someone of the calibre of Hilbert, he also had his
point and argument: In the paragraph preceding the last given quote from Über
den Zahlbegriff, Hilbert raised the question of how to prove the consistency of
his totality of axioms and all their corollaries. Because of the abstract character
of the axioms, this proof had to be independent of any mathematical intuition,
and this question formed the second problem from the Paris list (see the next
subsection). According to Brouwer, this independence can only be guaranteed

by considering the very signs which express the axioms as a mathe-
matical system, by formulating the principles of logic, in the manner
of the algebra of logic, as rules allowing to extend this system, and
by proving mathematically that these rules taken from the algebra
of logic can never lead to an equation together with its negation.211

7.8.2 The content of Hilbert’s Heidelberg lecture

In another paper by Hilbert, Über die Grundlagen der Geometrie,212 the geo-
metrical axioms as stated there are proved to be independent, and the consis-
tency of the system is established on the basis of the consistency of aritmetic.
This arithmetical consistency was not investigated in the Grundlagen; it was
the second problem on the list of 23 problems that Hilbert presented at the
Paris conference in 1900. These 23 problems were intended to be solved in the
century ahead.

In the presentation of this second problem the concept of completeness was
also touched upon, which for Hilbert was syntactical completeness, that is:

und jede Aussage innerhalb des Bereiches der Wissenschaft, deren
Grundlage wir prüfen, gilt uns nur dann als richtig, falls sie mit-

211dissertation, page 170: door de tekens, die de axioma’s uitdrukken, zelf als een wiskundig
systeem te beschouwen, de principes van de logica volgens de algebra der logica te formuleren
als regels om dat systeem verder uit te bouwen, en dan wiskundig te bewijzen, dat die uit
de algebra der logica afgelezen bouwregels nooit tegelijk een vergelijking en haar ontkenning
zullen kunnen afleiden.
212[Hilbert 1902].
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tels einer endlichen Anzahl logischer Schlüsse aus den aufgestellten
Axiomen ableiten läßt.213

In the Heidelberg lecture214 Hilbert commenced his Programm, which was
the proof of consistency of an axiomatically founded arithmetic, but in this
lecture the proof is still limited to a simple system, the axiomatically founded
system of the natural numbers extended with the concept of a set and its ele-
ments and with only one very basic operation defined in it, viz. the successor
operation; the operations of addition and multiplication are not yet axiomati-
cally founded, but the logical connectives ∧ (u in Hilbert’s notation), ∨ (o with
Hilbert) and the implication-arrow → (| with Hilbert) are given and used. Rules
are stipulated to extend the system and to prove its consistency after each ex-
tension.215 The 1904 lecture is just the initial impetus to this program, but
Hilbert had shown that the consistency of a system can be recognized without
the construction of a model.216

Before commenting on Brouwer’s discussion of this subject, we will briefly
sketch the content of Hilbert’s lecture.

At the beginning of this lecture Hilbert stated that, in order to prevent
ending up in a vicious circle, arithmetic should not be considered as part of logic,
since in deducing the laws of logic certain arithmetical principles are applied.
Therefore the laws of logic and those of arithmetic have to be developed together
and ‘teilweise gleichzeitig’,217 so that proofs can be viewed as finite mathematical
objects; as a result of that it can be shown that such formal proofs cannot lead
to a contradiction.218

For his foundation of the number system Hilbert defined so called basic
‘Gedankendinge’ (thought-objects), viz. 1 (one),219 = (equal), u (infinite or
infinite set), f (successor) and f ′ (successor operation).

Any combination of 1 and = is also a thought-object and belongs either to
the class of the entities (Klasse der Seienden) or to the class of the non-entities

213[Hilbert 1900], see also in [Hilbert 1932], Vol III, page 299, 300.
214[Hilbert 1905].
215For a critical survey of the elaboration of the so called Hilbert Program see

[Smorynski 1988] and [Sieg 1999], the latter especially for the progress of the program during
the years 1917 – 1922.
216See e.g. [Smorynski 1988], page 11.
217Hilbert was, at least at that time, convinced that mathematics cannot be deduced from

logic alone, but that both systems have to be developed simultaneously, whereas e.g. for
Russell logic precedes mathematics. This difference in priority between Hilbert and Russell is
partly caused by the fact that, what the one calls arithmetic, is a part of logic for the other,
as Poincaré remarked in [Poincaré 1906b]. Brouwer, as we know, went much further in stating
that logic only comes into being after the completion of a mathematical building. However,
years later Hilbert, in the continued development of his program, was again of the opinion
that logic has to be axiomatized, giving the most fundamental basis for mathematics, and that
number theory and set theory, being the foundations for other branches of mathematics, are
just parts of logic (‘Teile der Logik’). See e.g. [Hilbert 1918], page 153. See also [Hilbert 1922]
and [Hilbert 1923].
218see [Sieg 1999], page 7.
219as a symbol for a thought-object, not as a number (finite numbers will be defined later).
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(Klasse der Nichtseienden). The class of the entities is defined by the axioms
1. x = x, and
2. {x = y u w(x)}|w(y).
Simple objects a, i.e. assertions without suppositions, constructed induc-

tively from the two axioms, belong to the entities, i.e. are proper assertions.
All others that ‘differ’ (which concept is also defined) from this form belong to
the non-entities. From the axioms 1 and 2 only statements of the form a = a
follow, belonging to the class of the entities, therefore the defined object ‘=’ is
a consistent concept.

We write a if the proposition a belongs to the entities, and a if a belongs to
the non-entities.

The last three thought-objects u, f and f ′ are defined by the axioms
3. f(ux) = u(f ′x), that is, the successor of an element of an infinite set is

also an element of that set.
4. f(ux) = f(uy)|ux = uy, that is, two equal elements have two equal

predecessors.
5. f(ux) = u1, that is, the element 1 is no successor of any element.

The important question is now: do the axioms 1 – 5 together with all their
inductively constructed consequences form a consistent system, or can any con-
tradiction be derived from them?

Any statement forming a contradiction with the axioms should be of the
form

6. f(ux(o)) = u1 (which is Hilbert’s notation for ∃x(f(ux) = 1, x(o) standing
for x1 ∨ x2 ∨ x3 ∨ ...), since axiom 5 is the only one containing a proposition a
belonging to the non-entities. The proof of the impossibility of a contradiction
follows for Hilbert from the fact that axioms 1 – 4 and all their consequences
are homogeneous, whereas 6 is not (a = b is homogeneous if a and b contain
the same number of basic thought-objects), but for a rigorous completion of
this proof the notion of finite ordinal number is required, as well as that of
equinumerousness. Note that the proof here employs the principle of complete
induction.

Again, all inductively constructed assertions, built up from the axioms 1 – 4,
form the set of the entities; all others form the non-entities. The objects 1, =,
u, f and f ′ are consistent concepts, just as all their consequences are consistent
propositions, owing to the fact that the axioms and their consequences are
homogeneous expressions, whereas the axiom 5, the only one giving an assertion
a belonging to the class of the non-entities, is not homogeneous.

Hilbert then remarked:

Die eben skizzierte Betrachtung bildet den ersten Fall, in dem es
gelingt, den direkten Nachweis für die Widerspruchslosigkeit von Ax-
iomen zu führen, während die sonst – ins besondere in der Geometrie
– für solche Nachweise übliche Methode der geeigneten Spezialisie-
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rung oder Bildung von Beispielen hier notwendig versagt.220

The constructed consequences certainly are homogeneous and not in contra-
diction with the axioms, but the completeness of the defined system is tacitly
assumed. Hilbert’s proof of consistency is completely founded on the homogene-
ity of all true expressions, inductively deducible from the four axioms, and on
the assumption that all inhomogeneous ones are non-entities, hence false.

Adoption of the well-known axioms of complete induction (which in fact were
used already) and transforming them into the language selected by Hilbert, gives
us the set ω as the consistent set of the smallest infinite. Subsequent addition
of the axiom:

daß jede Menge, die das erste Element der Ordnungszahl und, falls
ihr irgend eines angehört, auch das diesem folgende enthält, gewiß
stets das letzte Element enthalten muß,

provides us with the foundation of the finite ordinal numbers. The proof of the
consistency of the axioms 1 – 4 and all their deducible results, is then given
with the help of an example (which method of proof is justifiably criticized by
Brouwer), after the addition of a new ‘Gedankending’ <, defined by the axiom:

(x < y u y < z)|x < z, in which x, y and z are arbitrary finite
ordinals.

Finally, Hilbert presented in his Heidelberg lecture a number of principles
to be used for a further expansion of the laws of mathematical thought, which
then of course have to end up in a complete arithmetic:

I. Assertions, apparently not deducible from the axioms, are permitted and
are true if they, when viewed as axioms, will not give rise to contradictions with
the already existing axioms. This is the creative principle.

II. ‘Arbitrary’ elements in the axioms only refer to thought objects and their
properly deduced combinations.

III. A set is a thought-object m, and combinations mx are elements of that
set, hence the set concept precedes that of its elements. Other thought-objects
are mapping, transformation, relation and function. By means of suitable ax-
ioms, their consequences in the form of combinations of the thought-objects can
be distributed to the class of the entities or to the class of the non-entities. II
and III are the paradox-preventing principles.

IV. A condition for a proper investigation of a given system of axioms con-
sists of the possibility of a partition of all possible combinations into the two
classes. The question for the possibility of this partition is equivalent to the
question whether the consequences which can be obtained from the axioms, are
consistent, under the addition of the familiar modes of logical inference.221

220[Hilbert 1905], page 181.
221We recognize here the ‘side by side’ development of mathematics and logic, which, ac-

cording to Hilbert, is required for a successful proof of consistency.
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Consistency can then be recognized in one of the following ways: 1. by
showing that a possible contradiction should occur at an early stage of the de-
velopment, or 2. by assuming that a contradiction can be deduced from the
axioms and then showing that such a proof would itself contain a contradiction.

We again observe (more or less between the lines) that Hilbert tacitly as-
sumed that, despite possible difficulties in its effectuation, this partition can be
performed. This is in the spirit of the introduction of his Paris lecture in 1900
about the unsolved mathematical problems: every mathematical problem can
be solved or its unsolvability proved. Hilbert assumed that every true proposi-
tion can be deduced from the axioms, and that every false proposition can be
proved to be so by means of a resulting contradiction.

V. When speaking of several thought-objects or several combinations thereof,
a limited number of them has to be understood.222 Since we have established
the concept of finite number, the exact meaning of the ‘arbitrary’ and of the
‘differing’ between propositions can be exactly described, based on that concept.
Also the above sketched proof that the proposition f(ux(0)) = u1 differs from
every consequence of the axioms 1 – 4, can be obtained in a finite number of
steps:

man hat eben den Beweis selbst als ein mathematisches Gebilde,
nämlich eine endliche Menge zu betrachten, deren Elemente durch
Aussagen verbunden sind, die zum Ausdruck bringen, daß der Be-
weis aus 1.– 4. auf 6. führt, und man hat dann zu zeigen, daß ein
solcher Beweis einen Widerspruch enthält und also nicht in unserem
definierten Sinne widerspruchsfrei existiert.223

Also the existence of the totality of the real numbers can be demonstrated
in a similar way as the existence of ω was shown, including its completeness
axiom:

so bringt dasselbe zum Ausdruck, daß der Inbegriff der reellen Zahlen
im Sinne der umkehrbar eindeutigen elementweisen Beziehbarkeit
jede andere Menge enthält, deren Elemente ebenfalls die voran-
gehenden Axiome erfüllen.224

And the axioms for the totality of the real numbers do not differ basically
from the axioms needed for the definition of the integers.

