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Abstract

We propose a re1nement of branching bisimulation equivalence that we call orthogonal bisim-
ulation equivalence. Typically, internal activity (the performance of �-steps) may be compressed,
but not completely discarded. Hence, a process with �-steps cannot be equivalent to one without
�-steps. Also, we present a modal characterization of orthogonal bisimulation equivalence. This
equivalence is a congruence for ACP extended with abstraction and priority operators. We pro-
vide a complete axiomatization, and describe some expressiveness results. Finally, we present
the veri1cation of a PAR protocol that is speci1ed with use of priorities.
c© 2003 Published by Elsevier B.V.
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1. Introduction

In concurrency theory, Milner’s observation equivalence as discussed in the setting of
Calculus of Communicating Systems (CCS [24], cf. [26,27]) is a standard example of
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a branching time behavioral equivalence that deals with abstraction. Here ‘branching
time’ refers to the fact that the branching structure of processes is taken into account,
and ‘abstraction’ refers to a mechanism for hiding actions that are assumed not to be
observable or interesting for some other reason. In the process algebraic approaches
based on Algebra of Communicating Processes (ACP [8], for an overview see [5,15]),
observation equivalence is called �-bisimulation equivalence [9], and abstraction boils
down to renaming actions into the silent step (or action) �, the occurrences of which
then may be eliminated according to certain axioms. As such, abstraction plays a
central role in process algebraic veri1cations. Furthermore, adding abstraction and 1nite
guarded recursion to ACP yields universal expressive power: each recursive process
graph can be expressed up to �-bisimilarity (see [2]).
A popular and relatively new semantics that deals with abstraction, proposed by van

Glabbeek and Weijland [21], is branching bisimulation equivalence (see also [22]).
Branching bisimulation equivalence is a re1nement of semantics such as observation
equivalence, delay bisimulation equivalence [25] and �-bisimulation equivalence [3],
and can be considered an improvement of these because it fully respects the branching
structure of processes. In the words of [22]: “in two [branching] bisimilar processes
every computation [sequence of steps] in the one process corresponds to a computation
in the other, in such a way that all intermediate states of these computations correspond
as well, due to the [branching] bisimulation relation.” We recall that in branching
bisimilarity, the axiom

x · � = x

(or, a:�:x= a:x in a setting with action pre1xing a: , such as CCS [24]) is claimed to be
at the very heart of abstraction (see [22]). This axiom expresses that the observational
contents of the silent step � in a sequential context x� (we usually omit the symbol · in
terms) is totally void. Branching bisimulation equivalence is the behavioral equivalence
that characterizes this notion of ‘observational contents’ in the setting of process algebra
(see [19,22]; we return to this point in Section 11).
In this paper we propose a re1nement of branching bisimulation equivalence, called

orthogonal bisimulation equivalence, which has the following two main characteristics:
• Internal activity, that is, the performance of �-steps, may be compressed, but not
completely discarded.

• Operators that act on the local structure of a process, such as the priority operator,
are compatible with this semantics and do not require any special treatment of �.

Our bisimulation equivalence is called “orthogonal” because it establishes a dichotomy
between concrete processes [4,20], that is, processes in which no internal actions occur,
and those that contain �-steps: a process without �-steps cannot be equivalent to one
with �-steps. As a consequence, questions about the relation between concrete processes
and those that contain �-steps, for instance about veri1cation or expressiveness issues,
should be reconsidered. Below we elaborate on the two characteristics mentioned.
Let compression stand for the reduction of 1nitary internal activity (characterized by

�-steps) to a single �-step. Compression is valid in orthogonal bisimilarity, and after
compression, the presence of a �-step is as decisive as that of any observable action
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and indicates the presence of some internal activity. For example,

a(�+ ��)

is orthogonally bisimilar to its compressed form a�, and both represent the action a
followed by some internal activity. Furthermore, neither of these two is orthogonally
bisimilar to a. Hence, the axiom x= x� is not sound in orthogonal bisimulation equiv-
alence (its weakened version x��= x� is sound). Typically, in orthogonal bisimilarity
one may abstract from the structure of 1nitary internal activity, but not from its pre-
sence. This is a major diMerence with branching bisimulation equivalence and the
coarser (larger, more identifying) semantics mentioned above.
The priority operator � was introduced in [1]. It can for example be used to give

priority to interrupts or internal behavior in a process algebra speci1cation of some
protocol, or to give lowest priority to the execution of time-outs or error messages.
Essentially, the priority operator is based on a (1xed, partial) ordering on actions, and
prevents an action (and its subsequent behavior) to be executed in the case that there
is an alternative with a higher priority. Right at its introduction, it was recognized that
the priority operator � and abstraction are diNcult to combine, and a modular approach
was advocated for using both in process algebra: 1rst eliminate all occurrences of the
priority operator, and then apply abstraction to arrive at a concise characterization
of the external behavior. That the priority operator is not fully compatible with any
known semantics that deals with abstraction, 3 is an immediate consequence of the
axiom x�= x. The main cause for this problem is that on the term level � can hide
alternatives, so that x�y can be diMerent from xy in the scope of the priority operator.
For example, assume for actions a; b; c the priority ordering a¡{b; c}. Then the process
term �(a ‖ b�c), where a ‖ b�c represents a in parallel with b followed by � followed
by c, de1nes a behavior in which the action a may be executed before c, a situation
that cannot occur in �(a ‖ bc). This shows that without special measures, the priority
operator is not compatible with the axiom x�= x. However, orthogonal bisimilarity is
a congruence for the priority operator (even in the case that � has a priority).
We now consider the case of divergence, that is, the occurrence of an in1nite �-path.

In branching bisimulation equivalence, a �-loop may be discarded in case there is an
alternative available, which can be explained as a feature: often �-loops result from
abstraction of the occurrence and recovery of an undesirable event, for example the
corruption and retransmission of a data-package in a communication protocol. Discar-
ding such a loop corresponds to the assumption that it will not be chosen in1nitely often
(and, following the example, with the assumption that the occurrence and recovery of
an undesirable event may be repeated consecutively only a 1nite number of times).
In process algebra, this assumption is called fairness and it often plays an important
role in veri1cations. Whereas in branching bisimilarity �-loops can always be discarded,
this is not the case in orthogonal bisimilarity. According to the 1rst characteristic above,

3 In the literature, several solutions for this problem have been proposed, but none of these are totally
satisfactory and generally accepted; we return to this issue in our conclusions in Section 11.
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a �-loop may be discarded only if one of its exits starts with an initial �-step. We also
distinguish a second, more restricted variant of orthogonal bisimulation equivalence that
preserves divergence in all circumstances, divergence sensitive orthogonal bisimilarity
(reminiscent of branching bisimulation equivalence with explicit divergence as de-
1ned in [22]).
In the above we informally introduced orthogonal bisimulation equivalence. In the

remainder of this paper we establish its de1nition (Section 2) and provide a modal
characterization (Section 3). Furthermore, we de1ne the system ACPorth� in Section 4,
and we prove some completeness results in Section 5. Then in Section 6 we
consider the priority operator, and argue that it is compatible with orthogonal bisimi-
larity. In Section 7 we introduce some forms of iteration for the description of in1nite
processes, and we briePy discuss fairness in the present setting. Section 8 is on expres-
siveness modulo orthogonal bisimilarity. Section 9 contains an example on expressive-
ness. Finally, in Section 10 we describe as an example the speci1cation and veri1cation
of a PAR protocol [32] in orthogonal bisimulation equivalence. The paper ends with
some remarks and conclusions in Section 11.

Note. In earlier work [34,35], orthogonal bisimilarity was de1ned using a constant �
instead of �. We now consider this use of the symbol � obsolete.

2. De�nition of the equivalence

We introduce transition systems and some auxiliary notions, and after that orthogonal
bisimulation equivalence. We designate its place in the lattice of process equivalences
by relating it to strong bisimulation equivalence and branching bisimulation equiva-
lence. Finally, we de1ne a variant that is sensitive with respect to diverging silent (�)
behavior.
We start with the standard de1nition of a (labelled) transition system over a set L

of labels as a triple (S; L; T ), where S is a nonempty set of states and T ⊆ S × L× S
is a transition relation. A transition (s; a; s′) is usually written as s a→ s′; state s in this
transition is referred to as its source and state s′ as its target, or as an (a-)successor
of s. We write s a→ if s has an outgoing a-transition.
A transition system with termination is a transition system together with a predicate√
on its states; a state s with

√
s is called a termination state. A transition system

with termination has pure termination, or shortly, is pure, if it has a single termination
state that has no outgoing transitions. In this case we write

√
to denote the single

termination state.
The special label � represents a silent action: the execution of � is not observable.

The silent action is used for the modelling of internal communications. For a transition
system with � in its set of labels, and for a state s, we de1ne the set of 1nite �-paths
starting in s as the set �-paths(s) that consists of all sequences s0 : : : sn of states with
s0 = s, n¿0, and si

�→ si+1 for all i¡n. For a label set L, that may or may not contain
�, we write L� for the set L ∪ {�}.
We are now ready to de1ne orthogonal bisimulation equivalence of states.
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De�nition 1. Consider a transition system (S; L�; T ) with termination. A binary relation
R on S is an orthogonal bisimulation, if it is symmetric, and whenever sRr, then
(1) if

√
s, then

√
r;

(2) if s a→ s′ for some s′ and a �= �, then r a→ r′ for some r′ with s′Rr′; and
(3) if s �→ s′ for some s′, then r �→, and there is a path r0 : : : rn ∈ �-paths(r) with n¿0

such that s′Rrn and sRri for all i¡n.
States s and r are orthogonally bisimilar, notation s↔o r, if they are related by some
orthogonal bisimulation.

For example, the states in the transition system below are orthogonally bisimilar if,
and only if, a= �.

