
Molecule-oriented programming in Java

Jan Bergstraa,b,*

aProgramming, Research Group, University of Amsterdam, The Netherlands
bApplied Logic Group, Department of Philosophy, Utrecht University, Heidelberglaan 8, 3584 Utrecht, CS, The Netherlands

Received 18 September 2001; revised 24 January 2002; accepted 3 April 2002

Abstract

Molecule-oriented programming is introduced as a programming style carrying some perspective for Java. A sequence of examples is

provided. Supporting the development of the molecule-oriented programming style several matters are introduced and developed: profile

classes allowing the representation of class protocols as Java classes, the ‘empirical semantics’ of null, a jargon for the description of

molecules, some terminology on software life-cycles related to molecule-oriented programming, and the notion of reconstruction semantics

(a guiding principle behind the set of case studies). q 2002 Elsevier Science B.V. All rights reserved.

Keywords: Object; Molecule; Molecule-oriented programming; Focus; Field; Java

1. Introduction

This paper covers a number of issues regarding Java

programming. For an introduction to Java and the ideas of

its designers we refer to the rapidly growing textbook

literature.1 A very informative recent introduction to Java is

Ref. [10]. The relevance of the issues raised relates to

programming methodology and style. Explicit work on Java

programming style is rare in an enormous stream of

pragmatic work. We mention [1] as an example of a text

using an interesting style: preconditions and postconditions

phrased as comments.

Central to the paper will be the viewpoint that the

construction and modification of molecules consisting of

objects (playing the role of atoms) and connected by fields

(playing the role of bonds) provides a meaningful

operational model for Java programming. Here are our

objectives, proposals and results, collected in itemized form.

† The reconstruction of elementary mathematics as well

as elementary theory of computation and formal logic in

Java is an interesting task. Even the description of the

natural numbers (NN) poses some challenge. Below a so-

called perfect class representation (for NN) will be given. In

a perfect class representation of a mathematical domain

each object from the domain is represented by exactly one

object from the class of representations. A similar definition

is provided for the integers (integral numbers, IN).

† Java fails to offer the Cartesian product as a primitive.

Neither are sets native to Java. Further there are no generic

classes and no higher order functions. By introducing

perfect classes, cartesian classes and non-cartesian classes

some structure is obtained guiding a path through the

complications caused by the need to do without these

familiar features. It is open to debate whether the absence of

a number of prominent features in Java must be considered a

weakness or even a flaw. These matters are illustrated in a

non-perfect class representation of the complex integers

(CIN).

† This paper contains the printouts of a number of Java

class source files. The main expository problem generated

by printing the class source texts lies in the disappearance of

(abstraction from) the locations in the directory structure

and the consequences of these matters on the import and use

relations between source files (and class after compilation

between class files). In order to compensate for this loss the

JCF (Java class family) notation is used. This notation

allows one to describe exactly how a number of class

sources are placed in different files and directories. These

aspects are of course marginal from a general perspective. In

practice the whole systematics of naming conventions and

‘configuration management in the small’ cannot be ignored,

however. Many classes make sense only in a very specific

0950-5849/02/$ - see front matter q 2002 Elsevier Science B.V. All rights reserved.

PII: S0 95 0 -5 84 9 (0 2) 00 0 65 -4

Information and Software Technology 44 (2002) 617–638

www.elsevier.com/locate/infsof

* Address: Applied Logic Group, Department of Philosophy, Utrecht

University, Heidelberglaan 8, 3584 Utrecht, CS, The Netherlands.

E-mail address: jan.bergstra@phil.uu.nl (J. Bergstra).
1 The author acknowledges numerous suggestions for stylistic

improvement by R. Roël, J. Fokker and P. Rodenburg.

http://www.elsevier.com/locate/infsof

context. The JCF notation allows one to produce a readable

printout of such a context. It is evident how to represent

JCF’s in XML applications when needed.

† Interfaces in Java cannot be used to define abstractions

of arbitrary classes, because of a complete neglect of static

aspects and because of particular typing conventions.

Several remedies against this fact have been developed.

For instance the Javadoc tool generates ‘protocol’ descrip-

tions for classes that are used massively in the textbook

literature on Java. What we look for is a notion of an

interface that captures all the interface properties of a class

and simultaneously admits type checking by the compiler

(just as interfaces do). Abstract classes cannot be used for

this purpose either due to similar limitations.

Below so-called profile classes are introduced. For most

programs in the paper appropriate profile classes are

presented. As we intend to work with the Java system in

the form available to us, no modifications of Java supporting

profile classes have been contemplated. The profile classes

below show some unfortunate details forced upon the author

by limitations (or conventions) of Java. It is vital to have the

names of profile classes and Java source classes identical.

As a consequence the standard heuristic that class texts

ought to be placed in text files with identical names is

violated. (We found it very practical to use the option to

have class source texts in files with different names in many

occasions!)

† The ‘object’ null plays a role in many programs.

However, it turns out to be remarkably difficult to develop a

coherent view on the status of this ‘thing’. Right from the

start the idea that an apriori theory can (or should) be

provided explaining a prospective programmer what to

expect from null is rejected. Developing such theories is a

subject of its own, the pitfalls of which are known to

everyone who followed the development by trial and error

of proof systems for the equational logic for partial algebras.

The method for semantic clarification proposed here at least

is termed ‘empirical semantics’. Empirical semantics may

be helpful in some cases. In empirical semantics one tries to

obtain some coherent picture of the role that a particular

program construction (e.g. null) can play by experiment-

ing with an informative series of example programs. Having

studied these examples the reader has some opinion on what

to expect, and the designers of formal theories have crucial

information of what direction to take (if explaining how

things actually are in Java still is their target!).

A major reason to abstain from formalized modeling is

that the formal models are more likely to explain ‘how

things should have been’ than how things actually are (in

some cases at least). As a case study of empirical semantics

the properties of null are investigated in some detail. The

author considers the picture emerging quite unsatisfactory,

but that subjective judgment is irrelevant for Java program-

ming of course.

† The position is taken that an object in Java is a point

(node) in a directed labeled graph. Configurations of

connected objects arising during a single computation will

be referred to as molecules. Molecules are identified as the

main structuring concept needed to obtain a model of the

dynamics of a Java process (¼ the execution of a Java

program).

There is no obvious representation of many subject

domains in the world of Java objects and molecules. Writing

programs designed as to generate molecules with a well-

understood structure and dynamics is termed molecule-

oriented programming. Molecule-oriented programming is

neither directed towards the realization of a particular

functionality nor is it aiming at some particular program

structure or format. The objective is to model concepts in

terms of the dynamics of a world of molecules.

† Java allows the programmer to design a dynamic,

directed and labeled graph (hereafter often referred to as a

molecule). The objects are nodes, while the fields are

labeled arrows from node to node. Instance field selection

takes place by following an arrow from one object to a

second one. At any time, classes are subsets of the universe

of objects. Objects cannot leave a class.

A chemical metaphor is proposed to exploit the

(potential) similarity of programmer defined classes with

classes of chemical atoms as classified by the periodical

system.

† Reconstructing known structures and theories can be

considered an activity in semantics. This activity is termed

reconstruction semantics. Reconstruction semantics (using

Java) aims at a complete explanation of a topic within Java

in such a way that a theoretical preliminary foundation in

terms of other theory is redundant. Below we will produce a

reconstruction semantics in Java of natural numbers in

unary notation (NNj), the integers (INj), the complex

integers (CINj).

† Conceptual programming is coined as a phrase

denoting a kind of programming geared towards examin-

ation of the conceptual issues arising from the represen-

tation in Java of structures and systems emerging from

different topics.

The examples demonstrate the use of the molecule-

oriented programming technique in a conceptual program-

ming effort aimed at giving descriptions of numbers and

lists.

2. Program theory

Program theory addresses amongst other questions the

following issues.

† What is a program? What is a program notation? What is

a program text, a compiled program and what is program

behavior?

† What are the basic program construction mechanisms

(programming language features); how should program

notations be classified according to the features offered?

J. Bergstra / Information and Software Technology 44 (2002) 617–638618

† What is a program specification; when is it the case that a

program meets a specification; how can this be tested,

proven or refuted? How are tests to be assessed, proofs to

be checked and refutations to be validated?

† What is programming; how to design programs given

specifications to be satisfied beforehand?

† What can be programmed; where is the programmer

confronted with the limits of computability, either in

principle, or (just as important) in practice because of

current technical limitations?

2.1. Program algebra

There are many Program Theories. As a classical

example [5] can be mentioned. The author uses program

algebra (in the style of PGA, [4]) as a vehicle for program

theory, the pro’s and con’s of that choice being of no

importance to the subsequent considerations, however. For a

survey and critique of program theories see Refs. [7].

Program algebra provides a line of thought that provides a

basis for the assertion that Java program texts indeed

represent computer programs. Other program theories

provide different, but equally valid, explanations for that

assertion.

Program algebra declares that a program is a non-empty

sequence of so-called basic instructions. Infinite sequences

of instructions can be obtained using repetition of finite

sequences. In the simplest case, sufficient for computer

programming, the infinite instruction sequences are

periodic.

A text is a program text if it represents an instruction

sequence. The transformation from a program text into an

instruction sequence is called a projection. Projections are in

general defined uniformly for all programs in a program

notation rather than just for individual programs. The

semantics of a program text is found by attaching a behavior

to its corresponding program object found after projection.

