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Abstract. Hyper tableau reasoning is a version of clausal form tableau
reasoning where all negative literals in a clause are resolved away in a
single inference step. Constrained hyper tableaux are a generalization
of hyper tableaux, where branch closing substitutions, from the point
of view of model generation, give rise to constraints on satisfying as-
signments for the branch. These variable constraints eliminate the need
for the awkward ‘purifying substitutions’ of hyper tableaux. The paper
presents a non-destructive and proof confluent calculus for constrained
hyper tableaux, together with a soundness and completeness proof, with
completeness based on a new way to generate models from open tableaux.
It is pointed out that the variable constraint approach applies to free
variable tableau reasoning in general.

1 Introduction

Hyper tableau reasoning was introduced in [2]; like (positive) hyper resolution
[9] it resolves away all negative literals of a clause in a single inference step, but
it combines this with the notion of a tableau style search for counterexamples.
Hyper tableau reasoning, in the improved version proposed in [1], allows local
universally quantified variables. The key element in hyper tableau reasoning,
the use of purifying substitutions to get rid of variable distribution over differ-
ent head literals (or, in the improved version, the generation of proper clause
instantiations by means of a Link rule) is replaced in constrained hyper tableau
reasoning by the generation of constraints on the interpretation of the variables
that get distributed. Constrained hyper tableaux solve the problem of model
generation from open tableaux with free variables in a general way.

2 Basic Definitions

Language. Let Σ be a first order signature. A LΣ literal is an LΣ atom or its
negation, and an LΣ clause is a multiset of LΣ literals, written as ¬A1 ∨ · · · ∨
¬Am ∨B1 ∨ · · · ∨Bn (m,n ≥ 0). If m,n > 0 the clause is mixed ; if m = 0, n > 0
the clause is positive; if m > 0, n = 0 the clause is negative, and if m = n = 0 the
clause is empty. A mixed clause ¬A1 ∨ · · · ∨¬Am ∨B1 ∨ · · · ∨Bn may be written
as A1 ∧· · ·∧Am ⇒ B1 ∨· · ·∨Bn, and a negative clause as ¬(A1 ∧· · ·∧Am). The
empty clause is written as ⊥. We write > for the formula that is always true.



Substitutions. A substitution σ is a function V → TΣ that makes only a finite
number of changes, i.e., σ has the property that dom (σ) = {v ∈ V | σ(v) 6= v} is
finite. We use ε for the substitution with domain ∅ (the identity substitution). We
represent a substitution σ in the standard way, as a list {v1 7→ σ(v1), . . . , vn 7→
σ(vn)}, where {v1, . . . , vn} is dom (σ). Write substitution application in post-fix
notation, and write σθ for ‘θ after σ’.

If σ, θ are substitutions, then σ � θ if σ is less general than θ, i.e., if there
is a ρ with σ = θρ. The relation � is a pre-order (transitive and reflexive), and
its poset reflection is a partial order. For this, put σ ∼ θ if σ � θ and θ � σ,
and consider substitutions modulo renaming, i.e., put |σ| = {θ | σ ∼ θ}, and put
|σ| v |θ| if σ � θ. A renaming is a substitution that is a bijection on the set of
variables. For convenience we continue to write σ for |σ|.

Extend the set of substitutions (modulo renaming) with the improper substi-
tution ⊥⊥, the substitution with the property that ⊥⊥ v σ for every substitution
σ. Now for every pair of substitutions σ and θ, σ u θ, the greatest common in-
stance of σ and θ, and σ t θ, the least common generalization of σ and θ, exist.
If σ u θ = ⊥⊥ we say that σ and θ do not unify. We get that ε, the substitution
that is more general than any, is the top of the lattice given by v, and ⊥⊥ its
bottom. The grounding substitutions are the least general proper substitutions;
In the lattice of substitutions, they are just above ⊥⊥. Note that this hinges on
the fact that substitutions have finite domains. If σ v ρ, and σ 6= ⊥⊥, we call
σ an instance of ρ. A clause φ is a proper instance of a clause ψ if for some
substitution σ that is not a renaming it is the case that φ = ψσ.