An important observation is that when two states are orthogonally bisimilar and in
one a certain action is enabled, then the other can perform this action as well, and this
is true for all actions including �.
We de1ned bisimilarity of states in a single transition system. This can easily be

extended to bisimilarity of states in diMerent systems by 1rst taking the disjoint union
of the systems. The disjoint union of two transition systems is obtained by taking
the disjoint union of the states, the union of the labels and the corresponding disjoint
union of the transition and termination relations. Finally, if the two systems have pure
termination, then we identify their termination states.
Below we prove that orthogonal bisimilarity is indeed an equivalence relation. For

this proof we use the following lemma, that says that if two states are orthogonally
bisimilar, and one has a �-path of length n, then this path is matched by a �-path in
the other state that consists of n consecutive �-paths, where each of its intermediate
states can be related to an appropriate state in the original path:

Lemma 2. If R is an orthogonal bisimulation with sRr, and there is a path s0 : : : sn
in �-paths(s), for some n¿0, then there is, for every i6n, an mi¿0, such that r has
a �-path with r00 = r and mn =0 and
(1) for all i¡n, r0i : : : rmi

i ∈ �-paths(r0i ) and rmi
i = r0i+1,

(2) for all i6n, if j¡mi or j=0, then r j
i Rsi.

Proof. Straightforward by induction on n.

Theorem 3. Orthogonal bisimilarity is an equivalence relation.

Proof. Consider a transition system with termination. Orthogonal bisimilarity is easily
shown to be rePexive and symmetric. We show that it is transitive: assuming that s1R′s2
and s2R′′s3 for orthogonal bisimulations R′ and R′′, we show that the symmetric relation

R = {(s; r); (r; s) | exists t such that sR′tR′′r}
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is an orthogonal bisimulation, and thereby that s1↔o s3. Take any pair (s; r) from R.
By de1nition of R, there is a state t such that either sR′t and tR′′r, or rR′t and tR′′s.
Assume the former; the latter case is symmetric.
First, observe that if s is a termination state then also t and thus r are termination

states. Next, if s can do an a-step with a �= � then it is easy to verify that r matches
this transition appropriately. So, assume that s �→ s′. It is straightforward to verify that
r �→. Since sR′t, the state t matches the �-step to s′ in zero or more transitions: for
some n¿0, there is a sequence t0 : : : tn in �-paths(t) such that sR′ti for all i¡n and
s′R′tn. The proof is 1nished using Lemma 2.

2.1. Strong bisimulation

We compare orthogonal bisimulation equivalence with strong bisimulation equiv-
alence [30] that is de1ned as follows. Consider a transition system (S; L; T ) with
termination. A binary relation R on S is a strong bisimulation, if it is symmetric,
and whenever sRr, then
(1) if

√
s, then

√
r;

(2) if s a→ s′ for some a and s′, then r a→ r′ for some r′ with s′Rr′.
States s and r are strongly bisimilar, notation s↔ r, if they are related by some strong
bisimulation.
Orthogonal bisimilarity is coarser (or larger) than strong bisimilarity; any strong

bisimulation is also an orthogonal bisimulation. We show that for so-called compact
states strong bisimilarity and orthogonal bisimilarity coincide. A �-transition is inert, if
its source and target are orthogonally bisimilar. A state is compact, if it has no inert
outgoing �-transitions, and all its successors are compact.

Lemma 4. If s and r are compact, then s↔o r implies s↔ r.

Proof. We show that the relation

R = {(s; t) | s↔o r and s; r compact}

is a strong bisimulation. Clearly, it is symmetric. Take states s and r with sRr. By
de1nition of R there exists an orthogonal bisimulation R′ that relates s and r. We
distinguish the following cases. First, if

√
s then it must be that

√
r, because R′ is an

orthogonal bisimulation. Second, if s can do an a-step for some action a �= �, then this
step is matched directly by an a-step in r, also because R′ is an orthogonal bisimulation.
Finally, if s has a �-step to s′, then we know that there is a path r0 : : : rn in �-paths(r)
such that sR′ri for i¡n and s′R′rn. It suNces to show that it must be that n=1. If
n=0, then s′↔o r0. Since s↔o r0 and orthogonal bisimilarity is an equivalence rela-
tion, we 1nd that s and its successor s′ are orthogonally bisimilar, which contradicts
the assumption that s is compact. If n¿1, then r and its successor r1 are orthogo-
nally bisimilar, which contradicts the assumption that r is compact. This 1nishes the
proof.
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2.2. Branching bisimulation

We now turn to branching bisimilarity [22]. This equivalence is the 1nest (smallest,
least identifying) of the process equivalences described in [17]. Orthogonal bisimilarity
is 1ner than branching bisimilarity, and hence 1ner than the equivalences in [17].
Let ⇒ be the rePexive transitive closure of �→. Consider a transition system (S; L�; T )

with termination. A binary relation R on S is a branching bisimulation, if it is sym-
metric, and whenever sRr, then
(1) if

√
s, then there is an r′ with r⇒ r′ and

√
r′;

(2) if s a→ s′ for some a and s′, then either a= � and s′Rr, or r⇒ r′′ and r′′ a→ r′ for
some r′′; r′ with sRr′′ and s′Rr′.

States s and r are branching bisimilar, notation s↔b r, if they are related by some
branching bisimulation.
It is straightforward to prove that any orthogonal bisimulation is a branching bisim-

ulation.

2.3. Rootedness

Orthogonal bisimilarity is not a congruence with respect to the operation for alterna-
tive composition in process algebra, as can be seen from the following basic example
(see Section 4 for the semantics of process terms): the terms � and �� are orthogonally
bisimilar, while the terms a+ � and a+ �� with a �= � are not. As for branching bisimi-
larity, this problem can be overcome by imposing the root condition de1ned below. It
turns out that rooted orthogonal bisimilarity is a congruence with respect to the process
algebraic operators (we come back to this point in Sections 4 and 6).
An orthogonal (branching) bisimulation R is rooted between states s and r, if sRr

and, for all a ∈ L�,
(1) if s a→ s′ for some s′, then r a→ r′ for some r′ with s′Rr′;
(2) if r a→ r′ for some r′, then s a→ s′ for some s′ with s′Rr′.
States s and r are rooted orthogonally (branching) bisimilar, notation s↔ro r (s↔rb r),
if there is an orthogonal (branching) bisimulation that is rooted between s and r.
Using Theorem 3 it is straightforward to verify that rooted orthogonal bisimilarity

is an equivalence relation.

Proposition 5. ↔⊆↔o ⊆↔b and ↔⊆↔ro ⊆↔rb, for any transition system with ter-
mination.

For example, the states s0 and s1 in the transition system below are rooted ortho-
gonally bisimilar to each other but not to s2, while s1 and s2 are rooted branching
bisimilar.

The following lemma is an easy corollary of Lemma 4:
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Lemma 6. If all successors of s; r are compact, then s↔ro r implies s↔ r.

2.4. Divergence

A state s has �-divergence if there is an in1nite �-path starting in s, that is, if there
are states si with s= s0 and si

�→ si+1 for all i∈N. Orthogonal bisimilarity does not
always distinguish between states that have �-divergence and states that have not. For
example, the states s0 and s1 in the transition system below are (rooted) orthogonally
bisimilar, while s0 has �-divergence and s1 has not.

However, in1nite �-traces do not always collapse under (rooted) orthogonal bisimi-
larity, an example being

where s0 �↔o s1 and s0 �↔o s2. This implies that �-divergence is a context-dependent
phenomenon, and that from a semantic point of view, orthogonal bisimilarity is not
optimal. For this reason we de1ne a noncollapsing version for which �-divergence is
an invariant: an orthogonal bisimulation R is divergence sensitive, if whenever sRr and
s has �-divergence, then r has �-divergence. States s and r are divergence sensitive
orthogonally bisimilar, notation s↔dso r, if they are related by a divergence sensitive
orthogonal bisimulation. States s and r are rooted divergence sensitive orthogonally
bisimilar, notation s↔rdso r, if they are related by a divergence sensitive orthogonal
bisimulation that is rooted between s and r.
Of course, divergence sensitive orthogonal bisimilarity is strictly 1ner than orthogonal

bisimilarity as such, and the same is true for the rooted versions.

3. Modal characterization

We present a modal logic that characterizes orthogonal bisimulation equivalence:
states in 1nitely branching transition systems are orthogonally bisimilar exactly if they
satisfy the same formulas. This logic can be seen as a variation of Hennessey–Milner
Logic [23] which characterizes strong bisimulation equivalence for 1nitely branching
processes. See [31,13] for further details concerning modal logics and their relation
to concrete processes; see [29] for a modal characterization of branching bisimulation
equivalence.
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Fig. 1. A transition system.

The primitives of the logic are as follows: transition labels act as existential modal
operators, and it has negation, conjunction, and an until operator. Furthermore, there
is a termination predicate and a �-enabledness predicate.
Given a 1xed set L of labels not containing �, the set L of formulas � is de1ned

by the following grammar:

� ::=
√ | � | a� | ¬� | � ∧ � | �U�;

where a ranges over L. We abbreviate the formula �∧¬� as ⊥. Furthermore, we write
� for ¬⊥, a for a�, and F� for �U�.
Consider a transition system over L� with termination. Truth of a formula in a state

s is de1ned inductively by
• s |=√

, if
√
s,

• s |= �, if s �→,
• s |= a�, if s a→ s′ and s′ |=� for some s′,
• s |=¬�, if not s |=�,
• s |=� ∧  , if s |=� and s |=  , and
• s |=�U  , if, for some n¿0, there is a s0 : : : sn ∈ �-paths(s) such that si |=� for all

i¡n and sn |=  .
States s and r are L-equivalent, notation s ∼ r, if, for all formulas � in L; s |=� if
and only if r |=�.
Consider for example the transition system in Fig. 1. Every state in this picture

satis1es the formula (Fb)U a. Also, observe that states s0 and s1 can reach the same
states by �-steps, namely s2 and s3. But while s1 satis1es (¬b)U a, this is not true for
s0. Observe that it is not possible to 1nd a distinguishing formula for s0 and s1 using
the until operator U only in its restricted form as the future operator F.

Theorem 7. Consider a transition system over L� with termination. For all states s
and r, s↔o r implies s ∼ r.

Proof. By induction on the structure of formulas (using Lemma 2).

In the other direction, the characterization is less general: we have to restrict to tran-
sition systems that are 1nitely branching and �-path-image-1nite. A transition system is
1nitely branching in label a, if all states have 1nitely many a-successors. A transition
system is �-path-image-1nite if for all states s there are 1nitely many states s′ with a
path s : : : s′ ∈ �-paths(s).
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We use the following lemma that is easy to prove:

Lemma 8. If R is an orthogonal bisimulation with sRr and s �→ s′, then there is
a path r0 : : : rn ∈ �-paths(r) with n¿0 such that sRri for all i¡n and s′Rrn, and ri �= rj
for all distinct i; j6n.

