
Operator programs and operator processes

Jan Bergstraa,b, Pum Waltersc,*

aProgramming Research Group, University of Amsterdam, The Netherlands
bApplied Logic Group, Department of Philosophy, Utrecht University, The Netherlands

cMicrosoft, Amsterdam, The Netherlands

Received 31 August 2002; revised 15 February 2003; accepted 4 April 2003

Abstract

We define a notion of program which is not a computer program but an operator program: a detailed description of actions performed and

decisions taken by a human operator (computer user) performing a task to achieve a goal in a simple setting consisting of that user, one or

more computers and a work environment.

Our definition and notations are based on the program algebra PGA: a small body of theory allowing one to reason fundamentally and

practically about programs viewed as instruction sequences.

This article is entirely self-contained and introduces all concepts and notations used. We offer some small examples, and we sketch one

limitation of our approach.

q 2003 Elsevier B.V. All rights reserved.

Keywords: Algorithms; Agent modeling; Human–computer interaction; Specification languages; User behavior; User modeling

1. Introduction

Many texts on programming and programming

languages do not offer a selfcontained definition of what

constitutes a computer program. Program algebra arose

from an intention to have a pragmatic exposition of

programs using principled definitions. In the program

algebra PGA [7,1], a program is defined as a sequence of

instructions, or any entity the meaning of which is defined

by mapping it to a sequence of instructions.

One purpose of program algebra is to provide defini-

tions of programs and to provide a theory of programs

and programming based on this intrinsic definition of

programs, leaving no room for doubt about the status of the

objects classified as programs1.

However, the theory of [1] is independent of the origin of

programs and of their mode of operation, as well as of their

purpose, if one exists or is known. By definition, every

sequence of instructions, in the program algebra format and

ignoring details of representation, qualifies as a program,

and any program description which can be transformed into

such a sequence of instructions also qualifies as a program.

The transformation of a program description into a sequence

of instructions is called a projection2, and in order to qualify

a description as a program, a projection must be known.

This definition of a program is not always satisfactory, as

it may be insufficiently restrictive for purposes of computer

science: things turn out to be programs, which have no

reasonable bearing on computer science whatsoever.

Having a focus on computing, we will restrict ourselves,

and distinguish two classes of programs: computer pro-

grams, meant to be executed by a computer (a computing

device), and operator programs, meant to be executed by an

operator (a computer user).

To see that these are indeed different, consider a setting

with a single computer and a single operator. Let p:on be

the instruction to switch the power supply on. It is hardly

0950-5849/03/$ - see front matter q 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0950-5849(03)00075-2

Information and Software Technology 45 (2003) 681–689

www.elsevier.com/locate/infsof

* Corresponding author. Tel. þ31-35-6221013; fax: þ31-35-6221014.

E-mail addresses: pwalters@microsoft.com (P. Walters), jan.

bergstra@phil.uu.nl (J. Bergstra).
1 Logic programming, for instance, leaves open the question why logic

programs are programs in the first place. Now that need not be seen as a

weakness but from our point of view the theory of logic programming might

be called ‘Horn clause sequence processing theory’ just as well. Whether a

logic program constitutes a reasoning mechanism, or merely an input for it

is left open in the logic programming theory. From the program algebra

perspective, however, a logic program definitely lacks the imperative

aspects needed to classify it as a program at all.

2 Returning to logic programming once more: a compiler for logic

programs usually has this task, in which the needed details about the

reasoning strategy which will be applied are clarified.

http://www.elsevier.com/locate/infsof


plausible to consider p:on an instruction meant to be

executed by the computer; most plausibly all programs

including (possibly after projection) p:on are operator

programs. Note that switching off (p:off) may very well

be a computer instruction, so a program involving p:off

may, in the absence of other information, be of either kind.

From the perspective of the program algebra PGA, the

first outcome of this paper is simply the fact that there is a

distinction between computer programs and non-computer

programs.

In the remainder of this article we investigate the second

category, noticing that an abundance of computer pro-

grams written in program algebra notation can already be

found (e.g. at http://www.science.uva.nl/research/prog/

projects/pga/).