Indeed the meaning of a program text is found via its

program object. The projection leaves the meaning

invariant, or put differently: the projection defines the

meaning. For a text to qualify as a program text a projection

must be at hand. Only in combination with the procedure of

the projection can it be maintained that the text in fact

represents a program.

2.1.1. Process algebra

The meaning of a program object in turn is obtained by

means of behavior extraction. This is a transformation

turning the program object into a behavior (or process). This

transformation can take many forms and it depends

significantly on the choice of a theory of behavior. The

author’s favorite choice of a theory of behavior is process

algebra (in the style of ACP, [2]).

The behavior extracted from the projection of a program

text contains information that is likely to be refutable by

empirical studies of running programs. Behavior contains

information of the effect (German: ‘Wirkung’) of a

program, whereas the projection contains information

about the mechanisms playing a role in generating the

behavior (in Dutch: ‘werking’). The projection determines

the ‘werking’ of a program, thereby explaining its

‘Wirkung’.

2.2. Java program texts and Java programs

Given a fixed Java version and compiler the argument

that a Java text is in fact a program text runs as follows. A

Java text is a text accepted by the compiler as a valid

program (errors are not allowed, warnings may be ignored).

The compiler transforms accepted program texts to a so-

called byte code. This byte code can be disassembled into a

program in a very simple program notation resembling an

assembly language. By unfolding the loops in that program

an instruction sequence is obtained, qualifying to serve as a

projection of the program. A this point no more is said than

that it essentially is the compiler (and its capacity to serve as

the major part of a projection) that justifies the qualification

of a Java text as a program text. Presenting the details of an

actual Java projection is quite another story, well out of

scope for this paper.

The phrase ‘Java program’ is just an abbreviation for

‘Java program text’. For a text to be a Java program it is

essential that a compiler is known. Different compilers may

transform the same text into different program objects

(instruction sequences), leading to different behaviors in

turn. The text exists independently of a compiler (projec-

tion) of course, the program text does not, however.

3. Java programming

Programming is understood as program text construc-

tion. Many phases and cycles can be distinguished in

program text construction, mostly linked to general

objectives. At this point it is relevant to identify the

simplest possible conception of program text construction,

irrespective of its methodological or practical merits.

Remarkably the literature on the design process is more

systematically developed than the literature on program-

ming seems to be. We mention Ref. [9] for a very thorough

definition of the design process.

3.1. Program text construction cycles

Three cycles are distinguished: the syntactic program

text construction cycle (PTCCsyn), the empirical program

text construction cycle (PTCCemp), and the rational

program text construction cycle (PTCCrat).

Much can be said about quality control in relation to

these cycles. The foundations of such considerations are

part of program theory, except in the case of the rational

J. Bergstra / Information and Software Technology 44 (2002) 617–638 619

cycle. Leaving program theory out of consideration, no

substantial progress on quality control can be achieved.

3.1.1. The syntactic program text construction cycle

In PTCCsyn a text is produced and submitted to a syntax

and type checker. Usually the syntax check for a program

notation is incorporated in the tasks of a called compiler, for

that reason below ‘compiler’ will be used also if ‘syntax

checker’ is meant. In reaction to bug reports the text is

transformed until it passes the syntactic requirements posed

by the compiler. Only at this point is the text a program text.

Only program texts are called programs (when using

abbreviated language). Before approval by the compiler

one may speak of a candidate program text or a candidate

program.

3.1.2. The empirical program text construction cycle

The empirical program text construction cycle

(PTCCemp) involves the second stage of compilation:

code generation. Code generation transforms a program text

to ‘executable form’. In the case of Java this execution is

performed by a so-called virtual machine, itself a program

in turn. The generated code is then run on various inputs.

Again feedback is obtained, now on program behavior, and

modifications are made until the observed behavior

corresponds with the program author’s intentions to a

sufficient degree. It should be noticed that PTCCemp can be

performed in the absence of any apriori, formal or informal

specifications on the behavior of a program.

The process of writing is completed when the author is

satisfied with his/her product. Criteria for satisfaction may

vary significantly in different circumstances.

3.1.3. The rational program text construction cycle

The rational program text construction cycle PTCCrat

involves quite another feedback mechanism: the program

writer reads the text and understands it as an intelligible

statement about a topic of value. The program text is

rewritten until, as a text readable for human readers, it

conveys a story approved by its author. Of course other

readers may play a role in this cycle, and subcycles of type

PTCCsyn must be expected.

4. Why Java

Java is taken as a point of departure for this paper. The

abundance of its use provides ample justification for taking

an interest in the minute details of Java programming and its

methodology. There will be no emphasis on contemplating

extensions of or alternatives for Java. Java is considered

‘part of nature’ and is investigated as such. Information on

‘what the Java designers had in mind’ is not taken into

account. The emerging traditions of Java programming are

equally disregarded, thus allowing an unbiased focus on the

Java program notation itself.

This text is not about the mathematics of program-

ming, neither does it contain an attempt to formulate a

general program theory. Still the topic is focused on

principles of programming in relation to a particular

(kind of) program notation. Writing such papers will

always require the selection of at least one program

notation and supporting compiler. Moreover, for a

specific prospective program text, the approval by the

syntax checker (included in the compiler) for the chosen

notation, of that text should be accepted as a sufficient

criterion for being a program text. We notice that Java

is quite interesting in its own right: besides a

remarkable market penetration (in Academia at least),

it provides objects, classes and threads in a more

accessible form than any previous program notation has

done so far.

From the viewpoint of software technology the ambitions

with Java are just as significant: platform independence,

security, code transportability and automated memory

management are approached in a principled and integrated

fashion.

4.1. Instrumental use of Java

People interested in Java programming may either

consider Java a toolkit meant for reaching other objectives,

or a theme and focus of study and research in itself. Only

from the perspective of ‘pure informatics’ is Java a plausible

option as a theme in its own right. We will not take that

position and concentrate on forms of instrumental use of

Java instead.

Suppose one considers Java an instrument for reaching

some pragmatic goals. Assuming a person unaware of

program theory one may question which goals are within

reach for this person using Java at all. The following goals

can be rejected at once:

† The production of safety critical software. This work

requires awareness of systematic quality control at the

level of program behavior. It is a common opinion that

this task is the hardest challenge in programming of all.

Without a firm footing in a solid theory of programs no

reliable results can be expected. Amateur contributions

are pointless just as there is no need for amateurs in

pharmaceutical production or in the medical profession.

† Data base applications. These are to be considered safety

critical in many cases, and so are many programs for

business control. The difficulties are like those with

safety critical software.

† The production of high performance information proces-

sing tools. This activity requires an up-to-date awareness

of algorithms. Again this requires a solid exposure to a

theory of programs.

J. Bergstra / Information and Software Technology 44 (2002) 617–638620

4.2. Conceptual programming: instrumental use without a

program theory

Conceptual programming consists of program construc-

tion with the goal to understand or explain the subject about

which a program is written. Conceptual programs are texts

meant for the human reader. The primary production cycle

for conceptual programs is PTCCrat (see Section 3.1.3). The

criterion for a program to pass as a successful program is its

capacity of conveying complex information to its readers as

a text. The more high-level program languages are the better

suited for conceptual programming. The design of COBOL

has been influenced by the ambition to enhance conceptual

programming, the language giving rise to readable texts.

Conceptual programming is accessible for programmers not

aware of any theory of programs. The meaning conveyed by

a program is constructed in the mind of a reader, that

construction falling outside the scope of any theory of

programs developed so far.

4.2.1. Conceptual programming in Java

Conceptual programming in Java is a plausible goal for a

person intending to program from an instrumental perspec-

tive. The production of conceptual programs is a clear-cut

objective, the lack of awareness of program theory being

even a potential advantage. Conceptual programming also

refers to a programming style putting readability and

comprehensibility at top priority at the cost of performance

in case the program is executable in a meaningful way at all.

It is a goal of this paper to put forward conceptual

programming as a plausible objective thus turning an

instrumental view plausible (for a wide range of program

authors), while not allowing the deep problems concerning

software quality control to dominate other ambitions of

program production.

Secondly the paper aims at demonstrating the potential of

conceptual programming in Java in some interesting but

limited cases.

A very remarkable specimen of conceptual programming

in Java is found in Ref. [6]. This book explains a number of

complex design patterns in terms of Java programs. It is

obvious throughout the book that execution of these

programs is of secondary importance.

4.2.2. Conceptual programs and Java presented theories

The following assumptions support conceptual program-

ming in Java.

† A theory can take the form of a family of Java

programs (or even a family of families of Java programs)

together with an explanation of the rationale of these

programs. (Below a theory of natural numbers, integers and

complex integers, as well as a theory of lists, is presented in

that form.) Such a theory is called a Java presented theory

(JPT).

† A formal semantics of Java is not a fundamental

prerequisite for the existence and usefulness of Java

presented theories. The JDK or any other implementation

of Java provides so much semantic information that a Java

presented theory may well be clearer than a purely informal

theory phrased in natural language. Even a theory contain-

ing formalized parts may show considerable unclarities and

ambiguities at the borders of the formalization.

Needless to say in some cases the lack of clarity of the

semantics of Java may adversely affect the overall

comprehensibility of a JPT. Such unclarities will be an

invitation for semantic investigation concerning specific

fragments of Java.

Nevertheless, a JPT can serve as a description ‘ab initio’

of a subject. The semantic questions concerning Java itself

being considered a problem to be dealt with pragmatically in

very much the same way as the semantic problems of

natural language are dealt with in ordinary theories.