A variable map is a function in V → TΣ (i.e., we drop the finite domain
restriction of substitutions). Variable maps modulo renaming form a complete

lattice under the ‘less general than’ ordering. A grounding is a variable map that
maps every variable to a closed term.

Substitutions as Formulas; Variable Constraints. Associate with a substitution

σ = {v1 7→ σ(v1), . . . , vn 7→ σ(vn)}

the formula v1 ≈ σ(v1) ∧ · · · ∧ vn ≈ σ(vn). We can then say what it means that
assignment α satisfies substitution σ in model M in the usual way. Notation
M |=α σ. A variable constraint is the negation of a substitution as formula, i.e.,
a variable constraint is a multiset of inequalities v 6≈ t, with t ∈ TΣ, written as
v1 6≈ t1 ∨ · · · ∨ vn 6≈ tn. From a substitution σ we derive a variable constraint σ
by complementation, as follows:

σ =
∨

{v 6≈ σ(v) | v ∈ dom (σ)}.

E.g., the complement σ of σ = {x 7→ a, y 7→ b} is x 6≈ a∨y 6≈ b. Note that ε = ⊥.

Tableaux, Branches. A hyper tableau over Σ is a finitely branching tree with
nodes labeled by positive LΣ literals, or by variable constraints. A branch in a
tableau T is a maximal path in T . We occasionally identify a branch B with



the set of its atomic facts and constraints. The variables of a tableau branch are
the variables that occur in a literal or a constraint along the branch. A variable
v distributes over branches B,B′ if v occurs in constraints or literals on both
sides of a split point, as follows:

·

·

C[v]

B

C ′[v]

B
′

The rigid variables of a branch B are the variables of B that are distributed
over B and some other branch. The tableau construction rules will ensure that
every rigid variable in a tableau has a unique split point (highest point where it
gets distributed).

A hyper tableau for a set Φ of LΣ formulas in clause form is a finite or infinite
tree grown according to the following instructions.

Initialize. Put > at the root node of the tableau.

Expand. Branches of a hyper tableau for clause set Φ are expanded by the only
inference rule of Constrained Hyper Tableau (CHT) reasoning, the rule Expand,
in the following manner.

C1, . . . , Cm, ¬A1 ∨ · · · ∨ ¬Am ∨ B1 ∨ · · · ∨Bn

B1σ | · · · | Bnσ | θ
,

where

– ¬A1 ∨ · · · ∨ ¬Am ∨ B1 ∨ · · · ∨ Bn is fresh copy of a clause in Φ (fresh with
respect to the tableau),

– the Ci are positive literals from the current branch,
– σ is a most general substitution such that Aiσ = Ciσ (1 ≤ i ≤ m), and,

moreover, σ does not rename any rigid branch variables,
– θ is the restriction of σ to the rigid variables of the branch.

An application of Expand to a branch expands the branch with an instance of a
literal from the list B1, . . . , Bn, or with a variable constraint.

Remark. It is convenient to use mgu’s σ in Expand that do not rename any rigid
branch variables. Suppose Px is a positive literal on a branch, with x rigid. Then
a match with the rule Py ⇒ Qy can rename either x or y. If x is renamed, the
application of Expand branches, and two leafs are created, one with constraint
x 6≈ y, the other with literal Qy. If x is not renamed, only a single leaf Qx is
created, for in this case the constraint leaf extension carries constraint ε, and
can be suppressed.



Here is an example application of Expand. Here and below, uppercase char-
acters are used for predicates, x, y, z, u, . . . for variables, a, b, c, . . . for individual
constants (skolem constants), f, g . . . for skolem functions. In the example, it is
assumed that x is rigid and y is not:

Pxy, Qb, ¬Paz ∨ ¬Qz ∨Raz

Rab | x 6≈ a
.

Note that in the case of a positive clause, no branch literals are involved, and
the substitution that is produced is ε, with corresponding constraint ε, i.e., ⊥.
In this case the rule boils down to:

B1 ∨ · · · ∨ Bn

B1 | · · · | Bn

.