1.1. Formalizing operator activity

The dogma of program algebra is that all candidate

programs, written or represented in whatever program

notation, may be classified as programs by an observer, only

if (s)he knows how to project the candidate program on a

program that fits with existing definitions, i.e. on a sequence

of instructions and ultimately, but in practice this is the

same, if (s)he knows how to translate the candidate program

to PGLA, the simplest of the program algebra based

program notations.

PGLA being very restrictive, one may debate the validity

of this dogma. In Section 5 we will encounter a typical task

which is easy for a programmer but not at all easy to project

on PGLA (the technical complication being that the boolean

values are the only built in datatype in PGLA, and that all

other data handling must therefore be translated back to bit

level).

It is not the purpose of this paper to either claim that all

operator activity can be phrased in terms of operator

programs, or that all operator programs can be naturally or

straightforwardly projected onto OPNA (the subset of

PGLA which is its operator program counterpart, to be

introduced hereafter). However, an implicit claim of this

paper is that program algebra offers a framework which

allows fundamental and rigorous reasoning about a certain

class of operator programs. We do not exhaustively

substantiate this claim, merely offering a few examples.

In addition, the result of this paper is two-fold:

† It provides an example of a class of non-computer

programs, the so-called operator programs. These

operator programs match all aspects of the definition of

a program, as defined in the program algebra PGA, but

are clearly not meant for execution by a computer. This

leads to the observation that ‘computer program’ is a

proper subclass of ‘program’ (in object oriented terms).

† Secondly, a method for formalizing operator activity

via operator programs is given. The formalization

rests on a suitably tailored version of the so-called

focus-method notation for program algebra.

Formalizing operator activity via programs is useful

because operator activity often has an algorithmic nature. In

addition one may very well imagine that human operators

are increasingly replaced by intelligent agents. For agents it

is a natural thing to describe their handling of a system by

means of program execution. The ability to represent

programs, reason about programs and indeed automate such

reasoning, where the programs denote computer activity,

human activity, or a combination thereof, appears to be of

growing importance in this light.

1.2. Overview

In Section 2 we shall offer some common terminology,

useful in the description of human, computer-related

activities, and we shall describe the GOMS model [3] of

human–computer interaction, which is widely regarded as a

reference model. Then, in Section 3, we present our model.

We shall briefly introduce program algebra and its notation

so as to make this paper independently readable. In Section

4 we offer some examples. Section 5 sketches an example

where human mental processes are not so easily expressed

using program algebra. In Section 6 we present a second

notation, allowing for more compact operator program

notations; the ability to define more concise or more

appropriate notations is one of the most useful aspects of

program algebra. In Section 7 we present a final example

with (limited) practical relevance. Finally, we offer some

conclusions and suggestions for further research.

2. Terminology and background

2.1. Operator tasks, skills, process and process description

To achieve certain goals, an operator of a machine can

perform certain tasks, and in doing so (s)he demonstrates

certain skills. An operator skill is the ability to perform an

operator task to achieve a goal. Operator tasks typically

involve dealing with a variety of circumstances.

To express the complexity of operator task accomplish-

ment in light of the required skills we will use the phrase

operator process. An operator process can be observed,

required, proposed, validated, falsified, forbidden, outdated,

experimental, and so on.

We imagine that to achieve a certain goal, an operator

needs the ability to carry through a number of operator

processes. ‘Operator ability’ refers to the ability to carry out

an operator process. Operator ability is like the ability to

play music by head; the operator need not use or

demonstrate any particular operator process description in

order to demonstrate this ability.

J. Bergstra, P. Walters / Information and Software Technology 45 (2003) 681–689682

http://www.science.uva.nl/research/prog/projects/pga/
http://www.science.uva.nl/research/prog/projects/pga/


How to carry out a specific operator process may be

documented in a manual, it may be known to the operator

through experience, it may reside in his or her genes, and

so on.

Operator processes can be identified by making obser-

vation protocols of operator activity, in combination with

interviews regarding the options for further action that

operators claim to have considered in various stages of their

activity. This approach was introduced as contextual inquiry

in [8,9] as a system design technique to study interaction

outside laboratory circumstances, in its context.

Operator processes may also have been designed as part

of the computer system design. Then, the process may be

exemplified by means of so-called use cases, which can be

used as training materials.