Theorem 9. Consider a transition system over L� with termination that is �-path-
image-<nite and <nitely branching in every label. For all states s and r, s ∼ r implies
s↔o r.

Proof. We show that ∼ is an orthogonal bisimulation. Take any s; r with s∼ r. We
1nd directly that

√
s if and only if

√
r. There are two cases.

First, consider the case where state s can do a concrete action step: let s a→ s′ with
a �= �. Since s |= a�, also r |= a�. So, using that r is 1nitely branching in a, for some
n¿0, r has a-successors r0; : : : ; rn. We have to show that, for some i6n, s′∼ri. Sup-
pose that, for all i6n, s′ �∼ ri. Then there is, for every i6n, a formula �i, such that
s′ |=�i and ri �|=�i. Let �= a(�0∧· · ·∧�n). We see that s |=�, whereas r �|=�, which
contradicts the assumption s ∼ r. So r a→ r′ for some r′ with s′ ∼ r′, which was to be
demonstrated.
Second, we consider the case where state s can do a silent step: let s �→ s′ for some

state s′. If s′∼ s then s′ ∼ r since ∼ is transitive, and r �→, since s |= � and hence r |= �.
So suppose that s′ �∼ s. We must show that r can match this �-step to s′ appropriately.
Suppose, to the contrary, that it cannot (†), that is, that there is no r0 : : : rn ∈ �-paths(r)
with n¿0 and s ∼ ri, for all i¡n, and s′∼rn and, for all i; j6n, if i �= j then ri �= rj.
This last condition is justi1ed by Lemma 8.

Let C ⊆ �-paths(r) be the set of sequences r0 : : : rn such that

n¿ 0; ∀i 6 n(s ∼ ri); and ∀i; j 6 n(ri �= rj ∨ i = j):

The set C is 1nite because r is �-path-image 1nite. It is nonempty because r ∈ C. By
assumption (†), we see that, for all r : : : r′ ∈ C, there is no r′′ such that r′ �→ r′′ and
s′ ∼ r′′.
We de1ne the set C′ of extensions of paths in C as follows:

C′ = {r : : : r′r′′ | r : : : r′ ∈ C; r �→ r′′; r′′ �∼ s}:
The set C′ is 1nite because C is 1nite and the transition system is 1nitely branching
in �.
Let � be a formula such that s′ |= � and s �|= �. Such a formula � exists, because

s �∼ s′. It is straightforward to check that C′ must be nonempty, since if it were empty
then r �|=F�, whereas s |=F�.
So write C′ = {�0; : : : ; �k} for some k¿0. For all �i = r : : : ri ∈C′ we have that ri �∼ s

and ri �∼ s′, and hence that there are formulas �i;  i such that s |=�i, s′ |=  i, ri �|=�i

and ri �|=  i. Let �=�0 ∧ · · · ∧ �k and  =  0 ∧ · · · ∧  k . Then s |=�, s′ |=  and for
all i6k, ri �|=� and ri �|=  .
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We see directly that s |=�U ( ∧�). We show that r �|=�U ( ∧�), which contradicts
the assumption that s ∼ r. Suppose that r |=�U ( ∧ �), that is, that there is a �-path
r0 : : : rn with r= r0 and n¿0, such that rn |=  ∧ � and ri |=� for all i¡n (‡). We
make the following observations:
• n¿0, because r �|= �.
• ri ∼ s for all i¡n. Suppose not, then assume that j is the smallest j¡n with rj �∼ s.
Then r0 : : : rj ∈ C′ and so rj �|=�. Contradiction (‡).

• rn �∼ s, since s �|= �.
From these observations, it follows that r0 : : : rn ∈C′. Hence rn �|=  , which yields the
required contradiction.

We end this section with the remark that a modal logic characterizing divergence
sensitive orthogonal bisimulation equivalence is obtained easily by extending the logic
with a predicate that is satis1ed by a state if and only if it has �-divergence. The proofs
for the corresponding counterparts of Theorems 7 and 9 are trivial extensions of the
proofs of these.

4. Process algebra

We use process algebra because it provides an elegant notation for transition sys-
tems, and allows for axiomatic reasoning. We begin by presenting the axiom system
without abstraction. The axiom system ACP(A; ") [8] consists of the axioms in Table 1.
The signature is determined by a 1nite set of constants A, the elements of which are
called actions, and by a binary partial, commutative and associative function " on A.
The function " de1nes synchronous communication between actions. We write a; b for
arbitrary actions.
The signature has a constant # �∈A (deadlock). Furthermore, the signature has binary

operators + (alternative composition), · (sequential composition), ‖ (parallel composi-
tion, merge), ‖ (left merge), and | (communication merge). It has a unary renaming
operator @H (encapsulation) for every set H ⊆A. We write A# to denote the set A∪{#}.
We use in1x notation for all binary operators, and adopt the binding convention that
+ binds weakest and · binds strongest. We suppress ·, writing xy for x · y.
Subsystems of ACP(A; ") are BPA(A) (basic process algebra), which consists of ax-

ioms A1–A5, and has sequential and alternative composition as operators, and BPA#(A),
the extension of BPA(A) with the deadlock process, axiomatized by axioms A6
and A7. If E is any of these axiom systems, then we write CT(E) for its set of
closed terms.
We give an operational semantics for the presented axiom systems; we de1ne tran-

sition systems with pure termination where closed terms are states: let E be one of the
presented axioms systems, parametrized with action set A, then TS(E) is the transition
system

(CT(E) ∪ {√}; A; T );
where

√
is a fresh symbol and the transition relation T is generated by the transition

rules in Table 3. The transition rules are such that the termination state
√

has no
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Table 1
The axioms of ACP(A; "); a; b∈A# and H ⊆ A

(A1) x + y=y + x
(A2) x + (y + z)= (x + y) + z
(A3) x + x= x
(A4) (x + y)z= xz + yz
(A5) (xy)z= x(yz)
(A6) x + #= x
(A7) #x= #

(CM1) x‖y=(x ‖ y + y ‖ x) + x | y
(CM2) a ‖ x= ax
(CM3) ax ‖ y= a(x‖y)
(CM4) (x + y) ‖ z= x ‖ z + y ‖ z
(CM5) ax | b=(a | b)x
(CM6) a | bx=(a | b)x
(CM7) ax | by=(a | b)(x ‖y)
(CM8) (x + y) | z= x | z + y | z
(CM9) x | (y + z)= x | y + x | z

(CF1) a | b= "(a; b) if "(a; b) de1ned
(CF2) a | b= # otherwise

(D1) @H (a)= a if a �∈H
(D2) @H (a)= # if a∈H
(D3) @H (x + y)= @H (x) + @H (y)
(D4) @H (xy)= @H (x)@H (y)

outgoing transitions; hence, the transition system is pure (has pure termination). Strong
bisimilarity is a congruence with respect to all operators de1ned. All theories presented
so far are sound and complete with respect to strong bisimilarity. These are standard
results; see, for example, [15].
We proceed now to extend these axiom systems with the constant � for the silent

step and with axioms characterizing orthogonal bisimulation equivalence. The signature
for the axiom system ACPorth� (A; ") is obtained by extending the signature of ACP(A; ")
with the fresh constant � and with a unary renaming operator �I for every set I ⊆A.
Let A� =A∪{�} and A#� =A# ∪{�}. Its axioms are listed in Tables 1 and 2, and
we now let a and b range over A#� in the axioms of Table 1. The conditions in the
compression axioms O1–O3 are of the form �x= ��x. Such a condition is true for x
if and only if the process x does not equal deadlock and all initial actions of x equal
�. In the operational semantics, we take A� as the set of transition labels; the silent
action is simply executed like the other actions (see Table 3).
The subsystems BPAorth

� (A) and BPAorth
#� (A) are the extensions of BPA(A) and

BPA#(A) with � and the compression axioms O1–O3. It is straightforward to ver-
ify that the axioms in Table 2 are sound with respect to rooted orthogonal bisimilarity;
the proofs can be found in Section A.1.
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Table 2
Compression axioms; a∈A#� and I ⊆A

(O1) x��= x�
(O2) x�(y + z)= x(y + z) if �y= ��y; �z= ��z
(O3) x(�(y + z) + z)= x(y + z) if �y= ��y

(TI1) �I (a)= a if a �∈ I
(TI2) �I (a)= � if a ∈ I
(TI3) �I (x + y)= �I (x) + �I (y)
(TI4) �I (xy)= �I (x)�I (y)

Table 3
Transition rules

a a→√ x a→√

xy a→y

x a→ x′

xy a→ x′y

x a→√

x + y a→√
y + x a→√

x a→ x′

x + y a→ x′ y + x a→ x′
x a→√

a �∈H

@H (x)
a→√

x a→y a �∈H

@H (x)
a→ @H (y)

x a→√

x ‖ y a→y x ‖y a→y y ‖ x a→y

x a→ x′

x ‖ y a→ x′ ‖y x ‖y a→ x′ ‖y y ‖ x a→y ‖ x′

x a→√
y b→√

"(a; b)= c

x ‖y c→√
x | y c→√

x a→ x′ y b→y′ "(a; b)= c

x ‖y c→ x′ ‖y′ x | y c→ x′ ‖y′

x a→ x′ y b→√
"(a; b)= c

x ‖y c→ x′ x | y c→ x′ y ‖ x c→ x′ y | x c→ x′

x a→√
a �∈ I

�I (x)
a→√

x a→√
a ∈ I

�I (x)
�→√

x a→y a �∈ I

�I (x)
a→ �I (y)

x a→y a ∈ I

�I (x)
�→ �I (y)

Theorem 10. Rooted orthogonal bisimilarity is a congruence with respect to all
operators of ACPorth� (A; ").

Proof. See the appendix (Section A.2).