We discussed this fifth rule of Hilbert rather extensively since Brouwer crit-
icism is mainly directed against this one.

222Note that Hilbert speaks of a limited number, not of a finite number!
223[Hilbert 1905], page 185. Note that also Hilbert used the metaphor of the ‘building’, but

not in the strict constructive sense as Brouwer did.
224op. cit, page 185.
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7.8.3 Brouwer’s comment on Hilbert’s Heidelberg lecture

Hilbert thus sketched in his Heidelberg lecture a system of a simple arithmetic
without addition and multiplication, but with the successor operation as the
only defined operation, and for this simple system a proof of non-contradictority
was given. About this proof, Brouwer commented that Hilbert intuitively em-
ployed terms like one, two, some. In regard to the latter term, Hilbert explicitly
stated in item V that this is used in the meaning of ‘finite number’, which
concept was defined earlier. Brouwer also pointed out that Hilbert intuitively
applied all the laws of logic as well as complete induction (which was also one of
the points of criticism from Poincaré towards Hilbert; see below). Hence, Brou-
wer meant to say, intuition plays a major role in Hilbert’s argument, contrary to
his aim. This aim shows itself in item V from the given list of principles for the
further extension of the laws of mathematical thought. In this fifth item Hilbert
attempted, in the eyes of Brouwer, to make the consistency proofs independent
of the intuition, by reviewing what he wrote so far and considering this as a
mathematical building with its own rules.

In his comment Brouwer put the following paragraph between quotation
marks, as if quoting from Hilbert’s Heidelberg lecture, which in fact was not
the case; it is not even a partial or a composed quote. One should view it as
Brouwer’s concise summary of this fifth item:

‘I [i.e. Hilbert ] have proved just now that the rules from which I have
seen the linguistic structure develop, are consistent and therefore
correct. In other words, the reasonings which I have made in that
language justify at the same time the intuitive element in the act by
which they were made.’225

Hilbert did not employ the term intuition or intuitive, but he indeed intu-
itively employed terms like one, two, some etc!

Brouwer’s comment on Hilbert’s axiomatic method amounts to the following:
Hilbert’s true foundation remains the intuition, and intuition cannot logi-

cally be proved to be correct. If the mathematical intuition is correct, and the
mathematical building based on that intuition is properly constructed, then au-
tomatically the accompanying words develop logically correct; and moreover,
the consistency of a linguistic system, developed on the basis of a mathematical
intuition, does not prove the correctness of that intuition.

Brouwer’s main point is: There is mathematics and there is the accompa-
nying language in which the logicians discover a separate structure; on this
linguistic structure the rules of logic can be applied. As long as the two ar-
eas intentionally remain separated, problems in the form of paradoxes can be
avoided. But, Brouwer claimed, Hilbert made the transition from the level of
a mathematical structure to the one of the linguistic structure repeatedly, and
after each transistion he remained at the next level, developing and extending it
225dissertation, page 171: ‘De wetten volgens welke ik dat taalgebouw zich zie ontwikkelen,

heb ik zo-even bewezen, dat niet-strijdig, dus juist zijn. M.a.w. de daar in die taal van mij
gehouden redeneringen bewijzen meteen het intüıtieve in hun eigen daad als gerechtvaardigd.’



7.8. THE LOGICAL FOUNDATIONS À LA HILBERT 303

as if it were a mathematical structure itself, instead of a linguistic one, thereby
using the previous levels only to give a meaning to the new ones.

In order to make his objections against Hilbert’s methods clear and to pin-
point the places in Hilbert’s arguments where he went astray in Brouwer’s eyes,
Brouwer presented a summary of the several stages of the interplay between
mathematics and its accompanying language, which stages are frequently con-
fused by Hilbert by viewing a linguistic level as a mathematical one. Compared
to Hilbert, Brouwer is far more specific in the details of these several stages,
and he observed eight different levels of reasoning:

1. The pure construction of the intuitive mathematics,
2. Its linguistic description,
3. The mathematical study of that language,
4. Forgetting the meanings of the linguistic elements and symbols used, he

treated that language like a second order mathematics. This is the system which
is worked out and developed by the logicians.

5. The accompanying language of the system of item 4.

This is, in Brouwer’s view, the scheme followed by Hilbert in the Heidel-
berg lecture when presenting the several principles for the further expansion of
mathematical thought, up to and including rule IV. There certainly is a form
of intuition present in Hilbert’s scheme, as Brouwer showed, but Hilbert ne-
glected this and his treatment is axiomatic. Therefore he passed the levels 2 (in
which he used linguistic terms like one, two, several, for some etc., the concepts
of those terms apparently already being there from the intuition), 3 (in which
these linguistic terms got an arithmetical meaning within the language used,
and which arithmetical meaning was subsequently studied), 4 (in which these
terms and their relations were axiomatized, now dissociated from their original
and intuition-based meanings), ending up in 5, the language of the axiomatized
system.

6. The language of logic is, in its turn, again studied mathematically. This
is, according to Brouwer, what happened in rule V. But even more happened
there:

7. Also the meaning of the elements used in 6 is forgotten, thus creating a
third order mathematical system.

This is a schematic survey of what Brouwer described in the section attempts
to make these proofs independent of intuition (page 171 of the dissertation).
Hilbert looked upon all what he wrote down (up to and including his rule IV)
time and again as a mathematical edifice. He observed in the first paragraph
of rule V the consistency of this, by now third order, mathematical system (the
first one being the intuition-based level) and claimed: it is consistent, hence
it exists and therefore my intuition is correct, which is exactly the converse of
Brouwer’s way of reasoning.
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8. Brouwer mentioned in his comment that Hilbert still went one step fur-
ther: the linguistic accompaniment of this third order system. This happened in
the same first paragraph of V when viewing its linguistic terminology. Brouwer
ended the discussion with the statement that only the results of the first stage
gives us mathematics and that the second stage is a necessary accompaniment
for communication to others and for one’s own memory.

Returning now to what Brouwer said in the beginning of the third chapter
of his dissertation, in the footnote on page 142: it is not certain that every
mathematical problem can be solved, though Hilbert was deeply convinced that
any mathematical problem either can be solved or proved to be unsolvable.226

Also Hilbert was convinced, as can be concluded from the Heidelberg lecture,
that his system was consistent, thereby tacitly assuming its completeness (see
our page 299).

As we have remarked on an earlier occasion, Brouwer expressed on a loose
sheet in the ninth notebook his doubt about this conviction, thereby anticipating
on Gödel’s later work.227 He also presented an extensive analysis of Hilbert’s
attempts to prove the consistency of arithmetic (which is the basis for a more
general consistency proof of the different branches of mathematics: Hilbert’s
program). He thereby showed that Hilbert made the well-known mistake of
the logicians concerning the different levels, not one time, but several times in
succession.

On the last pages Brouwer compared his criticism on the role of logic with
Poincaré’s comment, as this was expressed in a polemic in the journal Revue
de Métaphysique et de Morale by Poincaré and others in the years 1905 and
1906.228

7.8.4 Poincaré’s criticism

In view of some of Brouwer’s theses which he intended to add at the end of his
dissertation,229 we will discuss briefly the last page of the dissertation, before
its summary. Especially the second item, the existence of the actual infinite, is
of interest to us.

In 1902 Russell published the first edition of Principles of Mathematics and
in 1904 and 1905 Couturat’s Les Principes des Mathématiques appeared as a
series of articles in the Revue de Métaphysique et de Morale, followed in 1905
by the publication of this series in a book version.230

Russell’s and Couturat’s publications triggered a polemic in the journal Re-
vue de Métaphysique et de Morale, mainly during the years 1905 and 1906
between Poincaré, Couturat and Russell and others, on the relation between
mathematics and logic. A number of the published papers written by the semi-

226See the footnote on our page 259 for the relevant quote.
227See page 260.
228[Poincaré 1905] and [Poincaré 1906b].
229There are several drafts for the list of theses; see [Dalen 2001], page 144 ff.
230[Couturat 1905].
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intuitionist Poincaré appeared under the combined title Les mathématiques et
la logique and commented in a critical way on the work of Russell, Couturat,
Peano, Burali-Forti and Hilbert (the latter’s Heidelberg lecture).

We discussed earlier Brouwer’s criticism which he passed on Hilbert and we
note now that the reaction of Poincaré to Hilbert’s Heidelberg lecture is com-
pletely different from Brouwer’s comments on it. As we saw, Brouwer limited
his criticism to the fact that Hilbert did not keep properly separated the dif-
ferent levels of his metamathematical linguistic construction from mathematics
itself, whereas Poincaré took more notice of the details of Hilbert’s attempted
consistency proofs.

In his dissertation Brouwer did not comment on Poincaré’s criticism towards
Hilbert, which is remarkable since in the notebooks some specific critical com-
ment towards Poincaré’s Revue papers is given. In the dissertation Brouwer
restricted his reaction to Poincaré to the items of the petitio principii in logis-
tics and of his rejection of the actual infinite; According to Brouwer, Poincaré
thereby omitted the main point, i.e. Hilbert’s confusion between the act of the
mathematical construction and its accompanying language.

The petitio principii

1. Poincaré’s analysis
In the mentioned Revue papers, Poincaré in the first place opposed Coutu-

rat’s opinion that there is no synthetic a priori judgement in mathematics, and
that mathematics is completely reducible to logic. Intuition should play no part
in it. For the refutation of this claim, Poincaré made the comparison with a
game of chess: just knowing the rules of how to move the pieces is not sufficient
to play a good game; for that a good deal of chess-intuition is a strict condi-
tion. And whereas Poincaré is of the opinion that the principle of complete
induction is a necessary principle for the development of mathematics, which
is not reducible to, or provable from logic (the proof of this principle requires
the principle itself), to the logician it is merely a ‘definition in disguise’ for the
system of the natural numbers.

Poincaré discussed in the Revue papers the difficulties that arise when axioms
and definitions are stated: what is the fundamental difference between the two
in regard to their purpose and to their character? Is, for instance, complete
induction an axiom, a definition, or simply a convention? Also in the case
of the definition of numbers, one can already conclude it to be a problematic
concept from the great number of different definitions and approaches that exist
for this concept.

If one takes logic for granted then it becomes impossible, or at least extremely
difficult, to avoid the petitio principii when defining the number concept. The
use of a symbolic language, like Burali-Forti did in Una Questione sui Numeri
Transfiniti231 does not solve anything, as Poincaré emphasized. Intuition plays
its part, possibly unconsciously, in the development of the number concept or

231See [Heijenoort 1967], page 104.
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any other mathematical concept for that matter.

2. Brouwer’s comment.
According to Brouwer, Poincaré’s criticism is mainly aimed at the petitio

principii and at the acceptation of the actual infinite, thereby missing the main
point of criticism, viz. the fundamental difference between the mental construc-
tion of mathematics and its accompanying language.

Surprisingly, Brouwer then continued as follows:

In a sense the petitio principii is allowable, for where it occurs in
the act of construction of the linguistic system, it does not as such
affect the perfection of that linguistic system;232

Brouwer clearly meant to say that a linguistic structure is perfect if and only
if it is based on a successfully constructed mathematical edifice, of which it is
the proper and correct linguistic accompaniment. As long as the mathematical
building is properly constructed, i.e. exists since it is based on the ur-intuition
alone, then the structure of the accompanying language cannot be anything
else but perfect and no linguistic petitio principii can harm it. However, in the
case that a primal mathematical intuition reappears as a mathematical result
further down the road of the constructional development, only then we recognize
an inadmissible petitio principii.