Whether emerging by observation or by design, operator

processes are made explicit by means of operator process

descriptions. Such descriptions are phrased in an operator

process description format, which may vary from com-

pletely informal (‘if you haven’t done a Linux installation

before, ask a friend for help’) to a specification in

meticulous detail (‘at reply “OS12.B.45” enter “yes” and

press RETURN’).

Each particular form of operator process description is an

add-on feature for the underlying process and the ability

shown by anyone conducting the process.

Below, we will be quite specific about operator programs

as a possible operator process description format. There is

no implication at all that an operator availing of some ability

either consciously or unconsciously must ’contain’ an

operator program for the operator process (s)he is able to

conduct.

What may be said is that is that operator programs are

quite powerful as an operator process description format.

Here, ‘powerful’ refers to the capacity of giving descrip-

tions for a wide variety of processes. Powerful and practical

are different things, however. If an operator needs to

conduct a process ’by head’ (s)he will need a description

with suffifcient ergonomic qualities. Specific ergonomic

requirements may lead to special-purpose process descrip-

tion formats that depart quite a bit from conventional

program representations. See, for example, [6] for steps

towards formalization of tutorial process models, where

tutoring systems teaching procedural skills are considered.

Finally, we will use the phrase ’operator plan’ as an

alternative for operator process description. The existence

of an operator plan is not implied even when faced with a

most skillful computer operator. For instance, a child

operating a computer game may be very skillful and

completely unable to formulate its own plan at the same

time.

2.2. GOMS

The GOMS model [3] is a reference model for human

computer interaction. It describes the user’s cognitive

structure using four notions: Goals, Operators, Methods

and Selection rules, where an operator is an elementary act

necessary to change the user’s mental state or the

environment; a method is a ’procedure’ consisting of

operators, sub-goals and conditions which accomplishes a

goal; and selection rules describe how a user selects one of

multiple available methods to achieve a goal.

In addition, [3] mentions tasks, skills and plans without

formalizing them in the model.

These notions and the ones we introduced earlier are

related, although we do consider the user’s actions and

behavior rather than the underlying cognitive process3.

Like a method, our use of the word ’task’ signifies both

atomic actions (i.e. operators) and more complex processes

involving conditions and sub-tasks. However, we dis-

tinguish rigorously the process from its description.

Not focusing on the cognitive processes, our use of the

words ’skill’ and ’ability’ is broader than that of [3] and

includes both the capability to perform atomic tasks and the

capability to chose suitable tasks given a goal (selection).

Similarly, we use the terms ’operator plan’ and ’operator

process description’ interchangeably, focusing on the

structure rather than the cognitive processes leading to

that structure.

3. OPNA: operator program notation A

In ultimo abstracto we will distinguish three entities in

the context of and in relation to an operator. Having a focus

on operating a computing device, the first entity is a console,

representing an interface between operator and computer4,

which allows the operator to interact with the computer.

The second entity, ‘self’, concerns the operator’s ability

to make decisions about the selection of appropriate tasks to

be carried out by the computer in order to accomplish

certain goals. Perhaps it is surprising to distinguish an

operator from this ability, but in fact a distinction between

decision making and execution is quite common in process

structuring. Also, it is consistent with [3] and other work in

this area, where task selection and the ability to perform

tasks are distinguished. (Fig. 1)

We shall call the third entity ‘principal’. It embodies the

context which defines the operator’s goal.

Although it is perhaps premature to discuss the merits of

this abstraction before we have even looked at its

application, one comment may be in order: the entities

embody the what, why and how of operator activity.

In the picture we see an operator in this context, and we

see some further details about the entities mentioned.

CMR Console method repertoire, representing all com-

mands the operator can give to a computer,

3 In [4] this approach is known as Input Output Agent Modeling.
4 A notion we imagine to include multiple units and entire networks.

J. Bergstra, P. Walters / Information and Software Technology 45 (2003) 681–689 683



and various physical actions on and around

computer systems, such as turning a computer on,

inserting a CD-ROM, or adding paper to a printer;

PFM Principal feed-back methods. The feed-back

methods are replies (including implicit queries)

that the operator can give to the principal;

ODM Operator decision methods. The complete reper-

toire of decisions the operator can make, based

upon their skills and abilities.

3.1. PGA

The formalization of operator programs below will take

place in the setting of program algebra. A full introduction

to programs and related notations in the setting of program

algebra can be found in [1] and [2], but a brief description

may facilitate understanding.