We end this section with two separate remarks.
First, observe that a closed BPAorth

� (A) term t that is built from �’s only, that is,
a= � for all subterms a∈A� of t, is derivably equal to exactly one of �, �� and ��+ �.
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Table 4
Branching bisimulation axioms

(B1) x�= x
(B2) x(�(y + z) + z)= x(y + z)

This proposition can be proved straightforwardly by induction on the structure of terms;
for example, we derive using axioms A3 and O3:

�(��+ �) = �(�(�+ �) + �) = �(�+ �) = ��:

Second, rooted branching bisimilarity is axiomatized by axioms B1 and B2, see Table 4.
In Section 2, we have seen that rooted branching bisimilarity is a coarser equivalence
than rooted orthogonal bisimilarity. This is rePected in the strength of the axioms: it
is straightforward to show that

B1 + B2 � O1 + O2 + O3 and B1 + O3 � B2:

5. Completeness

We prove completeness of the axiom system BPAorth
#� (A), that is, we prove that any

two rooted orthogonally bisimilar closed terms are derivably equal. The proof is based
on Lemma 6 and the completeness of BPA#(A) with respect to strong bisimulation:
we show that terms are derivably equal to terms with only compact successors, and
for these terms strong bisimilarity coincides with rooted orthogonal bisimilarity. The
completeness of BPAorth

� (A) (without deadlock) can be proved similarly; this proof is
omitted. We state that BPAorth

#� (A) is a conservative extension of BPAorth
� (A).

The completeness of ACPorth� (A; ") follows as an easy corollary from the complete-
ness of BPAorth

#� (A), since the operations for parallelism can easily be eliminated from
terms: every closed ACPorth� (A; ") term is derivably equal to a closed BPAorth

#� (A) term.
This elimination result is standard for ACP, and carries over to its orthogonal variant
directly, as the special status of � as an action does not interfere with the elimination.
We state that ACPorth� (A; ") is a conservative extension of BPAorth

#� (A).
In the completeness proof we assume that terms are written as basic terms, that are

de1ned inductively as follows.

De�nition 11. Let A be the set of action symbols. Then:
(1) The elements of A#� are basic terms.
(2) If a∈A�, and t is a basic term, then a · t is a basic term.
(3) If t and u are basic terms, then t + u is a basic term.

We use the notation
∑

i ti to describe an alternative composition of processes ti,
where the parameter i ranges over some 1nite set of indices. (Recall that alternative
composition is commutative and associative.) We use the convention that

∑
i∈∅ ti = #.
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Every basic term can, modulo axioms A1, A2 and A6, be written as∑
i

aiti +
∑
j

aj;

where the ti are basic terms and ai; aj ∈A�.

Lemma 12. Every closed BPAorth
#� (A) term is derivably equal to a basic term.

Proof. Standard and thus omitted.

Lemma 13. If t=
∑

i∈I �ti for some nonempty <nite set I , then �t= ��t.

Proof. Using induction on |I | and axioms O1 and O2.

Lemma 14. If t=
∑

i∈I �ti + t′ for some nonempty <nite index set I , with ti compact
and t↔o ti for all i in I , then t= �ti + t′ for any i in I .

Proof. Take any i and j from I . Since orthogonal bisimilarity is an equivalence, we
have ti↔o tj. Since ti; tj are compact, we have by Lemma 4 that ti↔ tj. By the com-
pleteness of BPA# with respect to strong bisimilarity we get ti = tj. The required identity
follows by axiom A3.

Lemma 15. Every closed BPAorth
#� (A) term is derivably equal to a basic term that has

only compact successors.

Proof. Take any closed term t. By Lemma 12 we may assume that t is a basic term.
We apply induction on the structure of t. If t≡#, then it has no successors. If t ∈A�,
then its only successor is

√
, which is compact. If t≡ t′+t′′, then the proof is immediate

using the induction hypothesis.

So assume that t≡ at′. We have by induction hypothesis that t′ = u for some basic
term u with compact successors. The term u has a compact part and an inert part; the
term u is, modulo A1, A2 and A6 of the form

∑
i∈I �ui + uc, where

uc =
∑
j∈J

ajuj +
∑
k∈K

ak ;

u↔o ui for all i in I ; aj ∈A� and u �↔o uj for all j in J ; ak ∈A� for all k in K .
The processes ui and uj are compact. We show that au is derivably equal to a term

with compact successors. Take any i from I (if I = ∅, then u itself is compact). By
Lemma 14, we 1nd u= �ui + uc.
We know that ui is compact and that u↔o ui. From these two facts, it is straight-

forward to verify that ui must be a summation consisting of the following summands:
(1) For every k in K , one or more summands ak . By axiom A3, we may assume that

there is exactly one summand ak for every k in K .
(2) For every j in J , one or more summands aju′j with uj↔o u′j. By Lemma 4 and

the completeness of BPA#, we have that u′j = uj for all u′j. By these identities and
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by axiom A3, we may assume that there is exactly one summand ajuj for every
j in J .

(3) For every l in some 1nite index set L, a summand �ul, with ui �↔o ul. We assume
that L is nonempty; if it is not, then infer from u↔o ui and the fact that u has a
�-transition (to ui) that there must be a j in J with aj = �. In this case use axiom
A3 to double a summand aju′j with such a j, thereby producing a summand �ul.

Finally, we get that ui =
∑

l∈L �ul + uc.
Combining u= �ui + uc, Lemma 13 and axiom O3, we 1nd that au= aui, where the

right-hand side has compact successors.

Theorem 16. The system BPAorth
#� (A) is complete with respect to rooted orthogonal

bisimilarity, that is, any two closed terms that are rooted orthogonally bisimilar, are
derivably equal.

Proof. Take any two rooted orthogonally bisimilar closed terms. By soundness and
by Lemma 15 we may assume that all successors of these terms are compact. By
Lemma 6 we have that they are strongly bisimilar. Derivability follows from the fact
that BPA#(A) is complete with respect to strong bisimilarity.

Corollary 17. The system ACPorth� (A; ") is complete with respect to rooted orthogonal
bisimilarity.

6. Priorities

We extend the axiom system ACPorth� (A; ") with the priority operator �, introduced
in ACP in [1] (for an overview of the use of priorities in process algebra, see [14]).
Parameter of this operator is a partial ordering 6 on the set A� of actions (we write
a¡b or b¿a if a6b and a �≡ b). If, for example, the priority ordering is given by
a¿b and a¿c, then action a has priority over b and over c. In this case we 1nd that
�(a+ b)= a and �(b+ c)= b+ c. Our approach is fully general in that the occurrence
of � in the ordering is completely unrestricted. The priority operator can be used to
model interrupts in a distributed system; it is used as such in the speci1cation of
a PAR protocol in Section 10.
The transition rules for the priority operator are in Table 5. For the axiomatization

of the priority operator, we need the auxiliary operator /. A process x / y behaves

Table 5
Transition rules for the priority operator

x a→√ ¬∃b¿a: x b→
�(x) a→√

x a→ x′ ¬∃b¿a: x b→
�(x) a→ �(x′)

x a→√ ¬∃b¿a: y b→
x / y a→√

x a→ x′ ¬∃b¿a: y b→
x / y a→ x′
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Table 6
Priority axioms; a; b∈A#�

(P1) a / b= a if a �¡b
(P2) a / b= # if a¡b
(P3) x / yz= x / y
(P4) x / (y + z)= (x / y) / z
(P5) xy / z=(x / z)y
(P6) (x + y) / z= x / z + y / z

(Th1) �(a)= a
(Th2) �(xy)= �(x)�(y)
(Th3) �(x + y)= �(x) / y + �(y) / x

as the part of x that has initial actions that do not have an initial action with higher
priority in y. The axioms are in Table 6.
We give an example derivation. Suppose that a¿b. Then:

�(ax + by) = �(ax) / by + �(by) / ax

= (a / b) · �(x) + (b / a) · �(y)

= a · �(x) + #

= a · �(x):

For another example, let the priority ordering be given by c¡b. Consider terms t ≡
a(�(b + c) + c) and u≡ a(b + c). These processes are rooted branching bisimilar,
and hence identi1ed by all process equivalences in [17]. Observe that none of these
equivalences identi1es �(t)= a(�b+ c) and �(u)= ab. We conclude that, in the setting
with �, the priority operator is not a congruence for the abstract process equivalences
in [17]. Also observe the following: process t evolves into the process �(b + c) +
c by the execution of action a. The latter process has a direct option to execute
c, and a blind option to execute b; the � is hiding the option for b. In orthogonal
bisimulation equivalence, a nondirect option can never become direct: orthogonally
bisimilar processes have exactly the same direct options.
In Section A.2 it is proved that rooted orthogonal bisimilarity is a congruence

with respect to the priority operator in the setting with �. Soundness of the prior-
ity axioms with respect to this equivalence follows from their soundness with respect
to strong bisimulation equivalence and the fact that orthogonally bisimilar processes
have the same initial actions (for all actions including �). We state without proof
that ACPorth�� (A; ") is a conservative extension of ACPorth� (A; "). Completeness follows
from the fact that the priority operator can be eliminated from terms, which is easy to
verify.
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Note. Various ways for dealing with the priority operators in abstract semantics have
been proposed. A 1rst, classical approach is to eliminate all priority operators before
applying abstraction. Another approach was advocated by Bol and Groote [12], where
the unless operator is equipped with a “look-ahead” facility for �-steps. Both these
approaches are not fully general, in the sense that they do not admit that � (freely)
enters the priority ordering. Although it may in some cases be questionable whether �
should be given a priority, this is not in any technical sense problematic. This last fact
can be characterized as follows: assume that I is a set of internal actions, all of which
have the same priority as �. Then we have that �I and � commute modulo orthogonal
bisimilarity:

� ◦ �I (x) = �I ◦ �(x);

which is the strongest commutation result that can be expected.