† Java is sufficiently expressive for the development of

JPT’s. Disadvantages of Java in comparison with other

imperative languages concern efficiency of execution much

more than brevity (or clarity) of expression. Java is far more

expressive than any logical formalism or process algebra

known to the author. As a consequence it is viable to use

Java as the main content carrier in a JPT.

5. Molecules and the field-focus distinction

Object orientation lacks a completely fixed jargon.

Therefore it is hard to avoid the introduction of specialized

jargon if the subject is to be dealt with in great (informal)

precision. Here is a proposal for such jargon.

Molecules are coherent constellations of objects (or

rather items, see below). The only possible connection

(binding) inside a molecule consists of an object (item)

being contained in a field of another object. Fields always

belong to an object. A field is also thought of as a named

arrow from one object to another object or item. The field

belongs to its source and is said to contain its target. It may

be useful to have an arrow pointing into a molecule from

outside. Such an arrow will be termed a focus. A focus never

belongs to a field.

5.1. A classification of fields

An item is an object, a value or an external item. A field

is a named arrow from one object to an item. The field is

said to belong to the object it leaves and to contain the item

that it points to. Three kinds of field are distinguished,

according to the kind of item contained by the field:

Object field An object field is vacant or it contains a Java

style object.

value field A value field points to a value container;

different value fields can never point to the same value

container. Each value container has its own ‘space’.

Value containers contain values. A value field is said to

J. Bergstra / Information and Software Technology 44 (2002) 617–638 621

contain the value contained by the value container it

points to.

external field An external field is an arrow from an object

to the description of an entity (an external item) that

might survive termination of the program. (The field

itself, together with the object it belongs to, will

disappear when the program terminates.)

5.1.1. A classification of foci

A focus is an arrow from outside (the molecule) to an

item. Typically references on a stack and local program

variables can be viewed as a focus. The same classification

in three categories valid for fields is meaningful for foci as

well.

5.2. Comments on fields and foci, independent of Java

Here are a number of remarks and observations meant to

get a sharper picture of the various categories at stake.

(1) Every program builds its own universe of objects

during execution. All objects are constructed in a sequential

fashion. One may think of an object as being uniquely

tagged by its time of construction, or its rank number in the

temporal succession of object constructions.

(2) If a program terminates all objects and value

containers that have been constructed during its execution

disappear.

(3) The run of a program starts from a root object. That

root object is in practice a so-called thread provided by the

system. During the run of a program there is a so-called

program stack. This is a collection of names together with

their meanings. Such a name will be called a focus hereafter.

The names have been introduced during the computation

and their meaning is an arrow pointing to an object.

Accessible objects are those objects to which a focus points

as well as all objects reachable from any accessible object

by selecting one of its fields.

(4) An item is either an internal item or an external item.

An internal item exists during the course of a computation

and ceases to exist thereafter. External items may have a life

extending beyond the life-time of a program using a name

pointing to the item. Typical examples of external items

include: a named file, a (numbered) socket, a URL. An

internal item is either an object or a value container. During

a computation an existing value container will at any time

contain some value.

(5) A value usually has an external meaning in the setting

of other theories, computing systems and so on. It is a design

decision common to many programming languages to have

only values that can be understood as representations of

‘generally known quantities’. It is a consequence of the von

Neumann machine model, however, that the distinction

between small and (potentially) big has to be made. Having

a correspondence between this distinction and the previous

one, regarding internal items versus external items, is by no

means a necessary consequence of the von Neumann

machine model.

(6) An object may be ‘small’, ‘medium’ or ‘big’, a value

(placed in a value container) is always small and so is its

container. From the viewpoint of a computation an external

item has an arbitrary size.

Different (object) fields may contain the same object,

different external fields may contain the same external item

descriptor, similarly different object foci may contain the

same object and different external foci may contain the same

external item descriptor.

(7) An object field or an object focus may be thought of

as an arrow capable of pointing to an arbitrary object.

Because the object may be ‘big’ it can be useful to have

different arrows pointing towards the same object. In

contrast the values placed in a value container are small,

for that reason it is never useful to have different arrows

pointing towards the same value container because the

arrow by itself is more costly than a value container with

value together with a unique pointer pointing to it. Such

unique pointers are value fields or value foci. For external

items the possibility to have multiple references is almost a

logical necessity. In all cases external items may be

considered ‘big’ making it economically plausible to treat

them as objects rather than values.

(8) During the run of a program an object or a value

container may in fact disappear. The disappearance of an

object is not the result of an explicit program instruction,

however. It is not possible to find evidence for the removal

of the object by means of instructions in the Java program.

The removal of objects (and value containers) is taken care

of by ‘the system’. The system can remove (garbage

collection) objects that have become inaccessible (garbage

status). Each system can only contain a bounded number of

objects (and value containers) at the same time. Removing

garbage (garbage collection) is a form of metabolism. It

frees memory needed for the construction of new objects.

We will discuss molecule-oriented computing as if it takes

place in a processor with infinite memory space.

(9) In a discussion of objects various objects get names.

This is the case in programs with objects as well. Suppose p

and q are two object names. Now object equality, p ¼¼ q;
expresses that p and q refer to the same object. This is the

strongest possible form of identity, objects p and q cannot

conceivably be more equal than p ¼¼ q:
(10) It is reasonable to view the expanding universe of

objects for a program during execution as a growing

collection, the fields denoting names of arrows from object

to object. The effects of garbage collection cannot influence

the functionality of a program. The only benefit, and effect,

of garbage collection relates to performance.

(11) Complex mathematical structures are often rep-

resented as subgraphs of the current domain of a class. A

particular structure is then identified with a particular node

in the graph (i.e. an object) from which all other elements of

J. Bergstra / Information and Software Technology 44 (2002) 617–638622

the subgraph can be found by following the arrows

(selecting fields).

Elaborating on this point an important problem regarding

class naming emerges. Because the ‘real structures’ a

programmer intends to describe (e.g. a search tree) are

subgraphs of the domain, individual objects are graph nodes

rather than these ‘real structures’. A class name TREE can

for instance be a suggestive name for a class ‘top node of

tree’. The entire ‘real structure’ exists only in an implicit

form. Now ‘top of tree node’ is not a very friendly name, but

‘tree’ is hardly justified. This constitutes some sort of a

dilemma. One may say that the very concepts of mereology:

structure, component and part, are absent from object-

oriented thinking.

5.3. Molecules in more detail

Here is a listing of definitions and terminology regarding

molecules.

1. A molecule is a coherent collection of objects and value

containers, closed under selection of value fields, object

fields and external item descriptor fields, all reachable

from a single object in focus.

2. Various foci may simultaneously point to different

objects in a molecule. Like objects, molecules exist at

run-time only. Like objects molecules cannot leave the

processor on which they have been constructed. (Though

distributed molecules are a meaningful concept, unlike

distributed objects.)

3. Each (object) focus determines a molecule, the union of

all molecules thus obtained is the collection of reachable

objects. All other objects have garbage status.

4. The principal mental image of the state of a machine

during a computation is that of a collection of molecules

each determined by its root focus. The various foci reside

on the so-called stack, the molecules reside in the so-

called heap.

5. Given a molecule and an object P in the molecule, a

submolecule is determined as the collection of objects,

value containers and external item descriptors, reachable

by (repeated) field selection, from the object P.

6. The size of a molecule can be roughly defined as the sum

of the size of its constituent parts. Object sizes in turn, are

determined by their class definitions, value container

sizes determined by underlying value type definitions,

external item descriptor sizes determined by the

(maximal) size of such descriptors in the intended

external context (e.g. sockets are ‘small’ ints).

7. In theory molecules may grow indefinitely during a

computation. In practice the sum of the sizes of all

molecules is bounded by the physical limits determined

by the amount of processor memory. Each object, value

container and each external field descriptor container

takes its own amount of memory (again determined by its

size).

8. The molecule-oriented picture is quite abstract indeed. In

reality, the garbage collector will be systematically busy

to remove entire molecules for which none of the

available foci serves as a root any more. In order to make

efficient use of memory, remaining molecules will be

repositioned in memory. This process is called defrag-

mentation. Garbage collection and defragmentation

should be considered tasks outside programmer control

and outside programmer responsibility (in principle). (In

practice the programmer of safety critical Java software

should unfortunately be suggested to take extremely

careful notice of these matters, however!)

5.3.1. Molecule types

If one intends to understand a particular Java program, or

its design, it may be very helpful to think in terms of

molecule forms (types, kinds) rather than in terms of plain

molecules. A list, or a tree or a two-dimensional grid can be

imagined as different molecule forms. Having no syntax for

molecules, Java lacks syntactical support for the description

of molecule forms altogether. Such forms may be appro-

priately described by means of graph grammars for instance.

5.3.2. A chemical metaphor

Chemical elements can be compared to Java classes.

Individual atoms can be compared to particular objects.

Atoms belonging to the same element is like objects having

the same class. Different isotopes are like different

subclasses of the same abstract class. A chemical bond is

like a field. By selecting that field another atom can be

found. Elements are characterized by number and type of

these bonds. An element may be bound to itself. Each

element in the periodical system can be mapped on a class.

Chemical bonds being bi-directional every bond is modeled

as a pair of fields in opposite direction. Chemical bonds have

additional spatial information absent from Java.