A sequence of instructions is a program. There are two

kinds of instructions: control instructions, solely concerned

with the locus of attention, i.e. the location where

subsequent relevant instructions can be found, and basic

instructions, which require an entity in the program’s

context, called a reactor, to offer some service. Basic

instructions are used in two ways: conditional, where the

program prescribes to interpret a status offered by the

reacting entity to determine how to proceed, and uncondi-

tional (called void in [1]), where no status is considered.

The entity offering the service required in a basic

instruction is called a re-actor, or a co-program, or also (in

simple cases) a state machine.

3.2. FMN: focus-method notation

The focus method notation introduced in [1] defines a

specific notation for basic actions: a basic action consists of

two strings separated by ‘·’, where the first string, called the

focus, identifies a reactor, and the second string, called the

method, identifies a service offered by that reactor and

possible arguments to that service. Focus and method

consist of alpha-numeric symbols and the colon ‘:’, which is

used to separate fields. One reactor can be designated

default for a program. Its designation and the ‘·’ may be left

out in basic actions. Obviously, the default must offer all

services required (as indeed should all reactors). When

describing operator console interaction it is plausible to

consider the console to be the default focus.

To conclude this introduction, we mention that [1]

defines a number of languages (i.e. program description

formats), each being a program language by virtue of a map

to sequences of instructions. Basic instructions are a

parameter to the languages, so the various formats only

differ in the control instructions they offer.

3.3. PGLA

The simplest language is PGLA, which offers the control

instructions ‘!’, signifying successful completion of a task,

and ‘#n’; signifying that the remainder of a task is described n

instructions ahead. This is a jump instruction jumping over

itself as well as the next n 2 1 instructions if n . 0: If n ¼ 0 it

denotes an infinite repetition or divergence. Two program

composition mechanisms are available in PGLA: concatena-

tion ‘-;-’, and repetition ‘ð-Þv’: Repetition will not be used in

the examples below.5 The ‘A’ in OPNA stems from PGLA.

3.4. OPNA

As shown in the picture above, the entities in the operator’s

context are PFM, CMR and ODM. One might consider

conditional instructions in relation to PFM (e.g. ask the boss)

and CMR (e.g. ask your project planner). The reason not to

include these is as follows. In both cases an unconditional

request is presented (to the principal or to the console). As a

consequence the principal or computer may produce results

that the operator may inspect. The operator then has to decide

what to do next on the basis of this inspection. The decision

methods of the operator, accessed via the focus self, will

usually involve an assessment of the most recent information

that has been produced by principal and computer. In the case

of the principal that may involve the inspection of documents,

in the case of the computer it may involve the inspection of

various windows on a screen, not just the window in which the

commands for focus console are typed.

In fact, to ask the boss is to ask for a refinement of goals,

which may lead to information that allows the operator to take

further decisions. The replies of a principal do not coincide

with operator decisions though a very direct translation of

principal generated information into operator decisions is

very well conceivable. Asking a computer concerns an

unconditional request to provide additional information; how

that information is presented is left unspecified, but how to

proceed based upon that information remains the operator’s

realm, in the proposed formalization decision actions will

take care of all processing of such information. Similarly,

unconditional instructions concerning ODM should not be

Fig. 1. OPNA setting.

5 An ASCII notation for repetition is as follows: denoting the

repetition of the last n instructions, not including itself.

J. Bergstra, P. Walters / Information and Software Technology 45 (2003) 681–689684



considered: it might represent an operator mumbling to

themselves, but it has no bearing on our theory. The only

reason for the operator to assign a method to self is because a

decision needs to be made on how to proceed. To conclude,

using the notation of [1] and [2] for basic actions:

† Basic actions concerned with self are conditional: i.e.

þself :p or 2self :p; when a positive conditional action is

processed the entity running the program will ask the

appropriate reactor (here only ‘self’) to perform the

action. If then a reply true is produced, the execution of

the program continues with an execution of the next

instruction, whereas if the reply falsewas produced the

execution skips (i.e. jumps over) the next instruction and

proceeds with the subsequent instruction.

In the case of a negative conditional instruction, the

execution of a program proceeds with the next instruction

after a reply false was received, jumping over the next

instruction in the case that true was received. PGLA

needs only one of these conditional instructions for its

expressive power; the other one has been added for

symmetry reasons. Having both available, however, does

simplify programming.