7. Recursion operators and fairness

In process algebra, potentially in1nite behaviors are usually characterized by means
of recursive equations. As an example, the equation

x = ax

characterizes the process that can perform an in1nite sequence of a-steps only, and so
do the equations y= ayb and z= aaz (and many more). Recently, a diMerent approach
to the speci1cation of such behaviors attracted attention, namely the use of recursion
operators [6,10]. As the most basic of these we consider the binary Kleene star operator
∗, de1ned by

x∗y = x(x∗y) + y:

For example, a∗# expresses the process mentioned above, and so does (aa)∗#. We
adopt the convention that · and ∗ bind equally strong.
In the setting of BPA, axioms for the ∗ are BKS1–BKS3 from Table 7. If E is

any of the axiom systems discussed in the previous sections, we write E∗ for its
extension with the appropriate axioms on the binary Kleene star. In [16] it is shown
that BPA∗(A) axiomatizes bisimilarity over that signature. The system ACP∗(A; ") is
de1ned by adding the axioms BKS1–BKS4. In the setting with � and the binary Kleene
star, the system BPAorth∗

� is de1ned by extending BPA∗(A) with the axioms O1–O3
(see Table 2) and axioms O4 and O5 given in Table 7. Note that these last two
axioms are easily proved valid in orthogonal bisimulation equivalence. Finally, the
system ACPorth∗� (A; ") is de1ned by adding all axioms from Table 7 to ACPorth� (A; ").

The transition rules for ∗ are as expected, and given in Table 8. Observe that each
closed term over one of the systems with ∗ has 1nitely many substates, where sub-
states are those terms that can be reached by transitions. This reveals the limited
expressiveness of the above-mentioned systems with the binary Kleene star: only 1nite
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Table 7
The binary Kleene star axioms

(BKS1) x∗y= x(x∗y) + y
(BKS2) x∗(yz)= (x∗y)z
(BKS3) (x + y)∗z= x∗(y((x + y)∗z) + z)
(BKS4) @H (x∗y)= @H (x)∗@H (y)
(BKS5) �I (x∗y)= �I (x)∗�I (y)

(O4) x((��)∗y)= x(�∗y) if �y= ��y
(O5) x((�+ ��)∗y)= x((��)∗y)

Table 8
Transition rules for binary Kleene star and push-down

x a→√

x∗y a→ x∗y

x a→ x′

x∗y a→ x′(x∗y)

y a→√

x∗y a→√
y a→y′

x∗y a→y′
y a→√

x$y a→√
y a→y′

x$y a→y′

x a→√

x$y a→(x$y)(x$y)

x a→ x′

x$y a→ x′((x$y)(x$y))

state processes are de1nable. This restriction can be relaxed by adding the push-down
operator ($, see [7,10]), de1ned by the axiom

x$y = x((x$y)(x$y)) + y:

We write E$ for the inclusion of the push-down axiom in axiom system E. The tran-
sition rules are as expected, and given in Table 8.
With the push-down operator also nonregular processes can be de1ned. A typical

example is the term R given by

R = (succ(succ$pred) + zero)∗exit:

This term can be recognized as a de1nition of a register, modelling a memory location
for a natural number with unbounded capacity and restricted access by a successor
action, a predecessor action, a zero test action, and an exit or termination action. A
graphical representation of the process R is given in Fig. 2. Observe that a register
holding value n is modelled by the process

R(n) = (succ$pred)nR:
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Fig. 2. The register process.

In ACP∗$ registers can synchronize with terms representing register machine programs.
As an example, let

H = {a; a′ | a = succ; pred; zero; exit}
and "(a; a′)= i for a= succ; pred; zero; exit. Then termination of a register holding
value n can be described by

@H ((pred′)∗exit′ · x ‖R(n)) = in+1 · @H (x):

For indexed registers R1 and R2, transfer of the value of R1 to R2 is described by

@H ((pred′
1 · succ′2)∗zero′1 · x ‖R1(n) ‖R2(m));

where the communication function and the set H are appropriately adjusted to the
indexing of the register actions. It is not diNcult to derive that this term is equal to

i2n+1 · @H (x ‖R1(0) ‖R2(n+ m)):

In the following section we return to the issue of expressivity, and we shall use register
machine computation in a style as suggested above.
In settings with #, there are no 1nite equational axiomatizations of the binary Kleene

star operator. Therefore we provide the following adaptation of RSP, the Recursive
Speci1cation Principle:

(RSP∗) If x = yx + z and @A(y) = #; then x = y∗z:

Here the second condition acts as a guardedness restriction: it excludes terms with an
initial � action. For example, we cannot infer ��a= �∗#, although ��a= ���a + # is
valid. For the push-down operator there is a similar adaptation of RSP [7,10], but we
shall not use it.

Fairness. Due to the character and common use of �, one may want to abstract from
in1nite sequences or loops consisting only of �-steps. Depending on the kind of process
semantics one wants to use, diMerent solutions have been found. In the case of rooted
branching bisimulation equivalence, a particular solution is provided by

(FIRb
1) �(�∗x) = �x;

where FIR abbreviates Fair Iteration Rule. In the setting of rooted orthogonal bisimu-
lation equivalence, we have the ‘fairness axioms’ given in Table 9. (If we consider
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Table 9
Fairness axioms

(OFIR1) x(�∗(y + �z))= x(y + �z)
(OFIR2) x(�∗(y + �))= x(y + �)

processes modulo rooted divergence sensitive orthogonal bisimilarity, then of course
axioms OFIR1 and OFIR2 are no longer valid.) In Section 10 we provide a protocol
veri1cation in which fairness is used.

8. Expressiveness

In this section we consider some basic expressiveness questions: which sort of tran-
sition systems can be expressed in which of the axiom systems discussed before? To
handle these questions we restrict to transition systems that have pure termination, or
shortly, that are pure: transitions systems with a (single) termination state

√
not having

outgoing transitions, and with at least one other state (diMerent from
√
, see Section 4).

Expressing a pure transition system T up to some behavioral equivalence ∼ in axiom
system E comes down to showing that for each state s in T diMerent from

√
there is

a term t over E satisfying s ∼ t.
In [2], Baeten, Bergstra and Klop proved the following basic expressiveness re-

sult: each recursive pure transition system (or ‘process graph’) can be expressed up
to rooted �-bisimilarity in ACP with abstraction and 1nite, guarded recursive speci1-
cations. Furthermore, these authors showed that abstraction is necessary for this result.
Here a recursive transition system is one that has a recursive set of states, a 1nite set
of labels, and a transition relation that can be characterized by a recursive function
(describing for each state its 1nite number of transitions in terms of an appropriate
encoding). The proof of this expressiveness result carries over to branching bisimula-
tion equivalence, but not to any of the orthogonal bisimulation equivalences de1ned in
this paper. The main reason for this mismatch is the role of the law x= x�.

To study expressiveness questions in the setting of orthogonal bisimilarity, it there-
fore seems reasonable to enrich transition systems with �’s in the following way: given
a transition system T=(S; L; T ), its sequential �-saturation T� is de1ned by (S�; L�; T�)
where
• S� = {s; s� | s ∈ S} (and s ∈ S implies s� �∈ S),
• L� =L ∪ {�},
• T� = {s a→ t�; t�

�→ t | s a→ t ∈ T}.
Clearly, each pure transition system T=(S; L; T ) is branching bisimilar to its sequential
�-saturation (which is recursive if T is). Therefore, the question how to express the
sequential �-saturation of pure transition systems up to rooted (divergence sensitive)
orthogonal bisimulation equivalence is a relevant one in our setting: this is as close as
we can get to the orthogonal world of concrete processes.
We view binary Kleene star and push-down as a modern alternative to the so-called

1nite guarded recursive speci1cations as used in the expressiveness result in [2]. First,
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we prove in detail that we can express the sequential �-saturation of any 1nite pure
transition system with labels in L⊆A up to rooted divergence sensitive orthogonal
bisimulation equivalence in ACPorth∗� (A; "), provided A is suNciently large. Next, we
argue that any recursive pure transition system with 1nite label set L ⊆ A and bounded
fan-out can be expressed in ACPorth∗$� (A; ") up to rooted orthogonal bisimulation equiv-
alence, for a suitable, 1nite set A of actions.

Theorem 18. For each <nite pure transition system T with <nite label set L not
containing �, there is a <nite extension A of L such that T� can be expressed up to
rooted divergence sensitive orthogonal bisimulation equivalence in ACPorth� (A; "), using
only handshaking over A\L, and either ∗ or $.

Proof. Assume that T has states {√; X1; : : : ; Xn} for some n¿0. Then, for every j
with 0¡j6n, Xj can be characterized by

Xj =
n∑

k=1
2j;kXk + 3j

with 2j; k and 3j 1nite sums of actions or # in the following way: for each transition

Xj
a→Xk there is a summand a in 2j; k and for each transition Xj

b→√
there is a summand

b in 3j, and conversely, each summand of 2j; k and 3j is associated with a transition. If
there are no transitions with source Xj and target Xk (

√
), then 2j; k (3j, respectively)

equals #. As a consequence, T� can be characterized by

Xj =
n∑

k=1
2j;k�Xk + 3j�:

We de1ne process terms that mimick the transitions of T�. Let A be the extension
of L with the following 2n+ 3 fresh actions:

i; and rl; sl (l = 0; 1; : : : ; n):

Let "(rl; sl)= i be the only communications de1ned (handshaking). As to provide some
intuition, these actions model the following behavior:

s0 : order termination;

r0 : receive the order to terminate;

sl : (l ¿ 0) instruct the lth process to start; and

rl : (l ¿ 0) read instruction to start the lth process:

Let H = {rl; sl | l=0; 1; : : : ; c; n}, and, for j=1; : : : ; c; n,

Fj =
n∑

k=1
2j;k sk + 3j:
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In the case of ∗, consider the following process terms:

G =
(

n∑
k=1

rkFk

)∗
s0; K =

(
n∑

k=1
rksk

)∗
r0:

We derive

@H (FjG ‖K) = @H

((
n∑

k=1
2j;k skG + 3jG

)
‖K
)

=
n∑

k=1
2j;k · @H (skG ‖K) + 3j · @H (G ‖K)

=
n∑

k=1
2j;k · i · @H (G ‖ skK) + 3j · i

=
n∑

k=1
2j;k · i · i · @H (FkG ‖K) + 3j · i:

Consequently, for j=1; : : : ; n, the process �{i} ◦ @H (FjG ‖K) satis1es the identities for
state Xj up to rooted divergence sensitive orthogonal bisimilarity. Hence, T� can be
expressed in ACPorth∗� (A; "): for each state Xj of T� we have

Xj↔ordso �{i} ◦ @H (FjG ‖K)

in TS(ACPorth∗� (A; ")) ∪T� (with single termination state
√
).