Chemical substances, most notably the polymers, may be

considered molecule types. The chemical methaphor is to

view (as a model) a molecule type as a chemical substance

and a particular molecule as an instance of that substance.

The computational process involves a chain of reactions

between molecules. These reactions take place at so-called

threads. Processing involves mainly the modification of

values in value containers, the modification of objects

contained in fields, the creation of new objects and value

containers, and the interaction with external items

(addressed via external item descriptors). Exclusively via

the interaction with external items the results of processing

become available for the external world. The molecules are

merely a means to an end, where the interaction with the

external items constitutes an underlying objective.

5.4. Molecule-oriented programming

In molecule-oriented programming the programmer

intends to exploit the chemical metaphor.

J. Bergstra / Information and Software Technology 44 (2002) 617–638 623

Each structure is represented by means of its own kind of

molecules and operations take the form of reactions between

such molecules.

A Java programmer has the liberty to define his/her own

‘periodical’ system, each element taking the form of a class.

Computation is the chemistry governed by this new

periodical system.

5.4.1. Molecule-oriented modeling

Molecules can be used to represent various aspects of

relevance to computing. Data molecules represent concrete

instantiations (states) of data structures and data objects.

In general molecule-oriented programming must be

preceded by molecule-oriented modeling. The major

aspects of a subject area must be modeled as molecules of

a tailored form. This leads to modeling and design in terms

of molecules. Java introduces some drastic limitations to the

modeling process: objects have only a bounded numbers of

outgoing arrows, and that number is always fixed at the time

of creation. Further the single inheritance paradigm is a

significant handicap. Quite simplistic forms of multiple

inheritances would prove very helpful indeed for molecule-

oriented modeling, design and programming.

Clearly molecule-oriented modeling is mainly mean-

ingful if a representation of important content matter in

terms of graphs and graph transformations is feasible.

6. Objects and classes in Java

Objects can serve as a basis for conceptual programming

in Java. When being executed on a machine, Java programs

give rise to the progressive construction of a number of

objects. It is attractive to assume that objects never

disappear, until program termination or crash, thus leaving

garbage collection outside the semantic perspective.

The intuition of objects as being constructed in time

challenges directly the mathematical and set-theoretic

assumption of eternal existence. The conceptual program-

mer is free to reconstruct parts of mathematics from the Java

perspective and to see what this brings. The conceptual

programmer has succeeded if he/she likes what emerges.

The following intuitions may serve the conceptual

programmer.

† At any moment a class is a collection of objects. A

class description provides the instruments (methods) for the

construction and use of the objects in a class. In addition it

provides names for so-called fields. A field is a link to

another object (or a value).

† All objects are contained in the class Object. This

class is a superclass of all other classes. Objects are

constructed by means of a method named identical to the

class prefixed with the keyword new.

† The subclasses of a class have extended descriptions,

because additional properties or aspects appear. Class

description extensions are complementary to subclass

extensions. The two uses of ‘extension’ differ in meaning:

an extended description is a larger text, a subclass extension

is the collection of objects of a class that belong to the

subclass. The principle of extensionality reads as follows for

sets: subsets having the same extension are equal. A

corresponding principle fails to hold for classes. Indeed two

(sub) classes may be empty at some stage. Later on an object

may be created for one of them. The absence of objects is no

justification for the identification of classes in any stage,

however.

† For brevity’s sake class descriptions are simply called

classes in Java, class description extensions becoming class

extensions (i.e. subclasses) as a consequence.

The local variables of a method body, the ‘constant’

this, the static variables of a class and the parameters of a

method are all categorized as ‘focus’. Only the instance

fields of objects are classified as ‘field’. Usually fields are

declared in a class definition. In the case of anonymous

classes a field may be introduced for a single object in the

absence of a general class definition, however.

This convention changes if a class is itself viewed as an

object as well. Then it becomes more plausible to consider a

static field a field (in the sense of(FFD) rather than a focus.

† Each object will always (i.e. during its entire life time)

have the same number of outgoing arrows. The same

collection of fields will be connected to an object during its

entire life-time. Because the object is created as a member

of a class, it takes from that class the number of its fields as

well as the name of each field and class of objects to which

the field will refer.

† The size of an object (in Java) is completely fixed

during the definition of its class. Whenever an object is

constructed it has a type (a class or an anonymous class).

That type determines the number of object fields, the

number of value fields and the number of external fields

belonging to all objects of the type. The sum of these

numbers provides a rough indication of the size of the

object. It is irrelevant whether these fields are classified as

private or public. That classification relates to their use but

not to their existence.

† Different subclasses of a class cannot intersect (unless

one of the two is a subclass of the other one). Therefore

intersection is not available as a class definition mechanism.

The degenerate object null is contained in each class,

however. It is easy to imagine the description of a class

extending two other classes at the same time. This is class

intersection or multiple inheritances. For instance: an

employee of the University of Amsterdam living in

Amsterdam is a member of UvAEMPLOYEE and of

AMSTERDAMCITIZEN at the same time. Java will not

allow this kind of class description. It has been ruled out

(fortunately?) because of implementation problems. In

restricted cases where multiple inheritances induce no

difficulties its absence of the language is unfortunate,

however. As an example consider two classes having only

static methods and fields and no name space overlap of any

J. Bergstra / Information and Software Technology 44 (2002) 617–638624

kind. Taking the ‘union’ of these classes is very natural and

utterly unproblematic. In logic this corresponds syntacti-

cally to taking the union of two signatures and semantically

to the construction of a common expansion of two algebras.

† Java disallows the use of classes parameterized by

other classes. However obvious the intuition of SEQUEN-

CESOF(X) may be, it is not provided in Java. Instead for

each particular class (say NN) the class SEQUENCE-

SOF(NN) can be introduced. Unfortunately this leads to a

significant duplication of code. This may be considered a

real deficiency and it may even constitute Java’s single most

important flaw.

† Java provides a limited collection of value types. Only

elements of those types can occur as the contents of a value

field. The actual collection of value types for Java is an ad

hoc design decision. There is no theory explaining this part

of the design. Array, vectors and strings are in between of

values and objects. The molecule-oriented programming

jargon has no counterparts for these concepts. None of them

is needed for conceptual programming, however.

6.1. The mathematical world of ideal objects

One of the biggest disadvantages of modern computing

jargon is the tendency to overload all existing terminology,

the term object being no exception. This requires explicit

measures for fighting confusion. For instance it is still

assumed that a reader has the intuition in mind of the infinite

collection of all natural numbers, starting with zero and each

made by repeated application of a successor function. This

view of the natural numbers leads to the so-called unary

notation for natural numbers: 0, S(0), S(S(0),… Often all but

the brackets surrounding 0 are omitted: 0, S(0), SS(0),…

This infinite collection contains ideal objects to which no

temporal, spatial or other physical attributes need to be

attached (or can be attached). The number 7 exists in this

ideal world. When working in Java the objects get ‘real’.

This means that in some sense the objects constructed

during the execution of a Java Program have a true physical

existence. Even if very little is known about this physical

form still it is a reasonable assumption. Java objects (in a

program under execution) exist in a physical world inside a

computer. Of course the conceptual programmer thinks in

terms of a mental model of the execution, thereby giving

(hypothetical) Java objects an ideal status as well.

6.2. Java objects and math objects

Math objects are the ideal objects of mathematics,

whatever philosophy of mathematics the reader adheres to.

Java objects are the physical objects generated by a Java

program text during execution. Also in the discussion of a

Java program as if it were being executed the term ‘Java

object’ will be used. This is an abuse of language as these

objects are just as ideal as any of the Math objects and exist

inside a model of the Java execution (however abstract)

rather than in any machine in a physical sense.

As a rule collections (sets) of Math objects will be

denoted NNm (Math objects for the Natural Numbers) or

SEQVm (Math objects for sequences of Math Objects from

V). The tag m indicates that Math objects are meant. Java

objects will be tagged with a j. NNj is a class of objects in

Java for representing natural numbers.

6.2.1. The operator mathObj()

When discussing and performing conceptual program-

ming in Java the additional clarity of object existence will

be exploited. There is no substitute for the mathematical

idealizations, however. Set theory will be used as a carrier

for the mathematical intuitions. The set NNm contains these

idealizations in the case of natural numbers. The operator

mathObj() will be used to transform Java objects into

their mathematical counterparts if these exist.

6.2.2. Preliminary math objects

Before starting to perform any conceptual programming

at all it is useful to determine which sets of ideal objects may

come into play. The operator mathObj() is used to map

Java objects into mathematical objects. Unavoidably

mathObj() is a construction in the (human) mind.

It is not at all necessary to spell out in detail the

mathematical definitions of all objects that might be of use.

It is very relevant, however, to know in advance some

mathematical sets that will be of use. In all cases the

distinction between Math objects and Java objects must be

easy to make, avoiding philosophical confusion right from

the start.

The value of mathObj() need not be defined for all

possible objects. In many cases, however, a clear abstraction

exists transforming a Java object into a Math object.

6.2.3. Java objects can represent math objects

A most natural intuition is to consider a Java object q to

be a representation of mathObj(p) (provided

mathObj(p) has been given a meaning.)

A class Cj can be considered a representation of a set Sm

if all Java objects of class Cj represent Math objects in Sm

and if for every Math object in Sm there is at least one Java

object representing it.