The frequently made mistake by the logicians is that they view the linguistic
structure as primal and continue the construction of that structure, which is then
no longer a mathematical building but a linguistic one.

The actual infinite

Another item about which Brouwer disagreed with Poincaré’s critique is the
latter’s rejection of the actual infinite in Cantorism. This is an interesting point
and Brouwer’s opinion on it seems rather puzzling. We will come back to this
item in the next chapter of this dissertation.

1. Poincaré’s view
In Les mathématiques et la Logique II233 this rejection is touched upon by

Poincaré, but not yet explicitly expressed. However, in two other papers by
Poincaré, dating from the years 1906, also published in the Revue de Métaphy-
sique et de Morale, viz. A propos de la logistique and Les mathématiques et la
logique,234 Poincaré explicitly declined the actual infinite.

In Les Mathématiques et la Logique, in which again the content of the other
two papers bearing the same title (to which it also refers) is discussed, but now
232dissertation, page 176: De petitio principii is in zekere zin geoorloofd, want waar die in

de daad van de opbouw van het taalsysteem wordt uitgevoerd, raakt zij aan de volkomenheid
van dat taalgebouw als zodanig niet.
233[Poincaré 1906b].
234[Poincaré 1906c] and [Poincaré 1906a] respectively. Note that the latter bears the same

title as [Poincaré 1905] and [Poincaré 1906b], but it certainly is a different paper. In fact in
[Poincaré 1906a] reference is made to the former two, which form together one large paper.
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in a more concise way, the same conclusion is reached at the end: there is no
actual infinite.

Il n’y pas d’infini actuel; les Cantoriens l’ont oublié, et ils sont tombés
dans la contradiction. Il est vrai que le Cantorisme a rendu des
services, mais c’était quand on l’appliquait à un vrai problème, dont
les termes étaient nettement définis, et alors on pouvait marcher
sans crainte.235

2. Brouwer’s comment
In the dissertation this is limited to just one short remark:

And as to the actual infinite of the Cantorians, it does exist, provided
we confine it to that which can be intuitively constructed, and refrain
from extending it by logical combinations that cannot be realized.236

This looks puzzling, since on the one hand Brouwer views infinite sequences,
or algorithmically constructed sets as always unfinished, and on the other hand
‘the actual infinite exists’. We will return to this topic in the next chapter.

7.8.5 The notebooks on the Foundations after Hilbert

The foundational subject, as it was discussed in the dissertation on the basis
of Hilbert’s Heidelberg lecture, is treated in the notebooks in a different way.
Here the discussion is mainly a comment on Hilbert’s foundations of geometry,
in which (for Hilbert) the point of departure was a consistent arithmetic which
formed the basis for the construction of geometry. Hilbert’s main publications
to which Brouwer referred in the first five notebooks are the Festschrift, officially
entitled the Grundlagen der Geometrie, and the paper Über die Grundlagen der
Geometrie.237

Only in the sixth notebook Hilbert’s Heidelberg lecture comes up for discus-
sion, albeit on the basis of Poincaré’s comment on it from Les mathématiques et
la logique. Later on, towards the end of notebook VIII, a short argument about
the Heidelberg lecture, this time not based on the comment of others, concludes
Brouwer’s concern in the notebooks on this historical and foundational lecture
by Hilbert.

First Brouwer remarked on the basis of [Poincaré 1906b]:

(VI-28) (Poincaré about Hilbert, appropriately) ‘Les indéterminées
qui figurent dans les axiomes (en place du quelconque ou du tous
de la logique ordinaire) représentent exclusivement l’ensemble des
objets et des combinaisons qui nous sont déjà aquis en l’état actuel
de la théorie.

235[Poincaré 1906a], page 316.
236(dissertation, page 176) En het actueel oneindige der Cantorianen, dit bestaat wel degelijk,

als we het maar beperken tot het intüıtief opbouwbare, en dat niet door niet te verwezenlijken
logische combinaties te willen uitbreiden.
237[Hilbert 1899a] and [Hilbert 1902] respectively.
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The ‘undeterminates’ x, to which Poincaré referred, are undetermined in
absolute sense in Russell’s Principles, but for Hilbert they consist of one or both
of the defined ‘Gedankendinge’ or any combination thereof, hence still have a
certain structure. Of course Brouwer agreed with Poincaré: the constructivist
only operates with building blocks that are constructed earlier.

In § XXV of Les mathématiques et la logique, Poincaré discussed, what he
called, Hilbert’s attempted replâtrage in his fifth rule from the set of rules for
the extension of a consistent system. Poincaré commented that in this fifth
rule Hilbert analyzed and tried to solve the difficulties he was well aware of in
his Heidelberg lecture. Hilbert’s analysis of these difficulties were dubbed by
Poincaré as ‘la tentative de replâtrage’.

In Brouwer’s eyes, again in agreement with Poincaré, Hilbert is evading the
real problem by limiting himself to a ‘bounded number’ (nombre limité) instead
of to an arbitrary finite number. Brouwer’s comment goes as follows:

(VI-31) (Poincaré ib. 126). Hilbert justifies vicious circles by defin-
ing a ’proof’ only by postulates, thus turning it into a new dead
mathematical element. But should not an existence proof or the ab-
sence of possible contradictions be given for this new symbol? And
is this not just moving the difficulty?

(...)

From our point of view Hilbert’s ‘replâtrage’ is superfluous.238

As said, in the eighth notebook Brouwer spent a couple of paragraphs on a
comment on Hilbert’s Heidelberg lecture, this time not on the basis of comment
from others:

(VIII-65) Hilbert’s logic is a hollow structure, built up from differ-
ently coloured types of bricks, in which the arithmetic of the natural
numbers is tacitly assumed, including induction; but it cannot prove
anything which is in some vague way connected to our known math-
ematical systems.239

(VIII-66) The way in which Hilbert escapes the Russell paradox,
completely without his logic, amounts to that he only speaks of a
class of earlier constructed objects.240

238(Poincaré ib. page 26) Hilbert rechtvaardigt vicieuze cirkels, door een ‘Bewijs’ zelf alleen
door postulaten te definiëren; en er een nieuw dood mathematisch element van te maken.
Maar geldt dan voor dit nieuwe symbool niet, dat er een existenzbeweis of afwezigheid van
mogelijke contradictie voor moet worden gegeven? En krijgen we zo niet slechts verplaatsing
van de moeilijkheid?

(...)
Van ons standpunt is de ‘replâtrage’ van Hilbert onnodig.

239De Hillbertse logica is een hol gebouw van verschillend gekleurde steensoorten, waarbij hij
de aritmetica der gehele getallen (inductie incluis) stilzwijgend gebruikt ; maar dat niets kan
bewijzen, dat ook maar enigszins verband houdt met onze reeds bekende wiskundige systemen.
240De manier, waarop Hilbert aan de Russellse paradox ontsnapt, komt, geheel buiten zijn

logica om, hierop neer, dat hij alleen spreekt over een klasse van reeds opgebouwde dingen.
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The construction of building blocks comes first, but the most basic is the ur-
intuition:

(VIII-67) Hilbert’s replâtrage, by means of what is already con-
structed; but why not by means of the intuition? The result of
the construction as a mathematical building has nothing to do with
the intuitive construction of the building.241

And finally, Hilbert again confused, in Brouwer’s eyes, arithmetic, its language
and the signs thereof:

(VIII-67) He [i.e. Hilbert ] does not build on the foundation of logic
and arithmetic, but on the system of signs thereof; in the construc-
tion he uses the logic (syllogism from a general theorem for x) and
the arithmetic (mathematical induction) as something meaningless
and independent.

Moreover he presupposes as known the whole of mathematics as a
guideline in the introduction of new symbols; and he employs subtle
logical reasonings to convince us that he is on the right track.242

7.9 Conclusions

In his own introduction to the third chapter of his dissertation, Brouwer sum-
marized in a few lines the way in which the construction of the mathematical
edifice takes place, thereby stressing that this construction is performed without
an assumed logic. He intended to elaborate this in his third chapter. Logic only
comes afterwards, but we have seen that his (concise, as usual) explanation of
a seemingly opposite case, where a mathematical construction was apparently
based on a hypothetical judgement, asked for a long elaboration and interpre-
tation.

Our interpretation, in which we closely followed Brouwer’s views from 1907,
ended in a definite, though implicit, rejection by Brouwer of the ex falso prin-
ciple (although some of his examples elsewhere may sometimes give a different
impression).

An intuitionistic logic, worked out by Heyting around 1930, however, ac-
cepted this principle. Brouwer knew this formalization and approved of it. He
actually accepted it for publication in the Mathematische Annalen, before the
great crisis. We may view this as a form of approval. Hence, in regard to this,
241De replâtrage van Hilbert, met het opgebouwde; maar waarom dan niet met de intüıtie?

Dat opgebouwde als wiskundig gebouw heeft met het intüıtief bouwen ván het gebouw toch
niets te maken.
242Hij bouwt niet op de logica en rekenkunde, maar het tekensysteem daarvan, als iets

betekenisloos’ en onafhankelijk, gebruikt bij die opbouw de logica (syllogisme uit algemene
stelling voor x), en de rekenkunde (mathematische inductie).

Verder onderstelt hij als richting bij de invoering van nieuwe symbolen de hele wiskunde
al bekend; en gebruikt fijn-strenge logische redeneringen, om ons te overtuigen, dat hij op de
goede weg is.
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he must have changed his position.

We have seen that from the four examples that Brouwer gave in order to
substantiate his claim about the role of logic in the construction of the math-
ematical edifice, the second one received most of our (and his) attention. This
example just fitted best into the foundational aspects of the construction of
mathematics as it was extensively discussed in our previous chapters. But this
example also raised most obstacles and problems, asking for explanation and
interpretation. The concept denumerably infinite unfinished set and its cardi-
nality needed an extensive analysis, partly with the help of the given examples
for those sets. The main problem here turned out to be the theorem that ‘all
denumerably infinite unfinished sets are equivalent’. Another great (in a way
unsurmountable) difficulty we encountered, was the notion of ‘unfinished map-
pings’.

But also the first example, the founding of mathematics on axioms, gave an
unexpected interesting outcome, which appeared in the long footnote (covering
several pages). Here (but on other places as well) Brouwer showed to have an
insight that certainly can be seen as a forboding of Gödel’s later work.



Chapter 8

The Summary, the Theses
and Conclusions

8.1 Introduction

In our last chapter three items will come up:

– First, Brouwer’s own summary of his dissertation on page 179 and 180.
It only makes one important assertion: Mathematics is a free creation of the
individual mind. Since the expression ‘free creation’ is used by more mathemati-
cians, it is interesting and important to make a comparison, and see in what
respect Brouwer was different. The term ‘free creation’ as an act also reminds
us of the ‘two acts of intuitionism’.

– Second, the theses, added at the end of the dissertation. There are several
known drafts for this list. Of special interest in regard to this is a letter to De
Vries, in which some of the theses are clarified. Especially the thesis about the
existence of the actual infinite (one that appeared only in one of the drafts for
the list) and its accompanying elucidation, is of major importance. Seemingly
conflicting statements about the infinite can be read in the dissertation, as well
as in the notebooks. An interpretation has to be searched for, and can be found
in connection with the interpretation for a set or a sequence to be ‘actually
finished’ or ‘potentially finished’.

– Third, a summary of our conclusions from the different chapters.