In the case of $, consider process terms

M =
(

n∑
k=1

rkFk

)$
s0; N =

(
n∑

j=1
rksk

)$
r0:

Then

Xj↔ordso �{i} ◦ @H (FjM ‖N )

for each j=1; : : : ; n. This can be shown along the same lines, using a denumerable
in1nity of copies of the transitions of T�: let l range over the naturals and consider

Yj(l) =
n∑

k=1
2j;k�Yk(l+ 1) + 3j�:

Clearly, Xj↔rdso Yj(l) for each state Xj of T� and each value of l. So it suNces to
show that also

�{i} ◦ @H (FjM ‖N )↔ordso Yj(0):
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We show this by 1rst omitting the �{i}-application:

@H (Fj ·Ml+1 ‖Nl+1) =
n∑

k=1
2j;k · @H (skMl+1 ‖Nl+1) + 3j · @H (Ml+1 ‖Nl+1)

=
n∑

k=1
2j;k · i · @H (Ml+1 ‖ skN l+2) + 3j · il+1

=
n∑

k=1
2j;k · i2 · @H (Fk ·Ml+2 ‖Nl+2) + 3j · il+1:

Hence, applying �{i} and axiom O1, we 1nd for each l that

�{i} ◦ @H (Fj ·Ml+1 ‖Nl+1)

=
n∑

k=1
2j;k� · �{i} ◦ @H (Fk ·Ml+2 ‖Nl+2) + 3j�;

which shows that �{i} ◦ @H (Fj ·Ml+1 ‖Nl+1)↔rdso Yj(l).

The above result shows that each regular process can be de1ned modulo sequential
�-saturation and rooted divergence sensitive orthogonal bisimilarity in ACPorth� (A; "),
provided we adopt (at least) one of ∗ and $, and A is suNciently large (but 1nite).
For nonregular, computable processes (that is, processes that can be characterized
by a recursive pure transition system) we have the following expressiveness result:
the sequential �-saturation of a recursive pure transition system with (1nite) label set
L⊆A and bounded fan-out can be expressed in ACPorth∗$� (A; ") and ACPorths$� (A; ")
up to rooted divergence sensitive orthogonal bisimulation equivalence, provided A is
suNciently large. For example, one can express the sequential �-saturation of a stack
over a 1nite data type using the approach in [10] (also recorded in [7]).
We sketch a proof of the expressibility of pure recursive transition systems with

bounded fan-out. An example is given in Section 9. This proof is based on a charac-
terization of register machine computations (see, for example, [28]) in process algebra
(a detailed explanation can be found in [11]). Recall the straightforward representa-
tion of registers presented in the previous section. Furthermore, each register machine
program has a straightforward representation in BPA∗(A). It easily follows that each
(unary) recursive function f can be ‘implemented’ in ACP∗$(A; ") in the following
sense: let P represent in BPA∗(A) a register machine program that computes f using
three registers. Then there is a context Con[ ](n) where n refers to a register value
such that

Con[Px](n)]↔
{

ig(n) · Con[x](f(n)) if f(n) is de1ned;
i∗# otherwise:

Here g is a computable function de1ned on the domain of f, and the i-steps result from
communications between the registers and the program. Furthermore, Con[ ](n) can be
extended to Con[ ](n1; : : : ; nk) for the computation of k¿1 computable functions in a
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sequential fashion:

Con[P1 · · ·Pkx](n; 0; : : : ; 0)↔o ig
′(n) · Con[x](f1(n); : : : ; fk(n))

if each fi is de1ned on n, and computed by register machine program Pi.
Now let T=(S; L; T ) be a recursive pure transition system with S a set of natu-

rals containing 0 and fan-out bounded by m. The state 0 is the termination state (so√
=0). 4 With the above implementation scheme at hand, it is not hard to express the

sequential �-saturation of T up to rooted divergence sensitive orthogonal bisimilar-
ity in ACPorth∗$� (A; "). A possible approach is the following. Given some state, let its
menu be a characterization of the labels of all its outgoing transitions or its termination
status (that is, no outgoing transitions and either successful termination or deadlock).
If a state has at least one outgoing transition, then its menu is a list a1; : : : ; ak , with
16k6m, of labels of its outgoing transitions. The ordering of these labels is arbitrary
but 1xed: for every multiset of labels there is at most one menu. Fix an enumeration of
these menus, such that menu number 0 stands for successful termination and 1 stands
for deadlock.
Let furthermore the transition relation T be characterized by (m+1)-tuples fetching

all outgoing transitions (at most m): a state s yields the map

(s; 0; : : : ; 0) �→ (s1; : : : ; sm+1);

where sj =0 for 16j6m+ 1 if s=0, and otherwise
• sm+1 gives the menu number of s, and
• sj for 16j6m is the target associated with source s and the jth label of menu sm+1

if such a transition is present, and 0 otherwise.
By the recursiveness of T, the above m+1 functions that de1ne �→ can be computed

by some register program P, thus

Con[Px](s; 0; : : : ; 0)
i
�Con[x](s1; : : : ; sm+1);

where
i
� is the transitive closure of i→.

Furthermore, it is straightforward to de1ne a process term M that interprets the menu
sm+1 in the following way:

Con[Mx](s1; : : : ; sm; sm+1)
i
�{

Con[#x](s1; : : : ; sm; 0) if sm+1 = 1;

Con
[∑k

j=1 ajFjx
]
(s1; : : : ; sm; 0) if sm+1 ¿ 1:

(In case sm+1 =0, the process M blocks.) Here the aj’s and k are prescribed by the
menu and Fj is a process that transfers sj to the 1rst position, and empties all other
registers. It follows that the full computation of all transitions from s is captured by

Con[PQ](s; 0; : : : ; 0);

4 Note: In [11] the number 0 was reserved for the deadlock state. Here the choice to let 0 stand for
successful termination allows a more elegant presentation.
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where

Q = (MP)∗exit′m+1E:

The exit action synchronizes with the termination action exitm+1 of the menu register
in case it holds value 0, and E terminates all remaining processes. Finally, applying
�{i} we can express T� up to rooted divergence sensitive orthogonal bisimilarity: for
each s∈ S ⊆ S�\{√} it follows that if s has menu a1; : : : ; ak then it has transitions

s
aj→ (sj)�

�→ sj

for 16j6k, and

s↔o rdso �{i}

(
Con

[
k∑

j=1
ajFjPQ

]
(s1; : : : ; sk ; : : : ; sm; 0)

)

(where sl =0 for k¡l6m) in the combined transition system. In the case that s has
no transitions, it holds that s↔rdso #. In the next section we provide an example.

Following the proof of Theorem 18 above, it is straightforward how this approach
should be adapted to ACPorth$� (A; ") (thus, without ∗, cf. the related results in [11]).
The above can be summarized as follows:

Theorem 19. For each recursive pure transition system T with <nite label set L not
containing � and bounded fan-out, there is a <nite extension A of L such that T� can
be expressed up to rooted divergence sensitive orthogonal bisimulation equivalence in
ACPorth� (A; "), using only handshaking over A\L, and either $, or both ∗ and $.

We note that for each term over ACPorth∗$� (A; ") or ACPorth$� (A; "), its fan-out and
that of all its substates is bounded by its complexity. This implies that a stronger
expressiveness result is not possible. An essential unbounded fan-out (i.e., each bisim-
ilar system also has an unbounded fan-out) is not expressible by a (1nitary) process
term.

9. Expressiveness: illustration

In this section, we give an example of the expression of (the sequential �-saturation
of) transition systems using register-machine based processes, as presented in Section 8.
We consider the case of recursive pure transition systems over label set {a; b}, and
with fan-out of at most two. The states are naturals and 0 is the termination state (so√
=0). As an example we shall 1nd a process algebraic expression for the state 9 in

the sequential �-saturation of the transition system (1).

(1)
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This �-saturation is given below (2).

9 a→ 6�
�
�
a

6 b→√
�

�→ √
(2)

Clearly, it is not diNcult to 1nd an expression for state 9; for example, using the binary
Kleene star operator, we express state 9 in (1) as a(a∗b), and in (2) as the process
term

a�((a�)∗b�):

Here, we shall give another (more complex) expression for this state following the
procedure outlined in Section 8.
We start with a menu enumeration for pure recursive transition systems over {a; b}

and with fan-out bounded by two:

0 for successful termination; 4 for a; a;

1 for deadlock; 5 for a; b;

2 for a; 6 for b; b:

3 for b;

For example, state 6 in transition system (1) has one outgoing a-transition and one
outgoing b-transition; hence it has menu number 5.
We can characterize the transition relation of a particular transition system by a

mapping on 3-tuples of naturals as follows: a state s yields the map

(s; 0; 0) �→ (s1; s2; s3);

where s3 gives the menu number of state s, and sj for j=1; 2 is the target state
associated with source s and the jth label of menu s3 if such a transition is present,
and otherwise 0.
For example, in the case of transition system (1), we 1nd that the transitions are

given by

(9; 0; 0) �→ (6; 0; 2);

(6; 0; 0) �→ (6; 0; 5):

(Recall that 0 is the termination state.)
Let P be such that it models the computation of this mapping, that is, if (s; 0; 0) �→

(s1; s2; s3), then

Con[Px](s; 0; 0)
i
�Con[x](s1; s2; s3):

We de1ne the menu interpretation process M partly in a graphical manner in Fig. 3.
The processes Fj in the de1nition of M are the processes that clean up the registers
after the execution of an action; they write the value of the newly reached state in the
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Fig. 3. The menu process M .

1rst register and empty all the others. In this case they are given by

F1 = pred′
2
∗zero′2;

F2 = (pred′
1
∗zero′1)((pred′

2succ
′
1)

∗zero′2):

We see that the process F1 just empties the second register. The process F2 1rst empties
the 1rst register and then transfers the contents of the second register to the 1rst register.
Observe that the third register, the menu number, has already been emptied.
We write Q for (MP)∗exit′3E. Now, state 9 in (2) is expressed by

�{i}(Con[aF1PQ](6; 0; 0))

(see Fig. 4), that is,

9↔ordso �{i}(Con[aF1PQ](6; 0; 0));

as the only diMerence is in the length of �-sequences.

10. Veri�cation of a PAR protocol

In this section, we consider the Positive Acknowledgment and Retransmission (PAR)
protocol [32]. This protocol describes the transmission of data from a sender process



J.A. Bergstra et al. / Theoretical Computer Science 309 (2003) 313–355 341

Fig. 4. Transition system.