The representation of Sm by Cj is called perfect if

different Java objects always represent different Math

objects. Because math objects are made from sets and

Java objects are essentially made from texts it is not at all

obvious that all sets Sm can be represented in an intrinsic

way by means of a suitable Java class Cj. In general this

seems not to be the case. The construction principles for sets

(Math objects) and Java objects are quite disparate in fact

and connections are not easy to find. There is a degree of

freedom in the theory of Math objects.

J. Bergstra / Information and Software Technology 44 (2002) 617–638 625

7. JCF notation and Java syntax

All programs are collected in JCFs (Java Class Families).

The use of JCFs has been advocated in [3]. The JCF notation

is an instance of the folder hierarchy notation (FHN) which

has been introduced in Ref. [3] as well.) The details of FHN

are spelled out in an appendix to this text. FHN allows one

to provide a precise textual representation of the files in a

directory as well as a gradual build-up of an FHN

description by means of the union operator. On text files

union behaves as concatenation, whereas on folders

(directories) it acts like a set theoretic union.

The use of FHN and JCF notation in the examples below

speaks for itself. The complications of JCF-notation are

with folders and packages and these will not be used in the

examples below. A JCF is a set of class description files.

Each class description file has a name (e.g. myclass.-
java) and content. The content is an ASCII text containing

one or more Java classes.

With JCF-notation it is possible to have many different

class descriptions with the same name in one document

without causing confusion.

The first JCF contains a class s from which all other

programs are activated as well as some abbreviations for

console output actions. JCFsp ¼ file:s.java(

class s {
public static void
main(String x[]){
(new c()).m();}

}
) < file:co.java(
public class co {
static public void p(boolean x) {
System.out.println(x);}

static public void p(char x) {
System.out.println(x);}

static public void p(int x) {
System.out.println(x);}

}
)

Below there will be many extensions of JCFsp to larger

JCF’s comprising a class c with a static method m().

7.1. Java syntax: assignment and identity test

The phantom object null denotes the absence of an

object. It is probably the most ubiquitous object in Java.

Whenever an object is created all its object fields point to

the null object. (If the field is a value field the compiler

chooses an initial value itself.) A method cannot have null
as its target (otherwise an exception emerges). There is only

one null because null ¼¼ null.

It may be noticed that always X ¼¼ X and

X.a ¼¼ X.a hold, whereas X.a() ¼¼ X.a() may

fail in case the evaluation of the method a() on the target

denoted with X modifies the state, the method being invoked

twice before evaluation of the test.

In a test X ¼¼ Y it is checked whether the focus X and

the focus Y contain the same object at the time of execution

of the test, provided both foci contain an object (counting

null as an object). Otherwise both fields must contain a

value of the same type. Then value equality is checked and

returned. In all other cases an exception will be raised.

As an imperative program notation Java’s most import-

ant primitive instruction is the assignment. In an assignment

X¼Y the content of the object focus X is replaced by that of

Y. Immediately after the assignment the two foci contain to

the same object and a test X¼¼ Y will succeed. (If X and Y
are value foci, the type of value containers they point to

must be comparable. If not an exception is raised, if so the

value contained in X is replaced by the value contained in Y.)

The assignment X.a ¼ Y indicates that the field named

a from the object in focus X will now contain the object in

focus Y. For this instruction to be executed properly it is

required that X contains (at the time of execution) an object

of some class A which has a member field a for objects of

some class B to which Y is a focus. Just after the processing

of the assignment instruction the following postcondition is

valid: X.a ¼¼ Y. Instead of a reference Y an assignment

can use an expression that produces an (unnamed) reference

to an object of class B. The reference X may not refer to

null before the execution of the assignment (otherwise an

exception will be generated).

In an assignment X ¼ Y.a the content of the object focus

X is replaced by a reference to the object Y.a (i.e. the object

contained in the field a of the object contained in focus Y.)

In the assignment X.a.b ¼ Y.c.d the following

happens: the field b of the object contained in the field a
of X is made to contain the object obtained by first selecting

field c of Y and then selecting field d.

7.2. Empirical semantics of null

The role of the object null requires some attention. In

the following program several properties of this object have

been collected by means of an example. This style of

collecting semantic information is called empirical seman-

tics in Ref. [3]. This collection of information regarding

null in Java may also serve as an indication of the

usefulness of empirical semantics. So we take Java as it runs

on the machine as a given fact of life (JDK semantics).

7.2.1. Typed versions of null
JCFnullex ¼ JCFsp < file:c.java(

class A1 { }class A2 { }
void f(A1 x) {co. p(true);}
void f(A2 x) {co. p(true);}
}

J. Bergstra / Information and Software Technology 44 (2002) 617–638626

class c{
static void m() {
BB B ¼ new BB();
A1 x ¼ null;
B.f(y); //prints true
A2 y ¼ null;
B.f(y); //prints false
co.p((Object) x ¼¼ x); //prints true
co.p((Object) x ¼¼ y); //prints true
co.p(((Object) x) ¼¼ ((Object) y)); //prints true
/* co.p (x ¼¼ y);
generates compile time error: A1 and A2 are incompatible
types. Apparently ¼¼ is not transitive!

*/
co.p ((object)x ¼¼ null); //prints true
co.p(x ¼¼ (A1) null);
Object o1 ¼ (Object) x;
B.f((A1) o1); //prints true
B.f((A2) o1); //prints false
Object o2 ¼ (Object) y;
B.f((A1) o2); //prints true
B.f(A2) o2); //prints false
B.f((A1) null); //prints true
B.f((A2) null); //prints false
/* B.f(null);
generates compile time error; ambiguous reference to f.
null.f(new A1());
generates compile time error; can’t invoke a method on null.

*/
BB z ¼ null;
/* z.f(x);
generates a runtime error: nullpointer exception.

*/
}

}
)

7.2.2. Initialization and instanceof
JCFnullex1 ¼ JCFsp < file:c.java(

class P { }
class Q {
P g;
}

abstract class R{ }
interface I { }
class c {
static void m() {
co.p(null instaceof Object); //prints false
co.p(null instaceof P); //prints false
co.p(((P) null) instaceof Object); //prints false
co.p(((P) null) instaceof P); //prints false
co.p(null instaceof R); //prints false
co.p(null instaceof I); //prints false
P x ¼ null;

J. Bergstra / Information and Software Technology 44 (2002) 617–638 627

co.p(x instaceof P); //prints false
P y;
/* co.p(x ¼¼ y);
compile time error: y may not have been initialized.

*/
Q z ¼ new Q();
co.p(z ¼¼ null); //prints false
co.p(z.g ¼¼ null); //prints true
co.p(z.g instance of P); //prints false
co.p(z instance of Q); //prints true
co.p(z instance of Object); //prints true
/*co.p(z instanceof P);
compile time error: impossible for z to be an instance of P.

/*
co.p((Object) z instanceof Q); //prints true
co.p((Object) z instanceof P); //prints false
co.p((Object) z instanceof R); //prints false
co.p((Object) z instanceof I); //prints false
y ¼ null;
/* co.p(y.g() ¼¼ null);
compile time error: g not found in class P.

*/
try {
co.p(((Q) ((Object) y)).g ¼¼ null);
/* runtime exception: the field g cannot be found:
NullPointerException.

*/
}catch(Exception e) {co.p(0);} //prints 0
}

}
)

Here is a program using null in an anonymous class. JCFnullex2 ¼ JCFsp < file:c.java(

class O {
Object p ¼ null;
Object f() {return null;}
Object g() {return null;}
}

class c {
final static Object p1 ¼ new Object();
final static Objects p2 ¼ new Object();
static void m() {
O q ¼ new O () {
Object p ¼ p1;
Object f() {return p1;}
Object g() {return p2;}
};

co.p(q.p ¼¼ null); //prints true
co.p(q.p ¼¼ p1); //prints false
co.p(q.f() ¼¼ null); //prints false !!
co.p(q.f() ¼¼ p1); //prints true !!
co.p(q.g() ¼¼ p2); //prints true
}

}
)

J. Bergstra / Information and Software Technology 44 (2002) 617–638628

7.2.3. Summary of observations

† The object null exists for each class. All different

versions of null are identical in the sense of ¼¼

provided their classes are compatible (either one extends

the other).

† An object having a single field with value null is itself

not a version of null.

† Method selection (overloading resolution) is sensitive for

the type of a null argument when it occurs in the

argument. (In the target position all versions of null
generate an exception.)

† the Java operator ‘- instanceof CLASS’ produces

false for all versions of null and for each class.

(Overloading resolution is more ‘sensitive’ than

instanceof.)

† The default constructor will initialize fields with null
provided no other initialization of these fields is present

in the class definition.

† Selecting a field from a version of null will lead to a

compile-time error in some cases and to a run-time error

in other cases.

† If a method needs to return objects of class X it is correct

to let it return null. This return can serve as a dummy

content for methods delivering a class type.

† There is a significant difference between hiding (fields)

and overriding (methods). An example is already found

in the case of anonymous class definition using the

distinction between null and an object of class

Object.

Getting a complete picture of the ‘behavior’ of null is

not at all an obvious matter. For most programming tasks

the above summary of facts will provide sufficient

information, however.

7.3. Design morphology, profile JCF’s and incarnation

A program features design morphology if its code

incorporates stages of its design. Design morphology is useful

if intermediate stages of system development are informative

and valuable, but at the same time the introduction of an

independent formalism for that purpose produces an unac-

ceptable overhead. In this text a form of design morphology

will be used.