8.2 The summary of Brouwer’s dissertation

After having finished the discussion of the four examples that substantiated
his view on the role of logic in mathematics, the last two pages of Brouwer’s
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dissertation are devoted to some concluding remarks about the three chapters
that compose his dissertation.

On page 179 and 180 the central ideas of the three chapters are presented
in the form of a very compact summary about what mathematics is, and what
it is not. It opens as follows:

Mathematics is a free creation, independent of experience; it de-
velops from a single aprioristic ur-intuition, which may be called
invariance in change as well as unity in multitude.1

But more mathematicians have characterized mathematics as a ‘free cre-
ation’, and therefore we compare Brouwer’s opinion with the views of two oth-
ers. The difference between Brouwer on the one hand, and Cantor and Dedekind
on the other, is striking.

Cantor’s ‘freie Entwickelung’

In § 8 of the Grundlagen einer allgemeinen Mannigfaltigkeitslehre from 1883,
Cantor dealt with two interpretations of the concept of ‘existence of integers’,2

and according to Cantor these two interpretations always occur together, which
is caused by the fact that they both find their origin

in der Einheit des Alls, zu welchem wir selbst mitgehören. – Der
Hinweis auf diesen Zusammenhang hat nun hier den Zweck, eine
mir sehr wichtig scheinende Konsequentz für die Mathematik daraus
herzuleiten, daß nämlich letztere bei der Ausbildung ihres Ideenma-
terials einzig und allein auf die immanente Realität ihrer Begriffe
Rücksicht zu nehmen und daher keinerlei Verbindlichkeit hat, sie
auch nach ihrer transienten Realität zu prüfen.3

which distinguishes mathematics from all other sciences; a consequence of this
is the following:

1dissertation, page 179: De wiskunde is een vrije schepping, onafhankelijk van de erva-
ring; zij ontwikkelt zich uit een enkele aprioristische oer-intüıtie, die men zowel kan noemen
constantheid in wisseling als eenheid in veelheid.

2These two interpretations are:

1. ‘Einmal dürfen wir die ganzen Zahlen insofern für wirklich ansehen, als sie
auf Grund von Definitionen in unserm Verstande einen ganz bestimmten Platz
einnehmen’, von allen übrigen Bestandteilen unseres Denkens aufs beste unter-
schieden werden, zu ihnen in bestimmten Beziehungen stehen und somit die
Substanz uneres Geistes in bestimmter Weise modifizieren.

Cantor called this form of reality of the numbers the intrasubjective or immanent reality. The
second mode of ascribing reality to numbers is:

2. ‘als sie für einen Ausdruck oder ein Abbild von Vorgängen und Beziehungen
in der dem Intellekt gegenüberstehenden Aussenwelt gehalten werden müssen.

Cantor called this the transsubjective or transient reality.
3[Cantor 1883], page 19.
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Die Mathematik ist in ihrer Entwickelung völlig frei und nur an die
selbstredende Rücksicht gebunden, daß ihre Begriffe sowohl in sich
widerspruchslos sind, als auch in festen durch Definitionen geord-
neten Beziehungen zu den vorher gebildeten, bereits vorhandenen
und bewährten Begriffen stehen. Im besondern ist sie bei der Einfüh-
rung neuer Zahlen nur verpflichtet, Definitionen von ihnen zu geben,
durch welche ihnen eine solche Bestimmtheit und unter Umständen
eine solche Beziehung zu den älteren Zahlen verliehen wird, daß
sie sich in gegebenen Fällen unter einander bestimmt unterscheiden
lassen. Sobald eine Zahl allen diesen Bedingungen genügt, kann und
muß sie als existent und real in der Mathematik betrachtet werden.4

According to Cantor, this freedom is in no way a threat to science, thanks
to the small margin for arbitrariness, together with its selfcorrecting structure.
Any further limitation by rules is not required:

denn das Wesen der Mathematik liegt gerade in ihrer Freiheit.

Hence also for Cantor the system of the natural numbers is the result of a
‘freie Entwickelung’, but, different from Brouwer, this free development is not
purely based on the ur-intuition alone, and is not the result of a construction.
Cantor’s freedom is a total freedom within the constraints of consistency of
its concepts, internally and in their mutual relations. For Brouwer, freedom is
expressed by the admissibility of any mathematical construction which is solely
based on the ur-intuition.

Dedekind and ‘freie Schöpfung’

Also Dedekind, in the preface to the first edition of Was sind und was sollen
die Zahlen, claimed that the system of the natural numbers is the result of a
free creation of the human mind:

Indem ich die Arithmetik (Algebra, Analysis) nur einen Teil der
Logik nenne, spreche ich schon aus, daß ich den Zahlbegriff für
gänzlich unabhängig von den Vorstellungen oder Anschauungen des
Raumes und der Zeit, daß ich ihn vielmehr für einen unmittelbaren
Ausfluß der reinen Denkgesetze halte. Meine Hauptantwort auf die
im Titel dieser Schrift gestellte Frage lautet: die Zahlen sind freie
Schöpfungen des menschlichen Geistes, sie dienen als ein Mittel, um
die Verschiedenheit der Dinge leichter und schärfer aufzufassen.5

In this quote Dedekind appears as a logicist: Arithmetic is just a part of
logic. So neither with Dedekind the system of the natural numbers is the result
of a construction, based on the ur-intuition of mathematics; for Dedekind the

4loc. cit. page 19.
5[Dedekind 1930b], page V. This paragraph was quoted earlier; see chapter 1, page 22.
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system N is based on the concepts of ‘mapping’ and ‘chain’.6 The existence of
infinite systems is proved by means of the theorem ‘es gibt unendliche Systeme’,
in the proof of which Brouwer noticed a looming paradox, which he mentioned
in the third notebook, and which we quoted earlier on page 293.

Brouwer’s free creation

Brouwer brought back the basis and foundation of all mathematics to its most
primitive form, the ur-intuition of ‘invariance in change’ or ‘unity in multitude’.7

The interpretation of Brouwer’s free creation should be the following: in this
creation the ur-intuition is the most fundamental element, and, departing from
this the construction of the mathematical building is a free creative act, as this
was sketched in the previous chapters of this dissertation.

See for instance our page 44, the construction of the natural numbers, in
which the abstraction from the content of an event or a sequence of events is
an act, thus making a number independent of the nature and content of such a
sequence.

Another example is the construction of the rational numbers, in which the
time span (the continuous interval) between any two consecutive events is iden-
tical in character to the time interval between any other two successive events.
This is neither the result of a discovery, nor a corollary of an axiom, but it is
the result of an act of our mind. We force them as it were to be similar (see
page 46).

And again we perceive this free creation in the construction of the measurable
continuum (page 79, item 7), which is, after ω times the splitting of every interval
into two parts, made to be everywhere dense by our own act of contracting every
unpenetrated segment into one point:

But we agree to contract every segment not penetrated by the scale
into one point, in other words, we consider two points as different
only when their approximating dual fractions differ after a finite
number of digits.8

A fourth example of mathematics as a free creation is thesis II, in which the
principle of complete induction is declared to be neither a theorem, nor an ax-
iom, but simply an act in the mathematical construction (see the next section).

6Compare also page 19. Clearly, for Dedekind the number concept is not depending on
space or time, as this is also the case with Cantor; see page 8.

7In a footnote to the quoted beginning of the summary, Brouwer mentioned F. Meyer, who
stated in the Verhandlungen des Heidelberger Kongresses that one thing will be sufficient,
since the act of thinking that thing automatically includes a second thing, viz. the act of
thinking itself. This is contested by Brouwer, since Meyer presupposed in his argument the
intuition of two.

8dissertation, page 10: Maar we spreken af, dat we elk segment, waarin de schaal niet door-
dringt, tot een enkel punt denken samengetrokken, m.a.w. we stellen twee punten alleen dán
verschillend, als hun duale benaderingsbreuken na een eindig aantal cijfers gaan verschillen.
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These examples show best Brouwer’s view of mathematics as the result of
the free creative act.9 In the continuation of the summary of his dissertation,
Brouwer claimed that also the projection of mathematical systems on the expe-
rience of our environment is a free act. In the discussion of the second chapter
of Brouwer’s dissertation (chapter 6 of this dissertation) we dealt with man’s
faculty of taking a mathematical view of his life. Man observes regularity in
the world, he observes recurring sequences of events and he discovers the pos-
sibility of expressing these sequences in a mathematical way. He also discovers
methods of early interference in these sequences, thus changing its course into a
desired direction. The free act consists of the creation of a mathematical model
of the physical world, we force nature into such a model, in order to rule the
surrounding world for our own well-being.

In this respect one mathematical system can appear more practical,
more economical than another, at least relative to a definite kind
of purpose which one wishes to attain: none of them is absolutely
efficient.10

The last two paragraphs of Brouwer’s dissertation once more emphasize the
difference between mathematics, its accompanying language and logic.

The second last clearly states Brouwer’s (by now well-known) dictum about
the employed language when expressing mathematical statements:

In mathematics, mathematical definitions and properties ought not
to be studied again by mathematical methods; they ought to be no
more than a means of conducting as economically as possible one’s
own memory and communication with other people.11

In the definitions (and generally in all mathematical language) there are
primitive and irreducible concepts like continuous, entity, once more, and so
on. These concepts are elements of construction, immediately perceived in the
ur-intuition of the continuum. This paragraph clearly rejects any form of meta-
mathematics, i.e. mathematics about the structures of mathematical language
instead of mathematics itself. This form of meta-mathematics has as objects
mathematical words, it has as relations the rules, according to which these words

9Compare this with a quote from E.W. Beth’s Modern Logic, who, when discussing the
status of mathematical knowledge in the several philosophical movements, noted about intu-
itionism:

The intuitionist conceives it as a form of self-knowledge. ([Beth 1967], page 102:
De intüıtionist vat haar op als een vorm van zelfkennis.)

10Dissertation, page 180: Het ene wiskundige systeem kan daarbij praktischer, economischer
blijken, dan het andere, althans voorzover betreft een bepaalde categorie van doeleinden, die
men door middel van die systemen tracht te bereiken: absoluut doeltreffend zijn ze geen van
alle.

11dissertation, page 180: In de wiskunde behoren wiskundige definities en eigenschappen niet
zelf weer wiskundig te worden bekeken, maar alleen een middel te zijn, om eigen herinnering
of mededeling aan anderen van een wiskundig gebouw zo economisch mogelijk te leiden.
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can be grouped into meaningful sentences, and it has as results statements about
the language of mathematics, about logistics, but not about mathematics itself.

The last paragraph deals with the impossibility of a construction of the math-
ematical building on the foundation of logic alone, without any mathematical
intuition. Again, one is doing theoretical logic, or, at the best, logistics, but
certainly not mathematics. One is just constructing a language-building:

A logical construction of mathematics, independent of the math-
ematical intuition, is impossible – for by this method no more is
obtained than a linguistic structure, which irrevocably remains sep-
arated from mathematics – and moreover it is a contradictio in ter-
minis – because a logical system needs the basic intuition of mathe-
matics as much as mathematics itself needs it.12

As a final conclusion we can say that we know that metamathematics and
mathematical logic are not themselves methods of constructing mathematics,
but merely the observation and the study of the accompanying language of a
mathematical construction.