† Basic actions concerned with principal or console are

void: i.e. console.p or principal.p. For the program

notation PGLA there is no need to have these instructions

used in void mode only. That restriction is merely based

upon the view that the operator is the only party taking

decisions on how to proceed.

3.5. Why PGLA?

When modeling operator activity via operator programs

many program notations will serve equally well. The reasons

to work with PGLA are these: (i) it is the simplest program

notation known to us, (ii) it has complete separation between

control features and state modifying actions, (iii) it can be

used as a mathematical notation just as well as as a pragmatic

program notation, (iv) if the description of more complex

tasks requires more flexible program notations, an appro-

priate notation can be chosen from the hierarchy of program

algebra notations as proposed in [1]. Doing so gives the

guarantee that the more advanced program notation merely

helps the presentation of PGLA programs in a more readable

form, because the meaning of each of the more advanced

notation is given in terms of a projection back to PGLA.

4. Examples

In this section we will discuss some examples.

4.1. A simple task: logging in

In this section we discuss a trivial task. Entering the

office every morning, the first things to do are: turn on ones

workstation, log in to the system, scan new mail, and report

to the principal6.

In this example, the CMR should offer the following

services:

† on to turn the computer on;

† write:… to enter some data;

† select:… to start an application

The PFM is trivial:

† ready to report for duty;

† need:… to request assistance of some sort.

In this trivial task few decisions need to be made. Things

that typically go wrong at the site we are thinking of are that

the network or one of the servers is down. Therefore, ODM

includes services

† requesting:… to decide whether the workstation is

waiting for some kind of response;

† alerting:… to decide if some system message is

being presented;

† responding:… to decide if the system is otherwise

responsive;

At this point we mention the influential work on use-

cases [5] used as a software engineering method, notably in

information systems design. Use-cases are related to the

above in that top-level processes from the perspective of a

single operator are considered. The chief differences with

our approach are:

† In Ref. [5] the processes are commonly described in text,

rather than any formal framework. From this perspective

OPNA could very well be used to define use-cases in

great detail.

Note that sequence diagrams are sometimes (incor-

rectly) also referred to as use-cases. A sequence diagram

breaks down a process in detail. However, sequence

diagrams are commonly used to break down computer

programs rather than operator programs, mentioning the

operator merely as the originator of the process;

† Use-cases are described from the perspective of an

operator without distinguishing PFM and CMR, and

often without making ODM explicit. It would be

conceivable for a use-case to fail to clarify how an

operator should decide how to proceed based on the

result of some console command (e.g. does the result

indicate what should happen or should the user make

6 In reality the first thing to do is: get coffee. It is not our intention,

however, to describe the behavior of this or any operator but rather to

describe the acts and decisions needed to fulfill one task. In practice, an

operator fulfills different tasks at the same time by interleaving or indeed

superimposing sub-tasks related to those different tasks. For the moment we

focus on individual tasks.

J. Bergstra, P. Walters / Information and Software Technology 45 (2003) 681–689 685



a decision based on some informational result). In

OPNA, such an unclarity is farfetched. This is by no

means criticism on [5], but rather on the phrasing of that

particular use-case.

The program describing this task is:

console.on;
console.write:janb;
-self.requesting:password; #10;
console.write:777777;
þself.alerting:authenticationfailure;#7;
console.select:my mailer;
-self.responding;#4;
console.openlastmail;
principal.ready;
!
principal.need:help;
!

A verbal rephrasing of this program is as follows:

switch the console on (apply the method ‘on’ to

console), then write ‘janb’ on the console, then decide

(self) whether a password is requested. If not, skip the

next 10 instructions (arriving at the instruction

principal.need:help) and signal the principal

that help is needed. Then, the task is done. If a

password is requested, write it to the console (an

unrealistic example is used) and then decide whether

the authentication procedure generates a failure. If so

skip some instructions and tell the principal that help is

needed, if not ask the computer (via console) to open the

most recent mail. Then tell the principal that the task has

been completed and terminate.

Perhaps surprisingly, this trivial example exhibits all

aspects of OPNA, and although additional examples

serve to further illustrate our formalization of operator

activity, they are all based on the primitives shown

above.