If there are no positive clauses B1∨· · ·∨Bn in the clause set Φ, the set Φ cannot
be refuted since in this case we can always build a model for Φ from just negative
facts.

In case Expand is applied with a negative clause, the rule boils down to the
following:

C1, . . . , Cm,¬(A1 ∧ · · · ∧ Am)

θ
,

where the Ci are as before, there is a most general σ such that Aiσ = Ciσ (1 ≤
i ≤ m) and no rigid variables get renamed, and θ is the restriction of σ to the
rigid variables of the branch.

History Conditions on Expand. To avoid superfluous applications of Expand, a
history list is kept of all clause instances that were applied to a branch. For this
we need a preliminary definition. We say that a literal B reaches a k-fold in
clause set Φ if either there is a clause in Φ in which the predicate of B has at
least k negative occurrences, or there is a clause . . . B . . .⇒ . . . C . . . in Φ, and C
reaches a k-fold in Φ. E.g., if Qa⇒ Pa, Px ∧ Py ⇒ Rxy in Φ, then Qx reaches
a 2-fold in Φ. If Qx is also in Φ, we should generate two copies Qx′, Qx′′, which
in turn will yield two copies of Pa, so that Raa can be derived.

If a clause is applied with substitution σ, the conditions on the application,
in a tableau for clause set Φ, are:

1. ¬A1σ ∨ · · · ∨ ¬Amσ ∨B1σ ∨ · · · ∨Bnσ is not a proper instance of any of the
instances of ¬A1 ∨ · · · ∨¬Am ∨B1 ∨ · · ·∨Bn that were applied to the branch
before;

2. if ¬A1σ ∨ · · · ∨ ¬Amσ ∨ B1σ ∨ · · · ∨ Bnσ is the k-th variant of any of the
instances of ¬A1 ∨ · · · ∨¬Am ∨B1 ∨ · · ·∨Bn that were applied to the branch
before, then at least one of the Bi must reach a k-fold in Φ.

If these two conditions are fulfilled, we say that the instance of the clause is fresh

to the branch. All clause instances used on a branch are kept in a branch history
list. The history conditions on Expand are fair, for application of proper instances
of previously applied clause instances to a branch is spurious, and generation of



alphabetic variants only makes sense if they (eventually) lead to the generation
of alphabetic variants that can be matched simultaneously against a single clause
in Φ.

Constraint Merge for Closure. To check a tableau consisting of n branches for
closure, apply the following constraint merge for closure. It is assumed that the
σi are constraints on the different branches.

σ1, · · · , σn

closure by: σ1 u · · · u σn

σ1 u · · · u σn 6= ⊥⊥.

The idea of the constraint merge for closure is that if σ, θ each close a branch
and can be unified, then σ u θ closes both branches, and so on, until the whole
tableau is closed.

Open and Closed Tableaux. A hyper tableau is open if one of the following two
conditions holds, otherwise it is closed :

– some branch in the tableau carries no constraint,

– all branches in the tableau carry constraints, but there is no way to pick
constraints from individual branches and merge their corresponding substi-
tutions into a single substitution (in the sense of: pick a finite initial stage
T , and pick σi on each Bi of T such that σ1 u · · · u σn 6= ⊥⊥).

Fair Tableaux. A hyper tableau T for clause set Φ is fair if on every open branch
B of T , Expand is applied to each clause in Φ as many times as is compatible
with the history conditions on the branch.

Tableau Bundles; Herbrand Universes for Open Tableaux. A pair of different
branches in a tableau is connected if some variable distributes over the two
branches. Since connectedness is symmetric, the reflexive transitive closure of
this relation (connected∗) is an equivalence. A tableau bundle is an equivalence
class of connected∗ branches.

We will consider term models built from Herbrand universes of ground terms.
The Herbrand universe of a bundle B in a tableau is the set of terms built from
the skolem constants and functions that occur in B, or, if no skolem constants
are present, the set of terms built from the constant c and the skolem functions
that occur in B. If B contains no skolem functions and B is finite, the Herbrand
universe of B is finite; if B contains skolem functions it is infinite. The models
over such a Herbrand universe are completely specified by a set of ground positive
literals. We use HB for the Herbrand universe of B, and we call a variable map
σ with dom (σ) = vars(B) and rng (σ) ⊆ HB a grounding for B in HB , and a
ground instance of a clause under a grounding for B in HB an HB instance. Note
that a grounding need not be a substitution, as the set vars(B) may be infinite.