8.3 The theses

Until recent time a compulsory list of theses formed an integral part of the
dissertation and had to be defended together with it. Brouwer’s theses, 21 in
number, all have a philosophical and/or mathematical content and consist for a
great part of the conclusions from the several topics that were discussed in the
dissertation. Here are some examples:

(II) It is not only impossible to prove the admissibility of complete
induction, but it ought neither to be considered as a special axiom
nor as a special intuitive truth. Complete induction is an act of
mathematical construction, already justified by the basic intuition
of mathematics.13

[referring to conclusions from chapter I:]

12dissertation, page 180, the last paragraph: Een logische opbouw der wiskunde, onafhanke-
lijk van de wiskundige intüıtie, is onmogelijk – daar op die manier slechts een taalgebouw wordt
verkregen, dat van de eigenlijke wiskunde onherroepelijk gescheiden blijft – en bovendien een
contradictio in terminis – daar een logisch systeem, zo goed als de wiskunde zelf, de wiskundige
oer-intüıtie nodig heeft.

13De geoorloofdheid der volledige inductie kan niet alleen niet worden bewezen, maar be-
hoort ook geen plaats als afzonderlijk axioma of afzonderlijk ingeziene intüıve waarheid in
te nemen. Volledige inductie is een daad van wiskundig bouwen, die in de oer-intüıtie der
wiskunde reeds haar rechtvaardiging heeft.

(Compare this to Poincaré in [Poincaré 1916], chapter I, section V: consistency of complete
induction cannot be proved; it is a ‘propriété de l’esprit lui-même’.)
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(V) The arithmetical operations on the measurable continuum ought
to be defined by means of group theory.14

[referring to conclusions from chapter II:]

(VII) Attributing ‘objectivity’ to physical notions like mass and
number is based upon their invariability with respect to an important
group of phenomena in the mathematical image of nature.15

(VIII) Human understanding is based upon the construction of com-
mon mathematical systems, in such a way that for each individual
an element of life is connected with the same element of such a sys-
tem.16

[referring to conclusions from chapter III:]

(IX) Mathematics is independent of logic; practical logic and theo-
retical logic are applications of different parts of mathematics.17

(XII) Besides the finite there are no other cardinalities than: denu-
merably infinite, denumerably infinite unfinished, continuous.18

(XIII) Cantor’s second number class does not exist.19

Several other theses are about potential theory, a subject which was not
discussed in the dissertation but to which Brouwer devoted several of his earliest
papers.

An interesting aspect is formed by the different drafts for the theses to
which often clarifying notes were added; many of the draft-theses did not find
their way into the dissertation.20 Some interesting (and sometimes puzzling)
observations can be made in the different drafts, especially in combination with
a draft-letter to J. de Vries, in which Brouwer elucidated the main aspects of
his dissertation.21 This elucidation is done in four sections, and each section
ends with a reference to relevant theses from the list of 21, followed by the page
numbers from the dissertation to which these theses refer; however, often one or
more ‘theses in plain language’ (that is, not specifically denominated as a thesis)

14De hoofdbewerkingen op het meetbaar continuüm behoren door groepentheorie te worden
gedefinieerd.

15Het toekennen van ‘objectiviteit’ aan fysische grootheden als massa en aantal berust
op de invariabiliteit daarvan bij een belangrijke groep van verschijnselen in het wiskundig
natuurbeeld.

16De verstandhouding der mensen berust op het bouwen van gemeenschappelijke wiskundige
systemen, en het verbinden aan eenzelfde element van zulk een systeem van een levenselement
voor elk der individuen.

17Wiskunde is onafhankelijk van logica; practische logica en theoretische logica zijn
toepassingen van verschillende gedeelten der wiskunde.

18Behalve de eindige, bestaan er geen andere machtigheden dan: aftelbaar oneindig, aftel-
baar oneindig onaf, continu.

19De tweede getalklasse van Cantor bestaat niet.
20These theses and their clarifying notes can be found in the new edition of Brouwer’s

dissertation, [Dalen 2001].
21Professor J. de Vries (1858-1938), Utrecht University. The letter is undated, but most

likely it is from shortly after his public defence in February 1907.
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are added, and these latter are always specimen from the several drafts which
did not end up in the dissertation. They apparently were removed from the
final list, possibly under Korteweg’s influence, either because of their content or
simply because the list became too long and a choice had to be made. But they
were certainly not removed because of a change in Brouwer’s opinion, since they
were explicitly mentioned in the letter to J. de Vries, including relevant page
references.
The four different sections in the letter to De Vries are:

A. About the classification of mathematics as a special branch of logic. It is
impossible to classify mathematics under logic, since in case of an attempted
proof of a mathematical truth from logic, that mathematical truth is tacitly
and intuitively presupposed in the deduction. One of the theses added to this
conclusion is the unpublished one from the second draft:

In a logical treatment of mathematics there is nothing against the
petitio principii, provided it is read from the intuition. (see page
176) [of Brouwer’s dissertation]22

This item was discussed on page 305, in Poincaré’s criticism towards Hilbert.
B. About the actual execution of the intuitive construction. This was mainly

treated in the first chapter, and partly in chapter 3. Among the relevant theses
there is an unpublished one, from draft 2:

A strict separation should be made between the intuitive time and
the scientific time.23

This thesis is added as a footnote to Brouwer’s main conclusion on mathe-
matical intuition (‘The only a priori element in science is time’) on page 99 of
his dissertation.

C. About the general character of science and the relation between mathemat-
ics and other sciences. This mainly refers to the second chapter of Brouwer’s
dissertation. Science consists of the projection of mathematics on our world of
experience, which seems peculiar, since mathematics is not depending on any
daily experience; we force a mathematical description on nature instead. The
added thesis, which is not from the dissertation-list, is thesis 26 (not verbatim)
from an extra list with additional clarifications:

Mathematics is not a science like other sciences, but it is a moral
act consisting of doing science.24

A similar thesis is XXIV from draft 2:
22Bij een logische behandeling der wiskunde is niets tegen een petitio principii, mits die uit

de intüıtie wordt afgelezen.
23Men behoort streng te onderscheiden tussen de intüıtieve en de wetenschappelijke tijd.
24Wiskunde is niet een wetenschap als een andere, maar een morele daad die het bedrijven

van de wetenschap is.
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Mathematics should not be considered as a science as any other, but
as a medium to the different sciences.25

D. About the question whether or not actual infinite sets exist.26 This ques-
tion was also dealt with on our page 78, as well as in the discussion of Poincaré’s
critique on Hilbert (see page 306); see also the quote from Aristotle in the be-
ginning of chapter 3. Poincaré, on the one hand, completely rejected the actual
infinite; Cantor, on the other hand, admitted infinities of always higher cardi-
nalities. In his letter to De Vries, the actual infinite is restricted by Brouwer to
the following sets:

I acknowledge denumerably infinite sets, and with a restriction, the
continuous cardinality, and finally, with another restriction, a new
cardinality, which I call denumerably infinite unfinished. I expose
however, all the higher cardinalities of Cantor as a logical chimera.
At the same time I try to strip transfinite set theory of its parasite
parts, such as transfinite exponentiation, the theorem of Bernstein
with its applications, and more; all of which result from the false
logical foundations of set theory. In this connection I can formulate:

1. Actual infinite sets can be created mathematically, even though
in the practical applications of mathematics in the world only finite
sets occur.27

This last claim is also the first thesis from the first draft of unpublished
theses, and we notice that, on this point, Brouwer seems not always to be clear,
consistent and unambiguous in his texts. Brouwer knew of course that actual
infinities exist, for instance the system of the natural numbers or that of the
rational numbers; the problem for him was to subsume them in a mathematical
construction.

In the dissertation (page 176, in the discussion of Poincaré’s comment) also
the ‘actual infinite of the Cantorians’ is said to exist, but here it is explicitly
restricted to that ‘which can be intuitively constructed’. This can only refer to
the denumerably infinite and possibly also the denumerably infinite unfinished
cardinality (under the proper interpretation of the latter). The continuum is

25Wiskunde behoort niet te worden beschouwd als een wetenschap als een andere, maar als
het medium tot de verschillende wetenschappen.

26Note that in 1885 Cantor published in the Zeitschrift für philosophie und philosophische
Kritik a paper, Über die verschiedene Standpunkte in bezug auf das aktuelle Unendliche,
which is of historical interest. See [Cantor 1932], page 371.

27(English translation by D. van Dalen in [Dalen, D. van 1999], page 118. [Ik] erken aftel-
baar oneindige verzamelingen, en met een restrictie de continue machtigheid, en ten slotte met
een andere restrictie een nieuwe machtigheid, die ik noem aftelbaar oneindig onaf. Alle hogere
machtigheden van Cantor echter toon ik aan als logische hersenschimmen. Tegelijk tracht ik
de transfiniete Mengenlehre van haar parasitaire gedeelten als transfiniete machtsverheffing,
theorema van Bernstein met zijn toepassingen, en meer, die alle uit de valse logische grond-
slagen ervan voorkomen, te ontdoen. Ik kan in dit verband formuleren: 1. ‘Actueel oneindige
verzamelingen zijn wiskundig te scheppen, ook al treden bij de practische toepassing der
wiskunde in de wereld slechts eindige verzamelingen op’ (Zie page 120, 142-143).
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not intuitively constructed since this is given to us in its entirety. Nevertheless
it is subsumed under one of Brouwer’s four possible cardinalities and it certainly
cannot be regarded as finite. Also in the letter to De Vries the continuum is
implicitly included as one of the ‘actual infinite’ sets. But from the dissertation
it follows that the continuum is no point set, it is only the matrix, onto which
denumerably infinite many points can be constructed; it is an infinite source.
Apparently, this goes very well together for Brouwer.

In spite of Brouwer’s claim quoted above that ‘in the practical applications
in the world only finite sets occur, one should of course suppose an actual infinite
set to be completed, but on page 9 and 10 of his dissertation, Brouwer pointed
out that a denumerable set, which is by definition given by some algorithm,
may not be considered as an example of a finished totality. On these pages,
where the construction of a scale on the intuitive continuum is discussed, we
also find the method of approximation of some arbitrary point. This method is
of relevance to the concept of the actual infinite, since, when selecting a point
P , we can approximate this point, without ever reaching it, by an infinite dual
fraction (which can be viewed as an infinite sequence of dual fractions),

(...) given by an arbitrary given law of progression, (...) However,
we can never consider the approximating sequence of a given defi-
nite point as being completed, so we must consider it as partly un-
known.28

In a handwritten correction to his own copy of the dissertation, Brouwer
even added as an example: ‘take for instance the number π’.29 Thus a lawlike
sequence of progression for the number π has to be regarded as partially un-
known, whereas every element of this sequence can be computed directly and
unambiguously.

Also the notebooks contain (more or less) conflicting remarks on the actual
infinite; e.g. on the one hand:

(VIII–20) I can think a fundamental sequence as finished, just as
(the value of) a convergent sequence (the first one gives certainty of
the equality of the terms, the second of the limiting value).30

So, considering Brouwer’s concept of a fundamental sequence, viz. any se-
quence of ordertype ω,31 together with the fact that every well-defined, i.e. al-
gorithmically given, denumerable set can be given in the form of a fundamental
sequence, results in such a set as an example of an ‘actual infinity’.

But, on the other hand, in the same notebook we find the following para-
graph:

28[gegeven] volgens een willekeurige denkbare voortschrijdingswet (...) We kunnen de be-
naderingsreeks van een bepaald aangewezen punt evenwel nooit af denken, dus moeten haar
als gedeeltelijk onbekend beschouwen.