4.2. A pocket calculator

In this example we describe the use of a pocket

calculator. Accordingly, it makes sense to take the console

as the default focus (as mentioned, the default focus may be

skipped in method denotations).

The CMR offers typical operations on a calculator. Our

calculator has a number of variables a through z, b2,
cf, etcetera, shown as VAR below. Commands exist to

set a variable to a constant (8 decimal places), or to

compute its value using an operator and one or two other

variables. Operators (OP) include plus, mul, min, div,

and sqrt (min can appear as monadic and as diadic

operator).

Thus, CMR offers the following services: CMR ¼

{set:VAR:VAL, set:VAR:OP:VAR, set:VAR:

VAR:OP:VAR, show:VAR, show:VAR:VAR,
show:txt:TEXT}.

The PFM are simple: the operator either indicates

that no result is possible, or that the computation was

completed.

ODM is concerned with simple properties of

numbers: is a number less than zero, or equal to zero

(isnegative:VAR,iszero:VAR). The tests are

applied to numbers that have been rendered on the

console following a show:… command. How the

operator spots the proper window where to find this

text and similar matters, is all hidden in the various

methods for self.

The following program describes the task of

producing solutions to the quadratic equation ax2 þ bx þ

c ¼ 0; for a ¼ 160; b ¼ 52:625 and c ¼ 21867:3; if

such solutions exist. The following formula is implicitly

used:

x1;2 ¼
2b ^

ffiffiffiffiffiffiffiffiffiffiffi

b2 2 4ac
p

2a
¼

mb^
ffiffiffiffiffiffi

det
p

a2

set:a:160;
set:b:52.615;
set:c:minus 1867.3;
set:a2:a:plus:a;
set:mb:min:b;
set:u:b:mul:b;
set:v:a:mul:c;
set:w:4;
set:v:v:mul:w;
set:det:u:min:v;
show:det;
-self.isnegative:det; #3;
principal.no;
!;
set:d:sqrt:det;
show:d;
-self.iszero:d; #4;
set:p:mb:div:a2;
show:p;
#6;
set:p1:mb:min:d;
set:p2:mb:plus:d;
set:p1:p1:div:a2;
set:p2:p2:div:a2;
show:p1:p2;
principal.done;
!;

Obviously, our second example doesn’t bring any great

surprises, because all primitives have already been dis-

cussed. Note however, that a number of nontrivial user

actions have been described in every relevant detail in a

manner which is open to formal reasoning.

J. Bergstra, P. Walters / Information and Software Technology 45 (2003) 681–689686



5. Intermezzo: finding auxiliary names

The operator program for solving the quadratic equation

can be easily generated by many human operators who had

some elementary training in mathematics. One may ask

whether any difficult steps are involved in producing such a

program, that defeat automatic program generation, and

indeed there is one major difficulty: in the program several

names for variables (registers) are introduced (e.g. mb and

det). These names need to be new in the sense that no

unwanted interference with other names take place. The

(possibly artificially intelligent) program author is con-

fronted with the so-called frame problem: what exactly is

the context where the names must be new.

In ordinary mathematics this is never considered a big

deal, one is simply asked to generate some new names and

this is considered successful if there are no obvious

collisions. A precise definition of the context where these

collisions must be avoided is never provided in an

elementary account of the use of auxiliary names.

In our example it could make sense to leave the task of

finding new names to the principal, who may be considered

an authority regarding the context of the operator activity.

After asking a new name (principal.provide:new-
name), the principal could demonstrate a piece of paper

with the next new name. However, an operator program

based on such a method, where the principal is used, in an

interactive way, as a generator of auxiliary new names that

will cause no collisions, is hard to write in PGLA.

Several solutions are possible (within the framework of

OPNA) but all of them are fairly complex, as in each case

the program needs to move significant information (invol-

ving the new names) from the principal to the console, while

dealing with boolean data only.

Most program notations provide features for defining

local names, where avoiding collision is dealt with

straightforwardly, usually using scopes. Similarly, it is

conceivable how OPNA could be extended to provide such a

facility without the programmer having to spell it out in

every detail, for example by adding an additional reactor to

that end. However, this would defy a key purpose of OPNA

and PGA, which is precisely to make explicit the details of

these and other features assuming no more than a handful of

well understood primitives.