For a JCF (say JCFxyz) a profile JCF (JCFp_xyz) can be

introduced. In a profile JCF all algorithmic content is

removed, method bodies being empty or almost empty.

Class X in JCFp_xyx is a profile for class X of JCFxyz.

Conversely X in JCFxyz is called an incarnation of its

profile class.

It should be noticed that the SUN JDK provides a facility

called JavaDoc. It provides information very similar to our

profile classes and it does so in an automatic fashion (given

the incarnations as an input). The advantage of profile

classes lies in the option to use the Java system for

manufacturing those in advance of further design steps.

When writing profile classes the reduction of information

may lead to a disconnection between different classes.

Special comments are used to indicate such matters. For

instance the comment auxiliary for Y in a profile class

X indicates that X will only be used in class Y.

8. Molecules are aggregates having objects as parts

A molecule consists of atoms (objects) as well as some

other items perhaps. Different objects in a molecule can be

considered part of the molecule. The molecule itself may be

considered an aggregate of objects (and may be other items).

The concepts of whole (aggregate) and part are discussed in

a branch of philosophy termed mereology. Nowadays

mereology is a respectable part of ontology for computing,

documented in a rich and growing literature.

We use Ref. [8] as a source for applied mereology

(adjusted to computing purposes when needed). Two

significant conclusions follow from the analysis in Ref.

[8]: for a combination of objects to count as an aggregate it

is mandatory that the combination enjoys at least one so-

called emergent property. Emergent properties are not

simply inherited from parts that have them as well. In the

examples below molecules are used for representing various

elementary mathematical notions. It takes a molecule to

represent a number and the property of representing a

natural number may be considered emergent. As a

consequence, the meaningful (used) molecules each have

the very property of carrying a certain meaning as an

emergent property. Random molecules, however, seem to

have no emergent property.

The second dogma from mereology relevant for this

discussion is that the ‘part of’ relation is anti-symmetric. It

cannot have cycles. Consider JCFagg1 below: JCFagg1 ¼

file:agg1.java(

class A {
B f;
}

class B { };
class c {
static void m() {
A a ¼ new A();
B b ¼ new B();
a.f ¼ b;
}

}
).

Here the object a defined inside method c.m() may be

thought of as an aggregate having the object b as a part. As

an emergent property one may take that a represents a

J. Bergstra / Information and Software Technology 44 (2002) 617–638 629

pointer. This may support the common view in Java

textbooks that fields point to parts of an object. In general

that view is untenable, however, because of the possible

occurrence of cycles. Consider JCFagg2 ¼

file:agg2.java(

Class A {
B f;
}

Class B {
A g;
}

class c{
static void m() {
A a ¼ new A();
B b ¼ new B();
a.f ¼ b;
b.g ¼ a;
}

}
).

It follows from the concepts of mereology (in a form

used in software theory) that b cannot be a part of a. Indeed

on grounds of symmetry one would conclude that b is a part

of a as well and a forbidden cycle emerges.

These examples are of essential importance to our

proposals. It is demonstrated that molecules cannot be

identified with objects (an identification which seems to be

entirely common throughout the entire Java course

literature). This indicates the need for a name to describe

the aggregation level of molecules. This name must be

different from ‘object’ and ‘class’. Undeniably the term

‘molecule’ is a rather arbitrary and suggestive choice.

8.1. Molecule-oriented programming

At this point several of the previous considerations can be

combined. The chemical methaphor can be turned into a

programming style (molecule-oriented programming) con-

centrating on programs that are best understood with this

methaphor in mind.

This programming style is claimed to be useful for

conceptual programming. The remaining examples in this

paper are meant to substantiate that claim.

As an effort in conceptual programming the three program

text construction cycles mentioned before will apply. In

particular the rational program text construction cycle iterates

until an intelligible model of some conceptual domain has

been obtained.

Although conceptual programming may not easily

appeal to an engineer, its use may still be significant in

view of the major difficulties encountered when formalised

models of conceptual domains are designed without

adequate automated support. In particular in the case that

a mathematically styled model tends to be clumsy and

hampered by seemingly irrelevant detail, a conceptual

programming approach may still allow systematic progress

leading to a model that admits fruitful communication to its

readers.

If conceptual programming in Java is considered a

relevant objective, the use of a molecule-oriented style is an

option that cannot be neglected.

9. Natural numbers

The following class family explains the elements of

arithmetic on the natural numbers in terms of Java objects.

The class NNj provides a perfect class representation for all

natural numbers that are needed during a computation. It is

possible to represent NNm without making use of a

predecessor field. In that case the predecessor of a number

(represented by an object x) is found by counting from zero

until an object y equal to x is found (This involves the

test x ¼¼ y:) The object from which y was found by

selecting succ is then returned as the predecessor of x.

We consider this representation an artificial one. It is

hard to imagine that the successor is so much more

primitive than the predecessor. In terms of the chemical

metaphor during a computation the set of existing

numbers consists of one (growing) molecule. The

representation of natural numbers as in the class NNj

is by no means the only reasonable option. This

representation, however, has the virtue that computing

the successor of a number requires a constant number of

steps, which is in accordance with basic intuitions

regarding the nature of numbers. If set theory is

dropped as a fundamental ontology the numbers cannot

be separated anymore from their representation depen-

dent algorithmic properties.

9.1. Profile classes for NNj

The profile JCF for NNj are is JCPp_nnj ¼

file:p_NNj.java(

final class NNj {
static NNj z;
//focus to 0

synchronized NNj S() {return null;};
//returns a focus to the successor of
the target

NNj P() {returns null;};
//returns a focus to the predecessor
of the target

}
class enrichNNj {
static NNj zero;
//focus to 0

static NNj one;

J. Bergstra / Information and Software Technology 44 (2002) 617–638630

//focus to 1
NNj S(NNj x) {return null;};
//Successor function in prefix notation

static NNj P(NNj x) {return null;};
//Predecessor function in prefix notation

static NNj plus (NNj x, NNj y) {return null:};
//addition

stastic NNj monus (NNj x, NNj y) {return null:};
//cut-off substration

static NNj mult(NNj x, NNj y) {return null:};
//multiplication

}
)

In JCFp_NNj the successor and predecessor operators act in postfix style on their argument (target). Further the almost

empty body for non-void methods returns null. This is a necessity due to the Java syntax, as something has to be returned.2 In

the enriching class, versions of these operators are provided acting in the usual infix (prefix) style. The subtraction operator is

termed monus (rather than minus) following the convention in logic for a subtraction returning 0 where a negative result is

expected.

9.2. Incarnation classes for NNj

Incarnations of these profile classes are given in JCFnnj ¼ JCFsp < JCFp4nnj < file:NNj.java(

final class NNj {
//Each number will be given by an object in a molecule. The
//molecule has the form of a doubly linked list, s arrows going
//upwards and p arrows going downwards. Focus z will contain
//the first object (representing 0), and at any time there is a
//last object for which the field s contains null. The p field of
//0 contains null all the time.
static final NNj z ¼ new NNj ();
private NNj s;
//contains the successor (except at 0)

private NNj s;
//contains the successor (except at the current maximum)

private NNj ();
//makes the constructor inaccessible from outside

private NNj newS(); {NNj x ¼ new NNj (); x.p ¼ this; s ¼ x; return x;}
//molecule is extended with one atom which serves as the
//successor (of its last object). The new atom is returned after
//the p and s fields have been adjusted. Auxiliary for S().

synchronized NNj S() {return (s ¼¼ null)? newS():s;}
NNj P() (return (p ¼¼ null)? z:p;}
}

class enrichNNj {
//An abstract data type using functional (prefix) notation.
//Function definitions based on well-known recursion equations.
static NNj zero ¼ NNj.z;
static NNj S(NNj x) {return x.S();}
static NNj one ¼ S(zero);

2 If profiles (profile classes) were native to Java a relaxation of this requirement (like in the case of abstract methods) would be very helpful.

J. Bergstra / Information and Software Technology 44 (2002) 617–638 631

static NNj P(NNj x) {return x.P();}
static NNj plus(NNj x, NNj y) {return
(y ¼¼ zero)? x:S(plus(x,P(y)));}

static NNj monus(NNj x, NNj y) {return
(y ¼¼ zero)? x:P(monus(x,P(y)));}

static NNj multi(NNj x, NNj y) {return
(y ¼¼ zero)? zero:plus(multi(x,P(y)));}

}
)

9.3. A test class for NNj

A test is performed in JCFnnjtest ¼ JCFnnj < file:c.java(

class c extends enrichNNj {
/*Some test cases*/
static void m() {
boolean b ¼ (S(P(P(S(zero)))) ¼¼ P(P(S(one))));
co. p(b);
NNj x ¼ plus(S(one), S(one));
NNj y ¼¼ plus(S(x), S(x));
b ¼ (P(P(P(P(P(y))))) ¼ S(S(S(S(S(zero))))));
co.p(b);
NNj u ¼ mult(one, S(one));
NNj v ¼ plus(one, one);
B ¼ (u ¼¼ v);
Co.p(b);
U ¼ multi(x,S(one));
V ¼ Plus(x,x);
b ¼ (u ¼¼ v);
co.p(b);
}

}
/*Generated output when running s:
false
true
true
true

*/
)

10. MFCP

In order to facilitate programming at a larger scale it is almost indispensible to collect class text files and class files in

packages. Otherwise the sharing of potentially reusable classes with other programmers becomes problematic, unless one

accepts the version control problems emerging from distribution by means of file copying.