29See also the discussion on page 77.
30Een fundamentaalreeks kan ik ‘af’denken; eveneens de waarde van een convergente reeks

(de eerste geeft de vastigheid van de gelijkheid der termen, de tweede die van de limiet waarde).
31See for instance the Berliner Gastvorlesung, [Dalen, D. van (ed.) 1992], page 31.
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(VIII–24) One should always keep in mind that ω only makes sense
as a living and growing induction in motion; as a stationary abstract
entity it is senseless; ω may never be conceived to be finished, as a
new entity to operate on; however you may conceive it to be finished
in the sense of turning away from it while it continues growing, and
to think of something new.32

This, again, is clear, but it seems to be in conflict with the preceding quote:
even the set of the natural numbers should in this option be considered as a ‘for
ever unfinished and always growing’ sequence.

The conclusion from the letter to J. de Vries is unambiguous: the actual infi-
nite does exist and the conclusion from page 176 of the dissertation is the same;
moreover there are other places in his dissertation where Brouwer presented di-
rect or indirect arguments for the existence of the actual infinite. Whereas on
page 9 the phrase ‘it is easy to construct on the continuum a sequence of points
having the order type of the positive and negative whole numbers’ still can be
interpreted as expressing a process of never terminating growth, the sentence
on page 62:

The mathematical intuition is unable to create other than denumer-
able sets of individuals. But it is able, after having created a scale
of order type η (...)33

The expression ‘after having created’ seems to refer to a finished, actually
denumerable set. On Brouwer’s page 142 it is expressed as follows (we quoted
and discussed this earlier in a different context; see our page 78):

In the first chapter we have seen that there exist no other sets than fi-
nite and denumerably infinite sets and continua; this has been shown
on the basis of the intuitively clear fact that in mathematics we can
create only finite sequences, further by means of the clearly con-
ceived ‘and so on’ the order type ω, but only consisting of equal
elements; (consequently we can, for instance, never imagine arbi-
trary infinite dual fractions as finished, nor as individualized, since
the denumerably infinite sequence of digits cannot be considered as
a denumerable sequence of equal objects), and finally the intuitive
continuum, (...)34

32Men bedenke steeds dat ω alleen zin heeft, zolang het leeft, als groeiende, bewegende
inductie; als stilstaand abstract iets is het zinloos; zo mag ω nooit àf gedacht worden, om
m.b.v. het geheel als nieuwe eenheid te werken: wel mag je het àf denken in de zin, van je er
van af te keren, terwijl het doorloopt, en iets nieuws te gaan denken.

33De mathematische intüıtie is niet in staat andes dan aftelbare hoeveelheden
gëındividualiseerd te scheppen. Maar wel kan zij, eenmaal een schaal van het orde type η
opgebouwd hebbend, (...)[my emphasis in the main text].

34We hebben in het eerste hoofdstuk gezien, dat er geen andere verzamelingen bestaan,
dan eindige en aftelbaar oneindige, en continua; hetgeen is aangetoond op grond van de
intüıtieve waarheid, dat wij wiskundig niet anders kunnen scheppen, dan eindige rijen, verder
op grond van het duidelijk gedachte ‘en zovoort’ het orde type ω, doch alleen bestaande uit
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Hence only arbitrary infinite dual fractions (a choice sequence in dual rep-
resentation) cannot be imagined as finished and thus, one should say, a lawlike
sequence may be regarded as finished, giving an actual infinity.

Brouwer’s view is unambiguously expressed in the letter to De Vries: an
actually infinite set exists if this notion is limited to algorithmically constructed
denumerable sets. Also the continuum exists as an intuitively given actuality,
but no sets of higher cardinality than denumerable can be constructed and
therefore do not exist. Hence this also applies to other ‘Cantorian’ sets like the
set of all subsets of a denumerably infinite set since it cannot be defined by an
algorithm.

But then, how should we construe the conflicting quotes from page 9 and 10
of the dissertation and from the paragraph from notebook VIII, page 20? How is
it possible that, on the one hand, the lawlike sequence of π must be considered
to be partially unknown, and, on the other hand, (VIII–20) ‘I can think a
fundamental sequence as finished’? When is an infinite set finished and when
does the actual infinite exist; and when are the terms of an infinite expansion
known or unknown. Of course, arbitrary infinite dual fractions’ (hence non-
lawlike choice sequences) are only known as far as the choices are actually made
and therefore they are in their totality unknown on principle.

Different interpretations seem to be possible for ‘finished’ and ‘unfinished’,
as well as for ‘known’ and ‘unknown’. In an attempt to create order in these
seemingly conflicting remarks by Brouwer, we propose the following interpreta-
tions for these concepts. They do, we are convinced, justice to Brouwer’s views;
we are even inclined to imagine that he would have offered the same mathemat-
ical exegesis.

In regard to the concept ‘finished’: When constructing for instance the sys-
tem ω (or η) in a systematic algorithmic manner, then the result of the actual
construction of the elements, one by one, forms of course a never terminating
and always finite sequence. The process is never actually finished. But, be-
cause of the repeated application of the same algorithm, because of the always
equal steps, we may declare the set ω to be finished. This is another example of
mathematics as an act, as a free creation of the mind: we may jump as it were
over the whole procedure of the successor operation. Just as we may consider a
first and a second event and their connecting continuum together as one single
event, retained in memory as such and separated by a time span from a new
event, thus constructing the system N, we may consider ω as one single unit, as
one ‘experienced event’, and add a new element, called ω + 1. We consider or
idealize the actual infinite set to exist and we have arguments for this act since
we can, without hesitation, mention every member of the set (but of course
not all members!), exactly because of the simplicity and the constancy of the
algorithm.

gelijke elementen, zodat we ons b.v. de willekeurige oneindige duaalbreuken nooit af, dus
nooit gëındividualiseerd kunnen denken, omdat het aftelbaar oneindig aantal cijfers achter
de komma niet is te zien als een aftelbaar aantal gelijke dingen, en tenslotte het intüıtief
continuüm, (...)
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We can put this in the following terms: extensionally speaking the actual
infinite never exists, since an extensionally given set is supposed to be the result
of a proper mathematical construction of its individual terms, including its
termination, which is impossible. But we may also conceive the actual infinite to
be an intensional mathematical object, e.g. the system of the natural numbers
defined by the successor operation. This makes the quotes given above from
VIII–24 comprehensible: as a stationary abstract entity it is senseless, but you
may turn away from it and let it grow while doing something else. That ‘doing
something else’ may then, for instance, consist of the continuation of the act of
counting from ω + 1 onwards. In that sense you may conceive it to be finished.
The intensional definition of the algorithm makes the free act of declaring it to
be finished defensible, and this makes the claim that the actual infinite exists
equally defensible. Intensionally it is there; see e.g. also the following quote
from the seventh notebook:

(VII–16) ω is finished by our innate mathematical induction.35

Now the only remaining quote that does not fit in this picture, is the one
from page 10 of the dissertation, so it seems:

However, we can never consider the approximating sequence of a
given definite point as being completed, so we must consider it as
partly unknown.

and this is directly connected with the question of ‘when is something known or
not known’. Clearly, judging by the quotes from the dissertation and from the
notebooks, several interpretations are possible. Of course the unchosen terms
of a non-lawlike choice sequence are unknown on principle; they remain so as
long as no choice has been made. But a different form of ‘unknown’ must be
meant by Brouwer in the quote given above from the dissertation. Even for a
lawlike sequence like the one for π, the uncomputed terms are unknown (for
the time being), even if they are known in principle, even if a computer can fix
its value in an instant; as long as the computation is not actually performed
we do not yet know its outcome; this has to be understood in its most basic
and primitive sense. Clearly this form of ‘unknown’ is closely linked with the
extensional definition for the sequence of π, since these two concepts are used
in one and the same sentence.

It may be confusing to the reader that Brouwer employed two interpretations
for the ‘actual infinite’ and two interpretations for ‘unknown’, in a seemingly
random way, but close reading of the several quotes reveals which interpretation
Brouwer exactly had in mind on that specific occasion.

When the actual infinite is declared to exist (which we interpreted to be the
result of a free creating act of the mind), i.e. in case of an intensional definition,
the elements of the set or the terms of the sequence may be declared to be
known. However, if an infinite quantity is extensionally defined and therefore
never finished, then only the finite finished part of the elements is known.

35ω is af door de mathematische inductie, die in ons is.
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8.4 Summary of our conclusions

Many interpretations or re-interpretations were made in the course of the discus-
sion of the several topics from Brouwer’s dissertation. Many conclusions were
drawn at the end of each of the previous chapters or their sections or subsec-
tions. In the following we will present a summary of the most relevant items in
regard to the foundational aspects of mathematics.

– The ur-intuition and the construction of the ω-scale (page 44).
Two well-separated and actually experienced events, combined into the unity

event – connectiong medium (time span) – next event, and divested of all quality,
form the beginning of the ω-scale (i.e. the numbers ‘zero’ and ‘one’) to which
unity can be added a new event, well-separated from that unity and which forms,
after abstraction, the number ‘two’, etc. Hence, what is retained in memory is
a sign, which stands for the result of that abstraction.

– The status of this sign (page 56).
This representing sign is also a mental construction in the form of an ab-

stract symbol, and does not belong to the accompanying language yet. Only its
oral or written expression belongs to that language.

– The construction of the η-scale (page 46).
The experience of the flowing, of the connecting medium between a first

event (‘zero’) and a next (‘one’) can itself be seen as an event and therewith
it is the first intercalated element of the η-scale (the element ‘half’), and, since
this ‘flowing’ is experienced as well-separated form the events ‘zero’ and ‘one’,
it is in its turn again connected by a flowing with both, zero and one. Hence
the procedure of intercalation can be repeated indefinitely.

– The scale of integers (page 48).
If we call the second event ‘zero’ and the third ‘one’ (we are free to do so),

then we may call the intercalation between the first and the second event ‘minus
one’; the second intercalation between the first event and ‘minus one’ we call
‘minus two’, etc. The first event then (informally) becomes ‘minus infinity’.

– The everywhere dense η-scale (page 79).
This scale on the ‘intuitive continuum in a graphic (i.e. geometrical) rep-

resentation’ is the result of the free act of contracting every not-penetrated
segment of this continuum into one point; that is, identifying two points which
do not differ after any finite number of decimal places, as one and the same point.

– The Bolzano-Weierstrass theorem (page 81).
In Brouwer’s argumentation for this theorem, the principle of the excluded

middle is employed. Attempts to prove it in a strictly constructive way turn
out to be unsuccessful.
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– Covering by, or completion to a continuum of an everywhere dense scale (page
120).

This can take place by mapping the set of the rationals on a continuum on
which an everywhere dense scale is constructed.

– The third construction rule for sets (page 122).
Brouwer’s choice for this rule as one of the possibilities to construct a set,

must be the result of the great influence that Cantor still had on the young
Brouwer, and was, with good reasons, later on rejected by him in the Addenda
and Corrigenda (page 130).

– Brouwer’s solution to the continuum problem (chapter 5).
His solution was the only possible and almost trivial one in view of his con-

structive approach of sets of points on the continuum, but it did not answer
Cantor’s conjecture that 2ℵ0 = ℵ1, which is also impossible because Brouwer
did not recognize any aleph’s, apart from ℵ0.

– Brouwer’s view on physics (page 181).
His stern view on the moral aspects of physical practice was the result of his

pessimistic outlook on mankind. Man’s only desire is, according to Brouwer,
to rule and to increase his power. The result is an approach towards physics,
which is certainly not common among physicists.

– Objectivity and apriority (page 210)
Brouwer’s concept of objectivity turned out to be a direct and natural corol-

lary of his solipsism. Also his view on apriority is a result of the ur-intuition,
which makes, in contrast with Kant, space superfluous as an apriorisitc element
in the construction of mathematics.