6. OPNEc

The language PGLEc is related to PGLA by a series

of maps which define the meaning of a PGLEc program

as that of its PGLA image. The details of these maps are

not relevant to our current discussion (they can be found

in [1]).

There are some key differences between PGLA and

PGLEc: the control instruction #n has been removed and

two types of control instruction have been added. Firstly

##Ln (goto) signifies that a task’s description continues at

the first location in the program headed by the instruction Ln

(label catch instruction). The label instruction signifies a

place where a processing should continue, and signifies

nothing else (it does not tell the operator to ’do’ anything).

These features can be easily given a semantics by projecting

programs using labels and goto’s into PGLA programs.

Secondly, for any basic instruction a; ‘ þ (a){’ and

‘ 2 (a){’ are new control instructions designating the start

of a sequence of instructions that should be performed if a

succeeds, or fails, respectively. That sequence can be

terminated by one of the new instructions ‘} {’ and ‘}’. The

former signifies the end of the sequence of instructions and

the beginning of another sequence of instruction which

should be performed if the reverse happened to be the case

(with respect to a). In that situation the sequence of

instructions is terminated with the instruction ‘}’. Other than

the role described here, the instructions ‘} {’ and ‘}’ do not

lead to action. Again the meaning of these instructions can

be given in terms of a projection. Now it is easiest to use a

program notation with labels and goto’s as an intermediate

stage.

The purpose of these additions to the language is of

course to allow for more comprehensible program

descriptions.

PGLEc gives rise to the Operator Program Notation Ec:

OPNEc. In OPNEc the program presented in the Section 5

can be written as (we only show the altered part):

-self.isnegative:det{;
principal.no;
!;

};
set:d:sqrt:det;
show:d;
-self.iszero:d{;
set:p:mb:div:a2;
show:p;

}{;
set:p1:mb:min:d;
set:p2:mb:plus:d;
set:p1:p1:div:a2;
set:p2:p2:div:a2;
show:p1:p2;

};
principal.done;
!;

7. Example

In this section we will develop an operator program

which describes an operator process that occurs in day to

day life, and where the availability of such a program is, in

our opinion, useful. The program intrinsically involves

human action.

J. Bergstra, P. Walters / Information and Software Technology 45 (2003) 681–689 687



The example concerns double sided printing using a

desk-top printer such as a desk-jet or small laser printer, and

pertains to printers in which a page is turned once during the

printing process (or any odd number of ways, actually). This

happens to be the case for almost all low-end printing

systems. Most such systems do not have a built-in double

sided print facility.

The program to print a file double sided is as follows.

In this program the principal does not occur, and the

default focus is taken to be CMR. Methods starting with

menuSelect are taken to be commands to a computer

in a printdialog; methods starting with printer are

physical actions concerning the desktop printer.

menuSelect:pages:evenOnly;
menuSelect:printOrder:normal;
menuSelect:print;
printer:outputTray:extract:printed ˜

7

Pages::doNotRotate;
printer:open:container;
-self.isEven:numberOfPrintedPages{;
printer:container:extract:blank˜
Page:1;

};
printedPages:rotateInPlane:180;
printer:container:insert:printed˜
Pages::doNotRotate;
-self.isEven:numberOfPrintedPages{;
printer:container:insert:blank˜
Page:1;

};
printer:close:container;
menuSelect:pages:oddOnly;
menuSelect:printOrder:reverse;
menuSelect:print;
!;

In words: print the even pages in normal order (i.e.

starting with 2); extract them from the tray and insert them

on top into the blank page holder, rotating them within their

plane around 1808; add one blank page on top if the total

number of pages to be printed is odd; and print the odd pages

in reverse order (i.e. 1 last).

Although this process is simple, any deviation leads to

paper waste rather than conservation, which may be the

reason to print double sided. In our personal experience,

attempting to determine what should happen next by

reasoning through the printing process halfway through a

double-sided print job, has a fair chance of failing. This is

not unlike to the centipede who, when asked how on earth it

keeps track of all the legs while walking, in an attempt to

understand and describe the process, ends up in a horrible

mess. Sticking to this program mono-maniacally succeeds

(barring mechanical failure).