3 Refutation Proof Examples

Let us agree on some conventions for tableau representation. To represent an
application of extension in the tableau, we just have to write the rule instance
B1σ ∧ · · · ∧Bnσ ⇒ A1σ ∨ · · · ∨Amσ, and the branch extensions with the list of
daughters A1σ, ..., Amσ, θ, as follows:

B1σ ∧ · · · ∧ Bnσ ⇒ A1σ ∨ · · · ∨ Amσ

A1σ Amσ θ

In case the constraint θ that is generated is ⊥, we suppress that leaf, unless it
is the single leaf that closes the branch. If a constraint gives rise to a substitution
that closes the whole tableau, then the substitution will be put in a box, like

this (note that θ should be read as θ):

¬(B1σ ∧ · · · ∧Bnσ)

θ

Reasoning about Relations. To prove that every transitive and irreflexive relation
is asymmetric, we refute the clause form of its negation:

{Rxy ∧Ryz ⇒ Rxz,¬Ruu,Rab,Rba},

where the Rab,Rba provide the witnesses of non-asymmetry.

Rab,Rba

Rab ∧ Rba⇒ Raa

Raa

¬Raa

ε

To apply the negative clause ¬Ruu, we use the substitution {u 7→ a}. The
restriction of that substitution to the rigid tableau variables is ε, so ε is the
closing substitution of the tableau.



Closure by Renaming. To refute the clause set {Rxy,¬Rab∨¬Rba}, two applica-
tions of Expand to the clause Rxy are needed. The second application uses fresh
variables. Since none of the variables is distributed in the tableau, the closing
substitution is ε.

Rxy

Rx′y′

¬(Rab ∧ Rba)

ε

Generation of Multiple Closing Substitutions. If we try to refute the clause set
{Oxy,¬Oab,¬Obc}, we can close the tableau in two ways, but since no variable
is distributed, the closing substitution is ε in both cases. If the clauses are used
to expand a tableau branch in which x and y are distributed, the following two
constraints are generated on the branch.

Oxy

¬Oab

x 6≈ a ∨ y 6≈ b

¬Obc

x 6≈ b ∨ y 6≈ c

The order in which the constraints are generated does not matter. Both
substitutions {x 7→ a, y 7→ b}, {x 7→ b, y 7→ c} are candidates for use in the merge
check for closure of the whole tree. If the branch is part of an open tableau, then
both constraints act as constraints on branch satisfaction.

Closure by Merge. A hyper tableau for the clause set {Sxy ∨ Syx,¬Sab,¬Sba}
has x, y rigid, so these variables occur in the constraints that are generated.

Sxy ∨ Syx

Sxy

¬Sab

{x 7→ a, y 7→ b}

Syx

¬Sba

{y 7→ b, x 7→ a}



The substitutions unify (are, in fact, identical), so the tableau closes.

Fig. 1. Tableau for AI Puzzle.

Gc

Gc ⇒ Gy ∨ Oyc

Gy

¬Ga

y 6≈ a

Gy ⇒ Gy′ ∨ Oy′y

Gy′

¬Ga

{y′ 7→ a}

Oy′y

¬Oab

{y′ 7→ a, y 7→ b}

¬Obc

y′ 6≈ b ∨ y 6≈ c

Oyc

¬Obc

{y 7→ b}

An AI Puzzle. If a is green, a is on top of b, b is on top of c, and c is not
green, then there is a green object on top of an object that is not green. For a
hyper tableau refutation proof, refute the clause form of the negation of this:
{Ga,¬Gc,Oab,Obc,Gx∧Oxy ⇒ Gy}. To make for a more interesting example,
we swap positive and negative literals, as follows.

{¬Ga,Gc,¬Oab,¬Obc,Gx ⇒ Gy ∨ Oyx}.