0 1

23
S

K

L

R

Fig. 5. Architecture of the protocol.

S to a receiver process R over unreliable channels, such that the external behavior
corresponds to that of a one-place buMer. We prove the correctness of this protocol,
that is, we 1rst give the description of an implementation and then apply abstraction.
Next, we compress the �-actions and show that the resulting term indeed matches the
behavior of a one-place buMer.
The architecture of the protocol is depicted in Fig. 5. We refer to [33] for an earlier

veri1cation in process algebra.
The sender S reads a datum from the environment, and sends this datum, accompa-

nied by a bit, to the receiver R via channel K . The receiver has just one (thus positive)
acknowledgment for the arrival of a frame. The receiver sends its acknowledgments
via channel L to S. The channels are unreliable; upon receiving a datum the channel
K can do one of three things: it can pass on the datum, it can loose the information
but send an error message instead, and it can fail to do anything. The channel L either
passes on the acknowledgment, or fails to do anything. A dummy internal action i is
added to make the choice between these options nondeterministic.
The sender and the receiver act in response to received data only. This poses a

problem, because, when one of the channels K and L fails to act upon receiving
a message, the system will be waiting for nothing to happen, that is, it will deadlock.
To avoid this, a time-out action may occur, that is supposed to reactivate the system
if it threatens to deadlock. In [32], this time-out is issued by a timer, that is started
by the sender at the moment it sends a frame to K . Here, we model the time-out
interruption by placing the system in the scope of a priority operator and giving the
time-out action lower priority than any other action; it occurs if no other activity is
possible. After a time-out, the sender retransmits the last message.
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Table 10
Speci1cation

S =(S0 · S1)∗#

Sn =
∑

d∈D r(d) · s0(dn) · Sdn

Sdn =(time out · s0(dn))∗r3

K =(
∑

f∈F r0(f) ·Kf)∗#

Kf = i · s1(f) + i · s1(⊥) + i

L=(r2 · (i · s3 + i))∗#

R=(R0 ·R1)∗#

Rn =(r1(⊥) +
∑

d∈D r1(d(1− n)) · s2)∗
∑

d∈D r1(dn) · s(d) · s2

10.1. Speci<cation

We assume a 1nite data set D and a set of frames F =D×{0; 1}. The components
are speci1ed in Table 10.
The sk and rk actions, with k63, are the send and receive actions over the internal

port k. We let "(sk ; rk)= "(rk ; sk)= ck for k =2; 3, and

"(sk(m); rk(m)) = "(rk(m); sk(m)) = ck(m)

for all messages m and k =0, 1, and " unde1ned otherwise. The action c2 models
the passing of an acknowledgment from R to L. The action c3 is the passing of an
acknowledgment from L to S. The time-out action is performed only if no other actions
are enabled; the partial priority ordering is de1ned by

time out ¡ a

for all actions a other than the time-out action.
The set H consists of all the send and receive actions over the internal ports. The

set I consists of the actions time out, i, and all the communications. The complete
system is de1ned as P= �I (X ), where

X = �(@H (S ‖K ‖R ‖L)):

10.2. Veri<cation

Notation: [ ] for �(@H ( )). We use the abbreviations given in Table 11. Driving the
composed operator � ◦ @H inwards we leave out all summands that are blocked by the
encapsulation or the priority operator. In particular this means that, in the presence of
alternatives, summands starting with a time-out action are renamed to #. The derivation
of the linearization may be found in Table 12. The linearization is illustrated in Fig. 6.
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Table 11
Abbreviations

X 0
d = [Sd0S1S ‖Kd0K ‖R ‖ L]

X 1
d = [Sd0S1S ‖K ‖R ‖ L]

X 2
d = [Sd0S1S ‖K ‖R1R ‖ (i · s3 + i)L]

X 3
d = [Sd0S1S ‖K ‖R1R ‖ L]

X 4
d = [Sd0S1S ‖Kd0K ‖R1R ‖ L]

Y = [S1S ‖K ‖R1R ‖ L]

Table 12
Linearization

X =
∑

d∈D r(d) · [s0(d0) · Sd0S1S ‖K ‖R ‖ L]
=
∑

d∈D r(d) · c0(d0) ·X 0
d

X 0
d = i · [Sd0S1S ‖ s1(d0) ·K ‖R ‖ L]

+ i · [Sd0S1S ‖ s1(⊥) ·K ‖R ‖ L] + i ·X 1
d

= i · c1(d0) · [Sd0S1S ‖K ‖ s(d) · s2 ·R1R ‖ L]
+(i · c1(⊥) + i) ·X 1

d
= i · c1(d0) · s(d) · [Sd0S1S ‖K ‖ s2 ·R1R ‖ L]

+(i · c1(⊥) + i) ·X 1
d

= i · c1(d0) · s(d) · c2 ·X 2
d + (i · c1(⊥) + i) ·X 1

d

X 1
d = time out · [s0(d0) · Sd0S1S ‖K ‖R ‖ L]

= time out · c0(d0) ·X 0
d

X 2
d = i · [Sd0S1S ‖K ‖R1R ‖ s3 · L] + i ·X 3

d
= i · c3 · Y + i ·X 3

d

X 3
d = time out · [s0(d0) · Sd0S1S ‖K ‖R1R ‖ L]

= time out · c0(d0) ·X 4
d

X 4
d = i · [Sd0S1S ‖ s1(d0) ·K ‖R1R ‖ L]

+ i · [Sd0S1S ‖ s1(⊥) ·K ‖R1R ‖ L] + i ·X 3
d

= i · c1(d0) · [Sd0S1S ‖K ‖ s2 ·R1R ‖ L] + (i · c1(⊥) + i) ·X 3
d

= i · c1(d0) · c2 ·X 2
d + (i · c1(⊥) + i) ·X 3

d

Using RSP∗ we derive from the equations for X derived in Table 12:

X 0
d = ((i · c1(⊥) + i) · time out · c0(d0))∗i · c1(d0) · s(d) · c2 · X 2

d ;

X 2
d = (i · time out · c0(d0) · X̃ 4

d )
∗i · c3 · Y;

X̃ 4
d = ((i · c1(⊥) + i) · time out · c0(d0))∗i · c1(d0) · c2:
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Fig. 6. Illustration of the process X .

In a similar way we can derive

Y =
∑
d∈D

r(d) · c0(d1) · Y 0
d ;

Y 0
d = ((i · c1(⊥) + i) · time out · c0(d1))∗i · c1(d1) · s(d) · c2 · Y 2

d ;

Y 2
d = (i · time out · c0(d1) · Ỹ 4

d)
∗i · c3 · X;

Ỹ
4
d = ((i · c1(⊥) + i) · time out · c0(d1))∗i · c1(d1) · c2:

Using substitution we eliminate all process abbreviations from the equation for X ,
yielding terms X ′ and Y ′ such that X =X ′Y and Y =Y ′X . We derive by pressing the
operator �I inwards and compressing �’s (using the axioms from Table 2) that

�I (X ′) = �I (Y ′) =
∑
d∈D

r(d) · �(�∗�)� · s(d) · �((��(�∗�)�)∗�)�:

Using axiom OFIR2 we derive that

�I (X ′) =
∑
d∈D

r(d) · � · s(d) · �:
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Since P equals �I (X ′) · �I (X ′) · P, we 1nd by RSP∗ that

P =
( ∑

d∈D
r(d) · � · s(d) · �

)∗
#:

Clearly, the right-hand term matches the behavior of a one-place buMer.

Remark 20. In [34], a veri1cation of the Concurrent Alternating Bit Protocol (CABP)
with respect to orthogonal bisimulation can be found. This protocol has parallel internal
activity; in any state the system can do some internal step. This is rePected in the
outcome of the veri1cation. The CABP was proved rooted orthogonally bisimilar to
the process(

�∗
∑
d∈D

r(d) · � · (�∗s(d)) · �
)∗

#:

11. Conclusions

In this paper we introduced orthogonal bisimulation equivalence and proved a number
of elementary results. In this 1nal section we comment on its position in behavioral
semantics.
Orthogonal bisimulation equivalence admits compression of internal activity, but is

not as abstract as the common behavioral equivalences that deal with abstraction. In
particular, it is a 1ner equivalence than branching bisimilarity [22]. Van Glabbeek
and Weijland, the founders of branching bisimulation equivalence, remark that “we
know of no useful operator for which some abstract equivalence in the linear time–
branching time spectrum is a congruence, but rooted branching bisimulation is not.”
[22, p. 594], and provide many more arguments in favor of branching bisimulation
equivalence. Furthermore, branching bisimulation equivalence is argued to be optimal in
the following sense: it is the coarsest behavioral equivalence that respects the branching
structure of processes, 5 and it is the <nest congruence possible for a common repertoire
of process algebra operators (supporting the interleaving hypothesis) that is abstract in
the sense that it satis1es at least a�x= ax (cf. [18,22]).
To the best of our knowledge, orthogonal bisimilarity is the 1rst behavioral semantics

that is a congruence for the priority operator, and that takes the nature of abstraction
into account (up to compression). In comparison with branching bisimulation equiva-
lence, a typical property of orthogonal bisimulation equivalence is that it refutes the
axiom x�= x (or a�x= ax in a setting with only action pre1x), while it validates
the weakened version x��= x�. This property simply represents another perspective on
silent activity, acknowledging its presence, but not its structure. An immediate conse-
quence of x�= x not being sound is that divergence is preserved more often than in
branching bisimilarity. This may play a role in the area of protocol speci1cation and
veri1cation, where �-cycles usually result from the abstraction of the occurrence and

5 This notion is formally de1ned in [19].
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recovery of an undesirable event, and fairness is assumed. In Section 10 it is shown
that such events in our modelling of the PAR protocol can indeed be discarded after
abstraction, as all exits of the occurring �-cycles happen to start with a �-step. How-
ever, this is not always the case in the daily practice of protocol speci1cation in process
algebra (cf. Remark 20). For this reason, the divergence sensitive variant of orthogonal
bisimulation equivalence is distinguished (which simply never discards �-cycles while
it respects the branching structure of a process in the same sense).
In this paper, we attempted to show that orthogonal bisimulation equivalence is a

re1nement of branching bisimulation equivalence that is interesting in its own right.
Although it is not an ‘abstract equivalence’ in the sense described above, it certainly
provides another look at abstraction in process algebra, and may be of use in situations
where compression or priorities play a role.