8. Conclusions and further research

OPNA is in a limited sense complete. This fact is

obtained as follows. For an OPNA program its external

behavior can be defined as the collection of sequences of

actions with focus principal or console that it can

generate. The external behavior abstracts from internal

(decision making) activity. The external behavior of an

OPNA program may be understood as the operator process

that it represents (that is, the process entails all possible

rather than one particular sequence of external events).

Now let an operator process P be presented by means of a

finite set of its traces. This involves the severe restriction

that the operator process can unfold in finitely many ways

only, each of them terminating after finitely many steps.

Then one can find decision methods ODM for the operator,

consisting of a set d1,…,dn of decision methods and an

operator program using the methods occurring in the given

trace sets with these operator decision methods occurring in

its tests such that the program has the required trace

collection. The proof is elementary. It gives no clue at all

regarding which observations underly the formal decision

methods that have been introduced. It may require a

significant amount of empirical work to find out, in a

realistic case, which observations were used by the operator

for taking control decisions.

We have defined a notion of program which is not a

computer program but rather a detailed description of

actions performed and decisions taken by a human operator

performing a task to achieve some goal.

We have also offered a model of an operator in their

context which we claim to be very simple yet powerful,

allowing one to model a substantial range of operator tasks;

we have not substantiated this claim, offering but a few

examples.

In these examples we have shown that this approach

allows for a detailed and complete description of decisions,

actions and communications between operators and their

environment. The level of detail is in principle sufficient to

model tasks such as can be produced from feature based

competency modeling ([10]).

Research on program notations related to PGLA

continues. Some aspects are specifically aimed at computer

programs, but others are meaningful in a wider range of

programs, such as the one we presented here.

References

[1] J.A. Bergstra, M.E. Loots, Program algebra for sequential code,

Journal of Logic and Algebraic Programming 51 (2) (2002)

125–156.

7 The symbol ‘ ˜ ’ is used to signify a line-break. That symbol, and the

immediately following line break are part of this presentation but are not

considered to be part of the program or of the language OPNA.

J. Bergstra, P. Walters / Information and Software Technology 45 (2003) 681–689688



[2] J.A. Bergstra, A. Ponse, Combining programs and state machines,

Journal of Logic and Algebraic Programming 51 (2) (2002) 175–192.

[3] S.T. Card, T.P. Moran, A. Newell, The Psychology of Human–

Computer Interaction, Lawrence Erlbaum Associates, London, 1983.

[4] B.C. Chiu, G.I. Webb, Using decision trees for agent modeling:

Improving prediction performance, User Modeling and User Adapted

Interaction 8 (1–2) (1998) 131–152.

[5] I. Jacobson, The use-case construct in object-oriented software

engineering, Scenario-Based Design: Envisioning Work and Tech-

nology in System Development, Wiley, 1995, pp. 306–309.

[6] R.H. Kemp, S.P. Smith, Domain and task representation for tutorial

process models, International Journal of Human–Computer Studies

41 (1994) 363–383.

[7] C.A. Middelburg (Ed.), Special Issue: Program Algebra, Journal of

Logic and Algebraic Programming, 51(2) 2002

[8] J. Whiteside, J. Bennett, K. Holtzblatt, Usability engineering: our

experience and evolution, in: M. Helander (Ed.), Handbook of

Human–Computer Interaction, 1988, pp. 791–817.

[9] D. Wixon, K. Holtzblatt, S. Knox, Contextual design: an emergent

view of system design, in: J. Carrasco-Chew, J. Whiteside (Eds.),

Human Factors in Computing Systems CHI’0 Conference Proceed-

ings, ACM, New-York, 1990, pp. 329–336.

[10] G.I. Webb, M. Kuzmycz, Feature based modelling: a methodology for

producing coherent, consistent, dynamically changing models of

agents’ competencies, User Modeling and User Adapted Interaction 5

(1996) 117–150.

J. Bergstra, P. Walters / Information and Software Technology 45 (2003) 681–689 689


	Operator programs and operator processes
	Introduction
	Formalizing operator activity
	Overview

	Terminology and background
	Operator tasks, skills, process and process description
	GOMS

	OPNA: operator program notation A
	PGA
	FMN: focus-method notation
	PGLA
	OPNA
	Why PGLA?

	Examples
	A simple task: logging in
	A pocket calculator

	Intermezzo: finding auxiliary names
	OPNEc
	Example
	Conclusions and further research
	References