This is not in the Horn fragment of FOL, so beyond Prolog (except through
Horn renaming; for the present example, a Horn renaming is a swap of O and
¬O, and of G and ¬G). In the tableau for this example, in Fig. 1, note that
when the rule Gx ⇒ Gy ∨ Oyx is used for the second time, its variables are
first renamed. The variable y gets distributed at the first tableau split, the
variable y′ at the second split. The tableau of Figure 1 closes, for the substitution
{y′ 7→ a, y 7→ b} closes every branch. This closing substitution is found by an
attempt to merge closing substitutions of the individual branches. The branch
constraints for which this works are boxed. Other possibilities fail. In particular,
the substitution {y′ 7→ b, y 7→ c} closes the middle branch all right, but it clashes
with both substitutions that close the left hand branch, either on the y or on



the y′ value, and with the substitution that closes the rightmost branch on the
y value.

4 Model Generation Examples

No Positive Clause Present. Every clause set that contains no positive clauses
is satisfiable in a model with a single object satisfying no atomic predicates.
Example: a model for transitivity and irreflexivity.

{Rxy ∧ Ryz ⇒ Rxy,¬Ruu}.

No hyper tableau rule is applicable to such a clause set, so we get no further than
the top node >. Since there are no skolem constants, we generate the Herbrand
universe from c. This gives a single object with no properties.

Disjunctively Satisfiable Constraints. Here is a tableau for the clause set {Rxy∨
Sxy, ¬Rza, ¬Sub}:

Rxy ∨ Sxy

Rxy

¬Rxa

y 6≈ a

Sxy

¬Sxb

y 6≈ b

This tableau does not close, for the two substitutions disagree on the value for y.
Or, put differently, the two constraints can be satisfied disjunctively. There are
no further rule applications, so we have an open tableau. A model for the clause
set is not generated by a single branch in this case, as the two branches share a
constrained variable. The domain of a model generated from this tableau is the
set of closed terms of the tableau, i.e., the set {a, b}. The set of groundings in
this domain consists of θ1 = {x 7→ a, y 7→ a}, θ2 = {x 7→ a, y 7→ b}, θ3 = {x 7→
b, y 7→ a}, θ4 = {x 7→ b, y 7→ b}. θ1 satisfies only the right branch, so it generates
the fact Saa. θ2 satisfies only the left branch, so it generates the fact Rab. θ3
satisfies only the right branch, so it generates the fact Sba. Finally, θ4 satisfies
only the left branch, so it generates the fact Rbb. The model is given by the set
of facts {Saa,Rab, Sba,Rbb}.

Infinitary Tableau Development. There are relations that are transitive and se-
rial. The attempt to refute this combination of properties should lead to an
open hyper tableau. In fact, the model that is generated for the clause set
{Rxy ∧ Ryz ⇒ Rxz,Ruf(u)} is infinite. The step from Ruf(u) to Rwf(w),
in Fig. 2, is an application of Expand that generates an alphabetic variant. This
agrees with the history condition, since there is a clause in the clause set with



Fig. 2. Infinitary Tableau Development

Ruf(u)

Rwf(w)

Ruf(u) ∧ Rf(u)f(f(u)) ⇒ Ruf(f(u))

Ruf(f(u))

Rwf(w) ∧ Rf(w)f(f(f(w))) ⇒ Rwf(f(f(w)))

Rwf(f(f(w)))

Ruf(u) ∧ Rf(u)f(f(f(f(u)))) ⇒ Ruf(f(f(f(u))))

Ruf(f(f(f(u))))

·

two negative R occurrences. The tableau will not close, and tableau development
will not be stopped by the check on instantiations, for new instances of the rule
Rxy∧Ryz ⇒ Rxz will keep turning up. The corresponding model is isomorphic
to N, <. Although finite models for the clause set exist (a single reflexive point
also constitutes a model for this example) the calculus needs to be modified to
generate them. For finite model generation, we need a slightly more sophisti-
cated treatment of literals that introduce new skolem terms to a branch. This is
beyond the scope of the present paper.