We will collect various classes related to molecule-oriented programming in a package named MFCP (Molecule-oriented

Foundation Classes Package).

Packages are quite demanding on their contents. Source texts containing classes used from outside the package need to be

placed in their own file carrying the same name. Each source file in the package (MFCP) needs to start with the corresponding

package statement (package MFCP;). Further each element that needs to be used in another package must be made public. If

the package is used it must be ensured that those class files belonging to the package that are actually needed in the application

are contained in a subdirectory (named with the package name) of a directory listed in the class path. Multiple occurrences of

J. Bergstra / Information and Software Technology 44 (2002) 617–638632

these files in different directories along the CLASSPATH may lead to complications, however. Indeed, the package may be

split up over different directories, but the contents of the different parts must be file collections with disjoint name sets.

The introduction of NNj in MFCP can be achieved as follows:

JCFnnip ¼ folder:MFCP(file:NNj.java(

package MFCP;
public final class NNj {
public static final NNj z ¼ new NNj();
private NNj p,s;
private NNj () { }
private NNj news() {NNj x ¼ new NNj();
x.p ¼ this; s ¼ x; return x;}

public synchronized NNj S() {return (s ¼¼ null)? news():s;}
public NNj P() {return (p ¼¼ null)? z:p;}
}

) < file: enrichNNj.Java(
package MFCP;
public class enrichNNj {
public static NNj zero ¼ NNj.z;
public static NNj S(NNj x) {return x.S();}
public static NNj one ¼ S(zero);
public static NNj P(NNj x) {return x.P();}
public static NNj plus(NNj x, NNj y){return
(y ¼¼ zero)? x:S(plus(x, P(y)));}

public static NNj monus(NNj x, NNj y){return
(y ¼¼ zero)? x:P(plus(x, P(y)));}

public static NNj multi(NNj x, NNj y){return
(y ¼¼ zero)? zero:plus(multi(x, P(y)));}

}
)).

In order to make the test program work it needs to be preceded with import MFCP. or with import
MFCPjab.NNj;import MFCP.enrichNNj;. In both cases the package contents should be available via the

CLASSPATH.

10.1. Integral numbers

Java objects and molecules for integers (INj for Integral Numbers in Java) are introduced in the following class family.

Profile classes are omitted (but may easily be defined by the reader). Incarnations are in: JCFinjp ¼ JCFsp <
folder:MFCP(file:SIGNj.java(

package MFCP;
public class SIGNj {
public static final SIGNJ neg ¼ new SIGNj();
public static final SIGNJ pos ¼ new SIGNj();
}

) < file:INj.Java(
package MFCP;
public final class INj
//A perfect class for the integers.
extends SIGNj {
public static final INj z ¼ new INj();
private INj s,p;
private SIGNj sign;
private INj() { }

J. Bergstra / Information and Software Technology 44 (2002) 617–638 633

private INj s() {INj x ¼ new INj();
x.p ¼ this; s ¼ x; x.sign ¼ pos;
return x;}

private INj s() {INj x ¼ new INj();
x.s ¼ this; p ¼ x; x.sign ¼ neg;
return x;}

public INj S() {return(s ¼¼ null)?s():s;}
public INj S() {return(p ¼¼ null)?p():p;}
public SIGNj sign() {return sign;}
}

) < file.viewINj.java(
package MFCP;
public class viewINj extends SIGNj {
//transition to prefix notation.
public static final INj zero ¼ INj.z;
public static SIGNj sign(INj x) {return x.sign();}
public static INj S(INj x) {return x.S();}
public static INj P(INj x) {return x.P();}
}

) < file.enrichINj.java(
package MFCP;
public class enrichINj extends viewINj {
//contains major arithmetic operator definitions
public static INj one ¼ S(zero);
public static INj min (INj x){
if(x ¼¼ zero) {return x;}
else {return(sign(x) ¼¼ pos)?
P(min(P(x))): S(min(S(x)));}}

public static INj plus(INj x, INj y) {
if (y ¼¼ zero) {return x;}
else {return (sign(y) ¼¼ pos)?
plus(S(x),P(y)):plus(P(x),S(y));}

}
public static INj minus(INj x, INj y) {
return plus (x, min(y));}

public static INj mult(INj x, Inj y){
if (y ¼¼ zero) {return zero;}
else {return (sign(y) ¼¼ pos)?
plus(mult(x,P(y)),x):
minus(mult(x,S(y)),x);}

}
}

))

10.2. Cartesian classes

There is a need to have explicit terminology regarding the connection between Java classes on the one hand and the sets of

Math objects represented by Java classes on the other hand. The notion of a perfect class representation (in brief a perfect class,

assuming it is obvious what is to be represented) is a class where object identity (¼¼) corresponds to the most reasonable

form of Math object equality.

Obviously in a perfect class it is implausible to introduce an equals(–) method because there is no more plausible

equality than ¼¼ which is a built-in Java feature already.

When dealing with Cartesian products the situation is different. For a Math object ka; bl representing a pair the most

plausible equality is the logical conjunction of the equality of components. In general (see the class NNxNNj) this is not object

J. Bergstra / Information and Software Technology 44 (2002) 617–638634

identity because in order to achieve that a meticulous bookkeeping of all objects that have been constructed during a

computation is needed. Such a bookkeeping may well be far too expensive in terms of computation time.3

A class is called Cartesian if the most plausible equality on its objects is pairwise equality of components. Here the

components of object a are all objects (and values) found after selection of the various instance fields of a. More specifically: a

class is called Cartesian if it has a boolean method equals(–) returning true on a call a.equals(b) if either

a ¼¼ b or a and b have equal components. This raises the question which form of equality is used on the various component

classes. If a component class contains an equals(–) method that method is used; otherwise object identity ð¼¼Þ is used.

If a class is not Cartesian it is called non-Cartesian. The class SMj below is a non-Cartesian class. The best form of equality

on it identifies two points if there exists a graph isomorphism in the object graph permuting the two objects. That being out of

the question in terms of Java programming no attempt to introduce a more interesting form of equality is made.

10.3. Complex integers

The Gaussian ring contains the integral points in the complex plane. This structure is specified in the next class.

JCFcinjp ¼ JCFsp < folder:MFCP(file:CINj.java(

package MFCP;
public class CINj
extends enrichINj {//A Cartesian class for the Gaussian ring.
private INj re;
private INj im;
public CINj(INj x, INj y) {re ¼ x, im ¼ y;}
public Boolean equals (CINj x, CINj y) {return
((re(x) ¼¼ re(y)&&(im(x) ¼¼ im(y)));
}

public static INj re(CINj x) (return x.re}
public static INj im(CINj x) (return x.im}
public static CINj plus(CINj x, CINj y){return
new CINj(plus(re(x), re(y)), plus(im(x), im(y)));
}

public static CINj minus(CINj x, CINj y){return
new CINj(minus(re(x), re(y)), minus(im(x), im(y)));
}

public static CINj mult(CINj x,CINj y) {return
new CINj(
minus(mult(re(x),re(y)), mult(im(x), im(y)),
plus(mult(re(x), im(y)), mult(im(x), re(y)))

);
}

}
))

10.4. Collecting the package MFCP

Thus far the following part of MFCP has been developed: JCFmfcnic ¼ JCFnnj < JCFinjp < JCFcinjp.

At this stage many questions may be posed regarding the adequacy of this small package. We mention some points:

The relation between NNj and INj is quite weak. Can this be improved?

Conversion methods between NNj to INj may be introduced, or a substantial use of inheritance can be made? Should it

be the case that INj is a subclass of NNj, and CINj is a subclass of INj, or just the other way around?

(Our current opinion, based on a far larger body of examples than presented above, indicates that Java imposes definite

3 If the objects are very big, however, there may be a solid advantage in preventing object duplication. This is exacltly the virtue of the Aterm library for

Asf þ Sdf.

J. Bergstra / Information and Software Technology 44 (2002) 617–638 635

limitations on the modular structure of classes appearing

in a molecule-oriented programming project. The

inclusions of extensions and/or formal class extensions

cannot easily be forced to coincide with the classification

of objects one may have in mind. The very absence of

multiple inheritances poses a major problem, as multiple

inheritances seem a perfectly natural way of thinking

about classification of objects.)

Can these programs be simplified (significantly)?

(In the case of NNj so much time has been spent to

arrive at a simplest program, that the author would be

suprised if a significant simplification emerges. Proving

the non-existence of such a simplification is not as

feasible task at the moment, however.)

Will the naming convention used here be workable on the

long run? (Names have been kept quite short on purpose,

thus deviating from more common naming schemes in

use for Java.)

Is the use of so many static methods justified?

(This use emerged after long experimentation with

instance methods. The asymmetry of such programs was

a cause for rejection, however. For that reason the use of

static methods for the purpose of conceptual program-

ming is considered justified.)

11. Conclusions

Conceptual programming has been proposed as a

realistic ambition for programmers. The parts of the

software life-cycle relevant for conceptual programming

have been identified. Molecule-oriented programming (in

Java) has been proposed as a programming style fruitful for

conceptual programming. In addition it has been argued that

molecule-oriented programming provides a clear mental

model of the execution (memory state evolution) of an

object-oriented program in Java.

A series of conceptual Java programs, written in

molecule-oriented style, has been presented. These pro-

grams provide stand alone definitions (Java presented

theories) of several elementary but important number

algebras.