– The role of logic (page 228)
This role is reduced to that of a set of rules for the accompanying linguistic

reasoning in the construction of the mathematical building. The principium
tertii exclusi is ultimately rejected for infinite sets.

– The hypothetical judgement in mathematics (page 230).
This judgement is subject to stricter rules than the ones from the later BHK

proof interpretation. The premise of the judgement has to be the result of a
properly performed mathematical construction. This was clarified with the help
of several examples.

– The denumerably infinite unfinished cardinality (page 266).
This is the third in the list of possible cardinalities for sets. This cardinal-

ity and in particular ‘Brouwer’s lemma’ can only be properly interpreted and
understood under a stricter and more limiting set of conditions than the ones
given in Brouwer’s dissertation.
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– Brouwer and Gödel’s first incompleteness theorem (page 286).
A single remark, made by Brouwer in one of the notebooks:

(VIII–44) The totality of mathematical theorems also, among other
things, constitutes a set, which is denumerable but never finished.

can be interpreted and defended as a foreshadowing of Gödel’s first incomplete-
ness theorem.

– The actual infinite (page 320).
The concepts ‘finished/unfinished’ and ‘known/unknown’ as well as the ex-

istence of the ‘actual infinite’ were discussed in this chapter, with the conclusion
that, for a proper interpretation, a distinction has to be made between an ex-
tensional and an intensional definition of a set.

We also mentioned the two acts of intuitionism (page 57), explicitly ex-
pressed in Brouwer’s later work, viz.
1) the strict separation between mathematics and its accompanying language.
Mathematics is fundamentally languageless,
and
2) the actual construction of mathematics, strictly separated from any language,
but solely based on the ur-intuition. In this construction a set becomes a law.

We clearly recognized both of Brouwer’s acts already in his dissertation,
without, however, denoting them as such. See for this for instance our page 57
and chapter 4, which stipulate the construction of the elements for a set.

The spread concept could be identified in chapter 1 of Brouwer’s dissertation
(page 117 of this dissertation), in which its role is still limited to decide whether
or not a set is dense in some specific interval, instead of using it for the con-
struction of set elements in the form of choice sequences.

Choice sequences did not yet appear in the dissertation, but we met them
several times in the notebooks, often in the form of thought experiments. We
can observe similar experiments with other mathematicians (see for instance
[Borel 1908b], page 16, or [Borel 1950], page 160), but, whereas with others it
did not lead to anything revolutionary new notions, the choice sequence concept
in the notebooks clearly were a foreboding of developments ahead.

This and similar forebodings remain one of the fascinating aspects of reading
in the dissertation in combination with the notebooks. Intuitionistic mathemat-
ics had not yet matured in those early days, but the signs were there; all was
waiting for a breakthrough, which was to come in 1917, with far-reaching con-
sequences.

Probably a further and more detailed study of the nine notebooks, in combi-
nation with Brouwer’s later work, will reveal more seeds of later developments.
An annotated publication of the notebooks is in preparation.
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It is a happy coincidence that the notebooks allow us, in addition to the con-
sulted literature which is mentioned by Brouwer in his dissertation, to give
a more complete overview of all the material that he read and studied when
preparing his doctoral thesis. However, his list of references is often very frag-
mentary and sketchy, and it frequently required some investigation to find out
what book or paper Brouwer exactly had in mind; sometimes only a short refer-
ence is made to a specific journal, without mentioning the exact relevant article.
From the resulting list it becomes clear that Brouwer was very well up-to-date in
the modern literature, especially in the field of the foundations of mathematics.

Brouwer often referred to journals or other official publications under a short-
ened name. The following list gives these ‘nicknames’, followed by the full names
of the journal during the years they were read and studied by Brouwer:

– Abhandlungen Göttingen: Abhandlungen der Königlichen Gesellschaft der
Wissenschaften zu Göttingen; Mathematisch-Physikalische Klasse,

– Archiv der Mathematik und Physik: Archiv der Mathematik und Physik;
mit besonderer Rücksicht auf die Bedürfnisse der Lehrer an höhern Unterrichts-
anstalten,

– Bulletin of the American Mathematical Society: Bulletin of the American
Mathematical Society: a historical and critical review of mathematical science,

– Crelle: Journal für die reine und angewandte Mathematik,
– L’Enseignement Mathématique: L’Enseignement Mathématique; Revue

Internationale,
– Göttinger Nachrichten: Nachrichten von der Königlichen Gesellschaft der

Wissenschaften zu Göttingen; Mathematisch-Physikalische Klasse,
– Jahresbericht der D.M.V.: Jahresbericht der Deutschen Mathematiker-

Vereinigung,
– Math. Ann.: Mathematische Annalen,
– Phil. Magazine: The London, Edinburgh and Dublin Philosophical Maga-

zine and Journal of Science,
– Rendiconti Palermo: Rendiconti del Circolo Matematico di Palermo,
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– Sächsische Berichte: Berichte über die Verhandlungen der Königlich Sächsi-
schen Gesellschaft der Wissenschaft zu Leipzig, Mathematisch-Physische Klasse,

– The Monist: The Monist; International Quarterly Journal of General
Philosophical Inquiry.

The booktitles which are (also or only) mentioned in the dissertation, are
marked with an asterisk with the author’s name.

Bacharach, M. Abriss der Geschichte der Potentialtheorie. Vandenhoek &
Ruprecht; Göttingen, 1883.

Bernstein, F. Die Theorie der reellen Zahlen. Jahresbericht der D.M.V. 14,
1905.

Bernstein, S. Sur la Déformation des Surfaces; Math. Ann. 60, 1905.

Bernstein,* F. Untersuchungen aus der Mengenlehre. Math. Ann. 61, 1906.
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Math. Ann. 60, 1905.
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Cantor,* G. Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Teubner;
Leipzig, 1883.
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bericht der D.M.V., Bd. I, 1890-’91.

Cantor,* G. Beitrage zur Begründung der transfiniten Mengenlehre. Math.
Ann. 46, 1895.
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Ann. 49, 1897.
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Cipolla, M Teoria dei numeri complessi ad N unità. Periodico di Matematica
anno XX, serie 3, vol. II, 1905.

Couturat, L. L’Algèbre de la Logique. Gauthier-Villars; Paris, 1905.

Couturat,* L. Les Principes des Mathématiques. Alcan; Paris, 1905.36

36First published in the Revue de Métaphysique et de Morale, nrs 12 (1904) and 13 (1905).
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Couturat,* L. Contributions to the polemic about the foundations of math-
ematics between Russell, Poincaré, Lechalais and Couturat. Revue de
Métaphysique et de Morale 1897 – 1906.

Darboux, M.G. Sur le Théorème Fondamental de la Géométrie Projective;
(Extrait d’une lettre à Mr. Klein). Math. Ann. 17, 1880.

Dedekind,* R. Stetigkeit und irrationale Zahlen. Vieweg; Braunschweig, 1872.

Dedekind,* R. Was sind und was sollen die Zahlen. Vieweg; Braunschweig,
1888.

Dedekind, R. Ueber die Permutationen des Körpers aller algebraischen Zah-
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Constante. Math. Ann. 55, 1902.
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D.M.V. 12, 1903.
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auf. Teubner; Leipzig, 1872.

Frischauf, J. Elemente der absoluten Geometrie. Teubner; Leipzig, 1876.

Geissler, K. Die Grundsätze und das Wesen des Unendlichen in der Mathe-
matik und der Philosophie. Teubner; Leipzig, 1902.
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Math. Ann. 57, 1903.

Hankel, H. Vorlesungen über die complexen Zahlen und ihre Functionen. Voss;
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Hardy, G.H. A Theorem Concerning the Infinite Cardinal Numbers. Quar-
terly Journal of Mathematics, 1903.

Harvard, A.E. On the Transfinite Numbers. Phil. Magazine, sixth series,
Vol. X, 1906.

Helmholtz,* H. von Ueber die Thatsachen, die der Geometrie zu Grunde
liegen. Göttinger Nachrichten, 1868.

Hertz, H. Die Prinzipien der Mechanik (in neuem Zusammenhange darge-
stellt). Barth; Leipzig, 1894.

37Festschrift zur Feier des 150-jährigen Bestehens der Königlichen Gesellschaft der Wis-
senschaften zu Göttingen.
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Hilbert, D. Grundlagen der Geometrie. Teubner; Leipzig, 1889 (Festschrift).

Hilbert,* D. Über die gerade Linie als kürzeste Verbindung zweier Punkte.
Math. Ann. 46, 1895.

Hilbert, D. Über den Zahlbegriff. Jahresbericht der D.M.V. Bd 8, 1900.

Hilbert,* D. Mathematische Probleme; Mathematiker-Congresse, Paris 1900.
Göttinger Nachrichten, 1900.
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L’Enseignement Mathématique 3, 1902.
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nement Mathématique 7, 1905.
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schenklichen Dreieck. Proceedings of the London Mathematical Society
Vol. 35, 1902/1903.

38There is no paper from the hand of Hilbert in the Revue de Métaphysique et de Morale
1905 and 1906, but in 1905 Poincaré criticized Hilbert’s Heidelberg lecture and in 1906 his
‘Grundlagen der Geometrie’ is discussed by Poincaré, Couturat and others in the polemic
about the foundations of mathematics.
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Klein,* F. Vorlesungen über nicht-Euklidische Geometrie.42 Göttingen, 1893.
39First print 1783.
40Written and published together with S. Lie.
41Brouwer is referring in one sentence to four articles by Klein, published in the Mathema-

tische Annalen 4, 6, 7 and 17. From the many articles from the hand of Klein during those
years we selected the following four items as the ones most likely meant by Brouwer, all about
the same subject, viz. (non-Euclidean) geometry.

42Full title: Nicht-Euklidische Geometrie; Vorlesung gehalten während des Wintersemesters
1889 – 1890, ausgearbeitet von Fr. Schilling.
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autre? Annales de la Société Scientifique de Bruxelles 29, 1905.

Mansion, P. La Géométrie archimédienne est-elle une Géométrie? Annales de
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Krümmungsmasses mit den projectiven Räumen. Math. Ann. 27, 1886.
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[Brouwer 1927] L.E.J. Brouwer. Über Definitionsbereiche von Funktionen.
Mathematische Annalen, 97:60–75, 1927.

[Brouwer 1929] L.E.J. Brouwer. Mathematik, Wissenschaft und Sprache.
Monatshefte fuer Mathematik und Physik, 36:153–164, 1929.

[Brouwer 1930a] L.E.J. Brouwer. A. Fraenkel, Zehn Vorlesungen über
die Grundlegung der Mengenlehre. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 39:10–11, 1930a. Review.

[Brouwer 1930b] L.E.J. Brouwer. Die Struktur des Kontinuums [Sonderab-
druck], 1930b.

[Brouwer 1933] L.E.J. Brouwer. Willen, Weten, Spreken. Euclides, 9:177–193,
1933.

[Brouwer 1947] L.E.J. Brouwer. Richtlijnen der intüıtionistische wiskunde.
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[Poincaré 1923] H. Poincaré. La Valeur de la Science. Flammarion, Paris, 1923.
Unaltered edition of the 1902-first edition.
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Samenvatting

Als inleiding op de samenvatting van dit proefschrift is het nuttig om eerst een
kort overzicht te geven van de stand van zaken in de wiskunde ten tijde van
Brouwers promotie in 1907.