Open Tableau; No Further Rules Applicable. In the tableau for clause set {Rxy ⇒
Rxz ∨ Rzy,Ruu}, given in Fig. 3, no further branch extensions are generated,
as on all branches the next instance of Rxy ⇒ Rxz ∨ Rzy is a variant of an
instance that has already been used on the branch. Generation of variants of
the R predicate on a branch is spurious, because no clause in the clause set has
more that a single negative occurrence of the R predicate. Note that variables are
renamed in the second and the third application of the rule Rxy ⇒ Rxz ∨Rzy.
Since there are no skolem constants, we generate the Herbrand model from a
fresh c. This gives a model consisting of a single reflexive point, from any of the
branches.



Fig. 3. No Further Applicable Rules

Ruu

Ruu ⇒ Ruz ∨ Rzu

Ruz

Ruz ⇒ Ruz′ ∨ Rz′z

Ruz′ Rz′z

Rzu

Rzu ⇒ Rzz′′ ∨ Rz′′u

Rzz′′ Rz′′u

5 Soundness, Model Generation, Completeness

An assignment α in a model M meets a constraint σ if M |=α σ. Let [[·]]Mα give
the term interpretation in the model with respect to α. Then we have:

Theorem 1. M |=α σ iff there is a v ∈ dom (σ) with α(v) 6= [[vσ]]Mα .

The idea of the constraints is to forbid certain variable interpretations!
An assignment α satisfies a branch B of a tableau T in a model M if α meets

all constraints on B, and M |=α L for all positive literals L on B. Notation:
M |=α B. An assignment α satisfies a tableau T in a model M if α satisfies a
branch of T . Notation: M |=α T . A tableau T is satisfiable if for some model M
it is the case that all assignments α for M satisfy T in M. Notation: M |= T .

Theorem 2 (Satisfiability). If Φ is a satisfiable set of clauses, then any tableau

for Φ is satisfiable.

Proof. Let T be a tableau for Φ. Since a tableau for Φ is a any tree grown
from the seed > with the rule Expand, either there is a finite tableau sequence
T 1, . . . ,T n = T , or there is an infinite sequence T 1, . . ., with T =

⋃∞

i=1 T i. In
any case, T 1 consists of a single node >, and T i+1 is constructed from T i by an
application of Expand. To prove by induction on n that a finite T is satisfiable,
we have to check that satisfiability is preserved by each of these steps. Take
some M with M |= Φ. Assume that M |= T i, and T i+1 is the result of applying
Expand to T i. Assume the branch to which Expand is applied is B, the clause
is B1 ∧ · · · ∧ Bk ⇒ A1 ∨ · · · ∨ Am, the branch literals used in the rule are
C1, . . . , Ck, the matching substitution is σ, and the restriction of σ to the rigid
branch variables is θ.

Consider an assignment α that satisfies T i in M. In case α satisfies a branch
different from B then the application of Expand will not affect this, and α will
satisfy T i+1 in M. Suppose, therefore, that α satisfies only B. We have to show



that α satisfies at least one of the branch extensions, with A1σ, with . . . , with
Amσ, or with θ. From M |= Φ we get that

M |= B1 ∧ · · · ∧Bk ⇒ A1 ∨ · · · ∨ Am,

and therefore, since Biσ = Ciσ,

M |= C1σ ∧ · · · ∧ Ckσ ⇒ A1σ ∨ · · · ∨Amσ,

so in particular

M |=α C1σ ∧ · · · ∧ Ckσ ⇒ A1σ ∨ · · · ∨ Amσ.

In case M |=α C1σ ∧ · · · ∧ Ckσ, it follows from the above that M |=α A1σ ∨
· · · ∨ Amσ, and we are done. In case M 6|=α C1σ ∧ · · · ∧ Ckσ we have to show
that M |=α θ. In this case, there is an i with M |=α Ci and M 6|=α Ciσ. Let
assignment α′ be given by α′(v) = [[vσ]]Mα . Then M |=α Ci and M 6|=α′ Ci. Thus
M 6|=α′ B, and by the satisfiability of T i, there has to be a B

′ with M |=α′ B
′.