In addition several auxiliary methods and techniques

have been investigated: empirical semantics (for Java), the

Java class family notation (allowing a systematic presen-

tation of multiclass Java programs in a purely descriptive

setting), and profile classes (serving as a remedy against the

limitations of Java’s interface concept).

Appendix A

Folder hierarchy notation

FHN allows the notation of named and structured

collections of files. A FHN expression may contain

(describe) a JCF. A sequence of FHN notations may encode

a portfolio of JCF’s. FHN provides a syntax for the

description of folders. Folders can be empty, or they can

contain a number of named files/folders, files being

organized sequentially, folders hierarchically. In the

detailed description below A;Ai range over texts and B;Bi

range over folders. The size of a folder is its number of

elements at the top level. In the case of JCF texts A;Ai are

chosen to be flat file representations of classes. Concatena-

tion of texts is denoted with ‘p‘.

The primitives of FHN are these:

† Y represents the empty folder. Its size is 0.

† file: fileNameðAÞ; denotes a file named fileName

containing the character sequence A. The file file:
fileName(A) is itself a folder of size 1.

† folder: folderName (B), denotes a folder named

folderName containing the folder B. The folder

folder: folderName(B) has size 1.

† Given folders collection B1 and B2, B1 < B2 is the union

of the two folders. There are some constraints:

In this union the folders of B1 that have names also

occurring as B2 names are united. For a particular

name a folder contains at most one folder with that

name.

The situation for files is similar but not identical. If B1

contains a file file:fileName (A1) and B2 contains a

file file:fileName(A2), the combination B1 < B2 will

contain a file file:fileNameðA1 p A2Þ; (p denoting

string concatenation.) This rule prevents folder union

from being commutative. Again a folder can contain

(at each level) at most one file under some given

name.

An FHN-Java expression is an FHN-expression with

all texts A listed in files being class descriptions. For

such an expression to be syntactically correct the

empirical criterion is that it is accepted by the compiler

of JDK 1.2.1 (or later). FHN-expressions for Java will

be used to represent JCF’s.

A path is a sequence of names written as

name1=name2=…=namek: Paths can be used to indicate

files of folders within an FHN-expression or a JCF. With B a

JCF and q a path B.file(p) denotes the text (if any) within

B with path q leading to it. Similarly B.folder(p) denotes

the folder (if any) reached along path q. Thus

file:fileNameðAÞ:fileðfileNameÞ ¼ A etc. If no file name

or folder can be found using the selection operator the

field.folder is produced.

In addition to the constructors and selectors mentioned

above FHN admits a subtraction operator G2 {p1;…; pk}

removing all files and folders named in the set {p1;…; pk}

from the JCF G.

J. Bergstra / Information and Software Technology 44 (2002) 617–638636

A.1. Equations for FHN

The rules for the folder hierarchy notation FHN can

easily be summarized in a set of conditional equations.4 The

use of the equations is as follows: in the process of writing a

JCF, named files and named folders can be introduced in

successive stages. The equations describe how to combine

parts of files and folders into complete files and folders. This

process has to be performed before deletion of named

folders or files is attempted. The flexibility of FHN is

helpful when a portfolio of JCF’s is to be denoted. In these

equations x,y range over names of files/folders, A;Ai range

over texts (file contents), B;Bi range over folders, p; pi range

over paths.

A.2. Equations for folders

Y< B ¼ B;B < Y ¼ B

ðB1 < B2Þ< B3 ¼ B1 < ðB2 < B3Þ

file : xðA1Þ< file : xðA2Þ ¼ file : xðA1 p A2Þ

folder : xðB1Þ< folder : xðB2Þ ¼ folder

: xðB1 < B2Þ

folder : xðBÞ< file : xðAÞ ¼ folder : xðBÞ

x – y ! folder : xðB1Þ< folder : yðB2Þ ¼ folder

: yðB2Þ< folder : xðB1Þ

x – y ! file : xðAÞ< folder : yðBÞ ¼ folder

: yðBÞ< file : xðAÞ

x – y ! file : xðA1Þ< file : yðA2Þ ¼ file

: yðA2Þ< file : xðA1Þ

A.3. Equations for the remove operator

The equations for the remove operator can be defined on

top of this basis (q ranges over paths):

B 2 {p1;…; pnþ1} ¼ ðB 2 {p1}Þ2 {p2;…; pnþ1}

ðB1 < B2Þ2 {p} ¼ ðB1 2 {p}Þ< ðB2 2 {p}Þ

Y2 {p} ¼ Y
x – y ! file : xðAÞ2 {y} ¼ file : xðAÞ

x – y ! folder : xðBÞ2 {y} ¼ folder : xðBÞ

file : xðAÞ2 {x} ¼ Y

folder : xðBÞ2 {x} ¼ Y

file : xðAÞ2 {y=p} ¼ file : xðAÞ

x – y ! folder : xðBÞ2 {y=p} ¼ folder : xðBÞ

folder : xðBÞ2 {x=p} ¼ folder : xðB 2 {p}Þ

A.4. Defining equations for the selectors

The equations for both selection operators can be given,

using the remove operator. Four equations describe the

‘positive cases’.

A.4.1. Positive cases

ðfile : xðAÞ< ðB 2 {x}Þ:fileðxÞ ¼ A

ðfolder : xðB1Þ< ðB2 2 {x}Þ:folderðxÞ ¼ B1

ðfolder : xðB1Þ< ðB2 2 {x}Þ:fileðx=pÞ ¼ B1:fileðpÞ

ðfolder : xðB1Þ< ðB2 2 {x}Þ:folderðx=pÞ

¼ B1:folderðpÞ

A.4.2. Negative cases

In all other cases an error is to be produced (represented

by M.). This requires a disappointingly large number of

defining equations:

Y:fileðxÞ ¼ M

Y:folderðxÞ ¼ M

ðB 2 {x}Þ:fileðxÞ ¼ M

ðB 2 {x}Þ:fileðx=pÞ ¼ M

ðB 2 {x}Þ:folderðxÞ ¼ M

ðB 2 {x}Þ:folderðx=pÞ ¼ M

ðfolder : xðB1Þ< ðB2 2 {x}Þ:fileðxÞ ¼ M

ðfile : xðAÞ< ðB 2 {x}Þ:folderðxÞ ¼ M

References

[1] D.A. Bailey, Data Structures in Java for the Principled Programmer,

McGraw-Hill, Singapore, 1999.

[2] J.A. Bergstra, J.-W. Klop, Process algebra for synchronous com-

munication, Information and Control 60 (1/3) (1984) 109–137.

[3] J.A. Bergstra, M.E. Loots, Empirical semantics for object-oriented

4 FHN is called a notation in spite of its being an algebra according to

even the most restricted definitions. Although FHN is an algebra, its

equations are neither deep nor difficult. The transformation rules expressed

by the equations are all fairly obvious. FHN is a bookkeeping device and no

more than that. This lack of intrinsic interest of the FHN equations

motivates the decision to call it a notation rather than an algebra or a

calculus.

J. Bergstra / Information and Software Technology 44 (2002) 617–638 637

programs. Technical Report 007, Department of Philosophy, Utrecht

University, (1999).

[4] J.A. Bergstra, M.E. Loots, Program algebra for component code,

Formal Aspects of Computing 12 (2000) 1–17.

[5] J.W. de Bakker, Mathematical Theory of Program Correctness,

Prentice-Hall International, Mountain View, CA, 1980.

[6] M. Felleisen, D.P. Friedman, A Little Java a Few Patterns, Sun Soft

Press, Prentice Hall International, Mountain View, CA, 1996.

[7] J. Heering, P. Klint, Semantics of programming languages: a tool

oriented approach, Technical Report R9920, CWI Amsterdam, SEN,

1999. ACM COR preprint server cs. PL/9911001 v2.

[8] A.L. Opdahl, B. Henderson-Sellers, F. Barbier, Ontological analysis

of whole-part relationships in OO-models, Information and Software

Technology 43 (2001) 387–399.

[9] I. Reymen, Improving Design Processes Through Structured Reflec-

tion, IPA Dissertation Series 2001–4, University Press, Technical

University Eindhoven, Eindhoven, 2001.

[10] J. Skansholm, Java From the Beginning, Addisson-Wesley, Reading,

MA, 1999.

J. Bergstra / Information and Software Technology 44 (2002) 617–638638

	Molecule-oriented programming in Java
	Introduction
	Program theory
	Program algebra
	Java program texts and Java programs

	Java programming
	Program text construction cycles

	Why Java
	Instrumental use of Java
	Conceptual programming: instrumental use without a program theory

	Molecules and the field-focus distinction
	A classification of fields
	Comments on fields and foci, independent of Java
	Molecules in more detail
	Molecule-oriented programming

	Objects and classes in Java
	The mathematical world of ideal objects
	Java objects and math objects

	JCF notation and Java syntax
	Java syntax: assignment and identity test
	Empirical semantics of &ty;null&/ty;
	Design morphology, profile JCF’s and incarnation

	Molecules are aggregates having objects as parts
	Molecule-oriented programming

	Natural numbers
	Profile classes for NNj
	Incarnation classes for NNj
	A test class for NNj

	MFCP
	Integral numbers
	Cartesian classes
	Complex integers
	Collecting the package MFCP

	Conclusions
	Folder hierarchy notation
	Equations for FHN
	Equations for folders
	Equations for the remove operator
	Defining equations for the selectors
	Positive cases&?tpb=-12pt;
	Negative cases

	References