Brouwer studeerde en promoveerde in een periode van grote veranderingen
in deze meest abstracte tak der wetenschap. De verzamelingenleer van Cantor
was slechts enkele decennia oud en ook het werk van Dedekind was nog steeds
zeer actueel. Van nog recenter datum waren de publicaties van Frege, Russell,
Poincaré, Borel en Hilbert. Van deze laatste stamt de lijst van 23 nog op
te lossen ‘Mathematische Probleme’, gepresenteerd in 1900 te Parijs tijdens
de grote internationale wiskunde conferentie aldaar. In diezelfde jaren rond
de eeuwwisseling ontstond grote beroering toen ontdekt werd dat paradoxen
mogelijk bleken te zijn in de recent ontwikkelde verzamelingenleer. Met name
de paradox van Russell bracht iemand als Frege in grote verwarring.

Maar men was reeds daarvoor, gedurende de tweede helft van de negentiende
eeuw, in verschillende richtingen op zoek naar een solide fundering voor de
wiskunde:

– Het logicisme trachtte alle wiskunde te funderen op, en af te leiden uit,
de logica alleen. Protagonisten hierin waren Frege in Duitsland, Russell in
Engeland en Couturat in Frankrijk.

– Het formalisme stelde dat wiskunde slechts bestaat uit het manipuleren
met symbolen volgens tevoren vastgelegde regels. Hierbij moet niet aan inhoud
of interpretatie gedacht worden. Hilbert speelde in deze stroming een grote rol.

– Een tegenstroming ontstond door het werk van Poincaré en Borel, die
stelden dat er meer is dan vorm, logica en taal. Volgens deze Franse ‘pre-
intüıtionisten’ is logica slechts geschikt ter controle achteraf van de juistheid van
een redenering, maar levert wiskundig gezien niets nieuws op. Ook taal is een
noodzakelijk hulpmiddel om wiskundige redeneringen met anderen te kunnen
communiceren, maar is zelf niet een bron voor wiskunde. Er is meer nodig
dan logica en taal: er is wiskundige intüıtie vereist, die ons uit de veelheid van
definities en axioma’s de juiste doet kiezen en die ons de richting doet aanvoelen
waarin de oplossing van een probleem gezocht moet worden.

De Aristotelische logica, en in het bijzonder het syllogisme, brengt ons, zo
stelt Poincaré, nooit van het particuliere naar het algemene. Het wiskundig mid-
del dat ons daar wel toe in staat stelt is het onbewijsbare en intüıtief aangevoelde
werktuig van de volledige inductie. Echter, als criterium voor de existentie
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van een wiskundig object hanteerden de Franse pre-intüıtionisten nog niet de
strenge eis van construeerbaarheid die Brouwer stelde. Voor Poincaré bestaat
een mathematisch object als het vrij is van interne contradictie in het relevante
wiskundige systeem; voor Borel is het criterium van existentie van een wiskundig
object een met andere wiskundigen gedeelde vertrouwdheid ermee.

Dit proefschrift behandelt de beginperiode van de grote rol die de nog jonge
Brouwer zou gaan spelen in de tegenbeweging tegen formalisme en logicisme.
Zijn dissertatie ‘Over de Grondslagen der Wiskunde’, verdedigd in 1907, kan
gezien worden als een aanloop naar zijn Intüıtionisme. Hoewel dit Intüıtionisme
pas tot volle ontwikkeling kwam vanaf 1918, zien we in zijn proefschrift, en
in nog grotere mate in een aantal aantekenschriften voor dit proefschrift, al
duidelijk een grote hoeveelheid, in de richting van zijn latere ontwikkeling wij-
zende, ideeën.

De volgende van deze ideeën, die ook in zijn latere werk kenmerkend voor
Brouwer zullen blijven, zijn in de voorgaande hoofdstukken uitvoering behan-
deld:

–1– De essentiële taalloosheid van de wiskunde. Wiskunde is een schepping
van de individuele menselijke geest, en de rol van taal hierbij is slechts die van
een gebrekkig hulpmiddel voor communicatie met anderen en voor het oproepen
uit het eigen geheugen van die schepping. Een probleem hierbij is dan dat van
de intersubjectiviteit.

–2– De oer-intüıtie als de meest fundamentele basis van alle wiskunde. Deze
oer-intüıtie is de ‘tijdsbeweging’, de gewaarwording van het niet-samenvallen
van ervaren gebeurtenissen, van de ervaring van een ‘tijdscontinuüm’ tussen die
twee gebeurtenissen. In tegenstelling tot Kant, die ruimte en tijd beide als ‘An-
schauungsformen’ poneerde ter fundering van de aprioriteit van respectievelijk
meetkunde en rekenkunde, had Brouwer aan de oer-intüıtie van de tijdsbeweging
genoeg.

–3– Een strict constructivisme. Alleen dat wat vanuit de oer-intüıtie volgens
een tevoren vastgesteld algoritme of constructiemethode door de geest kan wor-
den opgebouwd, telt als wiskundig object of als stelling (relatie tussen objecten);
in Brouwers terminologie: als wiskundig gebouw.52

–4– De rol van de logica is slechts een begeleidende, alleen nuttig voor een
effectieve en beknopte beschrijving van een mentale wiskundige constructie. Lo-
gica komt na wiskunde, in plaats van er een basis en uitgangspunt voor te zijn.

–5– Een stelsel axioma’s als fundament voor een wiskundige constructie
wordt afgewezen. Er is slechts één basis en fundament en dat is de eerder
genoemde oer-intüıtie. Axioma’s hebben slechts de dienende functie van het
beknopt weergeven van de voornaamste kenmerken van een gebouw.

Deze uitgangspunten hebben voor de op te bouwen wiskunde verstrekkende
gevolgen, die door Brouwer worden beschreven in zijn dissertatie. De beschrij-

52Dit constructivisme zal echter in zijn intüıtionistische wiskunde een geheel andere vorm
krijgen.
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vingen en uitwerkingen van die gevolgen zijn echter vaak dermate beknopt
weergegeven, dat in vele gevallen een uitvoerige interpretatie vereist is. Deze
interpretaties zijn in de voorafgaande hoofdstukken uitgebreid uitgewerkt en
met voorbeelden toegelicht. We noemen er enkele:

– Slechts eindige of aftelbaar oneindige verzamelingen bestaan. ‘Aftelbaar
oneindig’ wil zeggen dat de elementen op systematische wijze één voor één geteld
kunnen worden zonder een enkele over te slaan. Elk aanwijsbaar element van
een dergelijke verzameling kan van een uniek natuurlijk getal voorzien worden
en, omgekeerd, elk natuurlijk getal van een element. Dit houdt in dat oneindige
verzamelingen bestaan in intensionele zin, echter niet extensioneel. Brouwer
verzette zich hier tegen Poincaré, voor wie het oneindige geheel ondenkbaar
was. Maar uit de aantekenschriften en uit de dissertatie blijkt dat Brouwer
soms het bestaan van het oneindige stelt, maar dit op andere plaatsen juist
weer ontkent. Dit vereist steeds een interpretatie, die echter telkens met goede
argumenten mogelijk blijkt.

– Het continuüm (een tijdsverloop of een rechte lijn) bestaat niet uit punten,
maar is ons als geheel direct gegeven uit de oer-intüıtie. Hierbij is het tijds-
continuüm primair. Dit niet-atomair zijn van het continuüm is overigens een
opvatting die reeds door Aristoteles verdedigd werd. Het continuüm kan tot
een ‘meetbaar’ continuüm gemaakt worden door er een ‘overal dichte rationale
schaal’ van punten op te construeren, waarbij het ‘dicht’ maken van deze schaal
een van de voorbeelden is van een vrije creatieve act van de menselijke geest,
zoals heel de opbouw van de wiskunde het resultaat is van een vrije menselijke
schepping. Volgens Brouwer zijn er echter daarna altijd weer opnieuw meer
punten te construeren op een continuüm met een reeds overal dichte schaal erop,
hetgeen voor hem aanleiding was om zijn concept ‘aftelbaar oneindig onaf’ te
introduceren.

– Cantors tweede en hogere getalklassen bestaan voor Brouwer niet, omdat er
geen algoritme bestaat dat alle elementen van die klassen doet ontstaan zodanig
dat deze als één af geheel kan worden gezien. Er is geen afsluiting van die
hogere klassen denkbaar, zoals dit wel denkbaar is voor de eerste getalklasse
(de natuurlijke getallen) in de vorm van ω, het eerste element van de tweede
getalklasse.

– Het door Cantor gestelde ‘continuüm probleem’ (i.e. op welke plaats in
de hiërarchie van de kardinaalgetallen staat het systeem van de reële getallen,
en de daarbij uitgesproken ‘continuüm hypothese’ dat de verzameling van alle
reële getallen gelijkmachtig is met de tweede getalklasse) heeft, als gevolg van
Brouwers constructivisme, een bijzonder eenvoudige oplossing.

Dit proefschrift behandelt uitdrukkelijk niet in expliciete zin Brouwers latere
intüıtionistische wiskunde, die van keuzerijen, van verzamelingen als ‘spreiding’
en ‘species’, van de continüıteitsstelling en van het ‘bar-theorema’, wat alle-
maal pas na 1918 tot volle ontwikkeling kwam. Maar sommige aspecten hiervan
komen al min of meer duidelijk ter sprake in de eerder genoemde aanteken-
schriften die een aantal jaren geleden teruggevonden werden, maar waarvan het
bestaan al veel eerder bekend was. In deze schriften zijn vele fragmenten te
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vinden die er duidelijk op wijzen dat Brouwer zoekende was in de richting van
de later ingeslagen weg. Dankzij de inhoud van de schriften zijn ook veel frag-
menten in de dissertatie te interpreteren in intüıtionistische zin.

Ten slotte is ook in de voorgaande hoofdstukken Brouwers kijk op de samen-
leving ter sprake gekomen. Dit is een facet in zijn denken waar niet omheen
gegaan kan worden omdat dit een steeds terugkerend thema is in zijn werk, zij
het dat in latere tijd de toon aanmerkelijk milder wordt. In een van zijn eerste
publikaties, Leven, Kunst en Mystiek uit 1905, ontstaan uit een serie lezingen die
Brouwer in Delft hield, komt een uiterst pessimistisch mensbeeld naar voren.
We vinden dit terug op vele plaatsten in de aantekenschriften: elk ingrijpen
van de mens in de natuur met behulp van wiskundige ‘causale reeksen’ is een
zondige activiteit; het leidt tot ‘externalisatie’ terwijl de mens volgens Brou-
wer moet inkeren tot zichzelf; deze opvatting is terug te vinden in het tweede
hoofdstuk van zijn dissertatie. Hoewel de door hem geschetste werkwijze van
het natuurkundig onderzoek een reële weergave van die praxis is, is het doel van
natuurkundig onderzoek volgens Brouwer slechts het beheersen van natuur en
medemens. Daarom velt hij er op morele gronden een negatief oordeel over: de
mens onderzoekt de natuur slechts om zijn macht te vergroten over die natuur
en daarmee over zijn medemens. Het lijkt ons dat een fysicus, die zo denkt
over zijn terrein van onderzoek, daarvan wel invloed moet ondervinden in zijn
werkwijze en resultaten.

Maar laat ons deze samenvatting besluiten met de constatering dat de werke-
lijke betekenis van het werk van Brouwer ligt in de schoonheid en de originaliteit
van zijn totaal nieuwe opbouw van de wiskunde en de filosofische onderbouwing
daarvan. Deze opbouw geschiedt op zeer consequente en strenge wijze, geheel
op basis van de menselijke oer-intüıtie van de van alle inhoud geabstraheerde
tijdsbeweging. Deze vergaande abstractie kan men hanteren als één van de
argumenten bij de benadering van het probleem der intersubjectiviteit.
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