Since B is the only branch with M |=α B, M 6|=α B
′. So there has to be a

variable v that is both on B and B
′ with the property that α(v) 6= α′(v). But

this means that v ∈ dom (σ) and v is rigid in T i. It follows that v ∈ dom (θ),
and that α does meet θ, i.e., M |=α θ.

Satisfiability in M for an infinite T =
⋃∞

i=1 T i follows from the fact that
satisfiability in M is a universal property (it has the form ‘for all literals and
all constraints on the branch . . . ’), and is therefore by standard model-theoretic
reasoning preserved under limit constructions. ut

Theorem 3 (Merge). If a hyper tableau T closes by constraint merge, then T

is not satisfiable.

Proof. If T closes by constraint merge then there is a way to pick a finite initial
stage T

′ of T , and pick constraints σ1, . . . , σn, one on each tableau branch of
T

′, such that σ1 u · · · u σn 6= ⊥⊥. Thus, there is a ground substitution θ with
θ v σ1 u · · · u σn. Note that we can associate with each ground substitution
an assignment in a model, as follows. If α is an assignment for M, and θ is
a ground substitution, then the assignment θα is given by θα(v) = [[vθ]]Mα .
Thus, for any model M and any assignment α for M it will be the case that
M |=θα σ1 u · · · u σn. So for any M there is an assignment α′ with M |=α′ σ1

and . . . and M |=α′ σn, i.e., with M 6|=α′ σ1 and . . . and M 6|=α′ σn. In other
words, for any M there has to be an assignment that does not meet any of the
constraints σ1, . . . , σn. ut

Theorem 4 (Soundness). If there is a hyper tableau refutation for a clause

set Φ, then Φ is unsatisfiable.

Proof. Immediate from the Satisfiability Theorem and the Merge Theorem. ut

A variable map θ meets a constraint σ if θ u σ = ⊥⊥; θ is compatible with a
branch B if θ meets all constraints σ on B; θ is compatible with a tableau T if
θ is compatible with at least one branch B of T .



Theorem 5 (Compatibility). If a tableau T is open, then every ground vari-

able map θ for vars(T ) is compatible with T .

Proof. Assume T consists of (open) branches {Bi}i≥0. We have to show that
every grounding is compatible with at least one Bi. Suppose θ is a grounding
for vars(T ) that is not compatible with any B ∈ T . Note that θ need not be a
substitution, as the set vars(T ) may be infinite. Then for each of the Bi there
is a constraint σi on Bi such that σi u θ 6= ⊥⊥. Since θ is grounding, σi u θ = θ,
i.e., θ v σi. Since variable maps modulo renaming form a complete lattice under
v, it follows that θ v u(i≥0)σi. Now, since any tableau is finitely branching, and
since any constraint is at finite distance from the root of the tableau, by König’s
lemma there has to be a finite set of constraints σ1, . . . , σn with ∀i ≥ 0 ∃j ≤ n

such that σj occurs on Bi. But then σ1 u · · · u σn 6= ⊥⊥, and contradiction with
the assumption that T is open. ut

Theorem 6 (Model Generation). Every fair open tableau for Φ has a model

M with M |= Φ.

Proof. Since in a Herbrand universe groundings play the role of assignments,
all we have to do to satisfy a tableau T in a Herbrand model is look at all
the ground instances of the tableau. To generate a model from an open hyper
tableau, proceed as follows. Pick an open bundle B, and consider groundings for
B in HB.

– If there is an unconstrained B ∈ B, the set of all HB instances of the positive
literals along B constitutes a model for the tableau. By the fairness of the
tableau construction process, this model also satisfies Φ.

– If all branches in B are constrained, then generateHB instances from ground-
ings for B in HB, as follows. For every grounding θ for B in HB , we can pick,
according to the Compatibility Theorem, a branch B in B that is compat-
ible with θ. Collect the ground instances of the positive literals of B. The
union, for all groundings θ, of the sets of ground positive literals collected
from branches compatible with θ, constitutes a model for the tableau. Again,
by the fairness of the tableau construction process, the model also satisfies
Φ. ut

Theorem 7 (Completeness). If a clause set Φ is unsatisfiable, then there

exists a hyper tableau refutation for Φ.

Proof. Immediate from the Model Generation Theorem. ut

6 Fair Computation

A tableau calculus is non-destructive if all tableaux that can be constructed with
the help of its rules from a given tableau T contain T as an initial sub-tree [6].
The usual versions of free variable tableaux are all destructive. Clearly, the CHT
calculus is non-destructive. A tableau calculus is proof confluent if every tableau



for an unsatisfiable clause set Φ can be expanded to a closed tableau [6]. Again,
it is clear that the CHT calculus is proof-confluent.

Because of its non-destructiveness and proof-confluence, fair computation
with constrained hyper tableaux is easy. We give a mere sketch. First apply
Expand to every all positive clause, on every branch. Next, use the list of positive
literals on a branch to select the candidates from the clause set Φ for a match.
For a given P on the branch and candidate clause φ, determine whether P needs
to be copied for a match. If so, apply Expand again to generate the appropriate
number of alphabetic variants. Next apply Expand to the mixed and the negative
clauses. As the applications of Expand are non-destructive, no backtracking is
ever needed in the merge check for closure.

As one of the referees pointed out, there is scope for further redundancy tests.
E.g., for the clause set {Pa, Pb, Px⇒ Q} we would get Q twice on the branch.
This can be avoided by adding a check like ‘never expand a branch with a clause
instance if it is already true in all models of the branch’. In the same spirit, if a
branch is expanded with a literal A, but a proper instance Aσ is already present,
then Aσ may be deleted from the branch, on condition of course that none of
the variables in A are rigid.

We are experimenting with an implementation of CHT reasoning in Haskell
[7], with merge checks for closure performed on tableau branches represented as
lazy lists. Since the method is essentially breadth-first, space consumption is an
issue, and it remains to be seen what the practical merits of the approach are.

7 Related Work

The standard reference for free variable reasoning in first order tableaux is [3].
With the introduction of free variables in tableaux, easy model generation from
open tableaux got lost. Working with variable constraints in the manner ex-
plained above restores this delightful property of tableau reasoning.

The research for this paper was sparked off by a suggestion from [4] to do
tableau proof search by merging closing substitutions for tableau branches into
a closing substitution for the whole tableau. This suggestion is worked out in
[5]. The difference between that approach and the present one is that we use
disunification constraints rather than unification constraints. In our approach,
the negations of the substitutions that close a branch are viewed as constraints
on branch satisfiability, and a tableau remains open along as there is no way
to unify a list of constraints selected from each branch. Since this is done in a
setting where open branches only contain positive literals, it is ensured that a
constraint can never clash with a branch literal.

The idea to enrich tableau branches with history lists for keeping track of
the clause instances used in the construction of the branch is from [1]. As is
mentioned there, this bookkeeping stratagem makes hyper tableaux a decision
engine for satisfiability of the Bernays Schönfinkel class (relational ∃∗∀∗ sentences
without equality). The clause form of such sentences may have skolem constants,
but since there are no skolem functions, any clause has only a finite number of



instances. Thus, the history conditions ensure that tableau developments for
Bernays Schönfinkel sentences are always finite.

One of the referees drew my attention to [8], an earlier proposal for handling
rigid variables in a hyper tableau setting (with no variable constraints involved,
however), for which completeness unfortunately remained open. The present
paper settles this issue.

As far as I know, the idea to use constraints on the interpretation of rigid
tableau variables for model generation from open free variable tableaux is new.
This idea, by the way, applies to free variable tableau reasoning in general.
Instead of using a closure rule that applies a most general unifying substitution
σ for A and ¬A′ to a whole tableau, generate the constraint θ, where θ is the
restriction of σ to the rigid variables of the current branch, and add a constraint
merge for closure check: see [10] for details.
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Martin Giese, Maarten Marx and Yde Venema, and to three anonymous referees.

References

[1] Baumgartner, P. Hyper tableaux — the next generation. In Proceedings Inter-

national Conference on Automated Reasoning with Analytic Tableaux and Related

Methods (1998), H. d. Swart, Ed., no. 1397 in Lecture Notes in Computer Science,
Springer, pp. 60–76.
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