Future Work. We did not yet analyze the complexity of (divergence sensitive) orthog-
onal bisimilarity in 1nite state transition systems. Furthermore, the ‘branching structure
of a process’ as de1ned in [19] depends on a notion of observable content of the traces
of that process; it might well be that the “compression content” of traces, that is, the
traces of the process from which all second and consecutive �’s are removed, leads to
a characterization of orthogonal bisimilarity along the same lines as in [19]. Finally,
‘orthogonal versions’ for other behavioral semantics still have to be formulated, char-
acterized and interrelated. For example, how should orthogonal ready equivalence or
failure equivalence be de1ned, and is it a congruence for process algebra with priori-
ties? We note that it does not make sense to consider orthogonal versions of behavioral
equivalences that identify more than ready trace or failure trace equivalence: it is well-
known (see, for example, [5]) that the priority operator is not compatible with failure
or ready semantics. 6

Appendix A. Soundness and congruence proofs

In Section A.1 we prove that the compression axioms are sound with respect to
rooted orthogonal bisimulation equivalence. In Section A.2 we prove that this equiva-
lence is a congruence with respect to the operators of ACPorth�� .

A.1. Soundness proofs

We prove that axioms O1–O3 (see Table 2) are sound with respect to rooted or-
thogonal bisimulation equivalence for any of the axiom systems that we introduced.
We repeat these axioms here for convenience.

x��= x�; (O1)

6 Suppose A= {a; b; c; d; e; f} and f¡b¡d and P= a(bc+ d) + a(be + f), Q= a(be + d) + a(bc+ f),
then P≡R Q (so P≡F Q), but �(P) �≡F �(Q).
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x�(y + z) = x(y + z) if �y = ��y; �z = ��z; (O2)

x(�(y + z) + z) = x(y + z) if �y = ��y: (O3)

The soundness proofs for the TI axioms (also in Table 2) are trivial and therefore
omitted here.
Let A be the set of action symbols not containing �, let A� =A ∪ {�}, and write P

for the set of closed terms. Let Id be the identity relation on P ∪ {√}.
The conditions in axioms O2 and O3 are of the form �x= ��x, by which we require

that the process x starts with a silent step:

Lemma A.1. For all p∈P, if �p↔ro ��p, then p �→ and, for all a∈A�, p
a→ implies

a= �.

Proof. From the fact that �p and ��p are rooted orthogonally bisimilar, it follows that
p and �p are orthogonally bisimilar. Orthogonally bisimilar processes have the same
initial actions.

We prove that the compression axioms O1–O3 are sound with respect to rooted
orthogonal bisimulation equivalence using induction on the length of derivations.

Axiom O1: We must show that p��↔ro p� for all p∈P. The symmetric closure of
the relation

{(p′��; p′�); (��; �); (�; �); (
√
;
√
) |p′ ∈ P}

is an orthogonal bisimulation that is rooted between p�� and p� for all p∈P.

Axiom O2: Let ti be a term, for i=0; 1; 2, and suppose that �ti = ��ti has a sound
derivation for i=1; 2 (induction hypothesis). Suppose that from these derivations we
derive

t0�(t1 + t2) = t0(t1 + t2)

in one step using axiom O2.
Assume an arbitrary closed interpretation that maps ti to pi for i=0; 1; 2. We need

to show that

p0�(p1 + p2)↔oro p0(p1 + p2):

By induction hypothesis we have that �pi↔o ro ��pi for i=1; 2.
Let R be the symmetric closure of the relation

Id ∪ {(p�(p1 + p2); p(p1 + p2)); (�(p1 + p2); p1 + p2) |p ∈ P}:
It is not diNcult to show that R is an orthogonal bisimulation; the case to check is the
pair containing �(p1 + p2) and p1 + p2.
The second process can match the �-step by the 1rst process with an empty �-path,

and it follows from Lemma A.1 that it can do a �-step.
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If the second process takes a step, say a step from p1 to p′
1, then we know by

Lemma A.1 that this must be a �-step. The 1rst process can match this step with the
path

�(p1 + p2)
�→p1 + p2

�→p′
1;

which clearly meets the requirements.
Finally, R is clearly rooted between p0�(p1 + p2) and p0(p1 + p2).

Axiom O3: This case is similar to the previous case. Let ti be a term, for i=0; 1; 2.
Suppose (induction hypothesis) that �t1 = ��t1 has a sound derivation. Suppose that
from this derivation we derive

t0(�(t1 + t2) + t2) = t0(t1 + t2)

in one step using axiom O3.
Assume an arbitrary closed interpretation that maps ti to pi for i = 0; 1; 2. We need

to show that

p0(�(p1 + p2) + p2)↔oro p0(p1 + p2):

By induction hypothesis we have that �p1↔o ro ��p1.
Let R be the symmetric closure of the relation

Id ∪ {(p(�(p1 + p2) + p2); p(p1 + p2)); (�(p1 + p2) + p2; p1 + p2) |p ∈ P}:
It is not diNcult to show that R is an orthogonal bisimulation; the case to check is the
pair containing �(p1 + p2) + p2 and p1 + p2.
The second process can match the �-step to p1 + p2 by the 1rst process with an

empty �-path, and it follows from Lemma A.1 that it has at least one �-step. If the
1rst process takes a step from p2, then the second process can match this step directly
with the same step from p2.
Next we look at steps taken by the second process. We know by Lemma A.1 that

a step from p1, say to p′
1, must be a �-step. The 1rst process can match such a step

with the path

�(p1 + p2) + p2
�→p1 + p2

�→p′
1:

Otherwise, if the second process takes a step from p2, then the 1rst process can match
this step directly with the same step from p2.
Finally, R is clearly rooted between p0(�(p1 + p2) + p2) and p0(p1 + p2).

A.2. Congruence proofs

We prove that rooted orthogonal bisimilarity is a congruence relation with respect
to all operators of ACPorth�� . The proof is both straightforward and elaborate. Consider
the transition system of closed ACPorth�� (A; ") terms for some arbitrary A and ". We let
t; u; v; w range over closed process terms and x; y, z range over states (the state set
consists of the closed terms and the termination state

√
).
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Two useful properties of orthogonal bisimulations: if R is an orthogonal bisimulation
with xRy, then x=

√
if, and only if, y=

√
, and, for a∈A�, x

a→ if, and only if, y a→.
Consider (for i=1; 2) process terms ti and ui such that ti↔ro ui. We prove that

t1  t2↔ro u1  u2 for all  ∈ {·; ‖; ‖ ; |}, and that †(t1)↔ro † (u1) for all † ∈ {@H ; �I ; �}
with arbitrary I; H ⊆A and priority ordering ¡ on A�. After this proof, we give a
separate proof for the alternative composition.
There is an orthogonal bisimulation Ri, that is rooted between ti and ui (for i=1; 2).

Let R=R1 ∪ R2 ∪ R′, where R′ is de1ned as follows:

R′ =

(t  v; u  w); (†(t); †(u))
∣∣∣∣∣∣
(t; u) ∈ R1\{(√;

√
)};

(v; w) ∈ R2\{(√;
√
)};

 ∈ {·; ‖; ‖ ; |}; † ∈ {@H ; �I ; �}

 :

We show that R is an orthogonal bisimulation that satis1es the appropriate root con-
ditions.

A.2.1. The set R is symmetric
Take any (x; y)∈R. If, for i=1; 2, (x; y)∈Ri, then also (y; x)∈R, since Ri is sym-

metric. If (x; y)∈R′, then we make the following case distinction:
• If x≡ t  v and y≡ u  w for some  , then tR1u and vR2w by de1nition of R′. Since

R1 and R2 are symmetric, we 1nd that uR1t and wR2v. Hence, by de1nition of R′,
it follows that (y; x)∈R.

• If x≡ † (t) for some †, then use the de1nition of R′ and the symmetry of R1.

A.2.2. Concrete action steps
Take any (x; y)∈R′ and assume that x a→ x′ for some a and x′ with a �= �. We have to

show that y a→y′ for some y′ with x′Ry′. We make a case distinction on the form of x.
• If x≡ t · v, then, by de1nition of R′, y≡ u ·w such that tR1u and vR2w. We see that

either t a→√
and x′ = v, or t a→ t′ and x′ = t′ · v. In the 1rst case also u a→√

since
tR1u. Hence y a→w. Since vR2w, also vRw. In the second case, we 1nd that u a→ u′

for some u′ with t′R1u′. Then y a→ u′ ·w. We get t′ · vRu′ ·w using the de1nition
of R′.

• If x≡ t ‖ v, then, by de1nition of R′, y≡ u ‖w such that tR1u and vR2w. We distin-
guish 8 possibilities:

(1) t a→√
and x′ = v. In this case also u a→√

, and hence y a→w.
(2) t a→ t′ and x′ = t′ ‖ v. In this case u a→ u′ with t′R1u′. Then y a→ u′ ‖w. Using the

de1nition of R′, we get x′Ru′ ‖w.
(3) v a→√

and x′ = t. Like case (1).
(4) v a→ v′ and x′ = t ‖ v′. Like case (2).

(5) t b→√
and v c→√

and "(b; c)= a and x′ =
√
. In this case, we have u b→√

and
w c→√

. Hence y a→√
. It holds that

√
R
√
, since

√
R1

√
(and

√
R2

√
).

(6) t b→ t′ and v c→√
and "(b; c)= a and x′ = t′. Straightforward.

(7) t b→√
and v c→ v′ and "(b; c)= a and x′ = v′. Straightforward.

(8) t b→ t′ and v c→ v′ and "(b; c)= a and x′ = t′ ‖ v′. Straightforward.
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• If x≡ t ‖ v, then, by de1nition of R′, y≡ u ‖ w such that tR1u and vR2w. We
distinguish 2 possibilities:

(1) t a→√
and x′ = v. In this case also u a→√

, and hence y a→w.
(2) t a→ t′ and x′ = t′ ‖ v. In this case u a→ u′ with t′R1u′. Then y a→ u′ ‖w. Using the

de1nition of R′, we get x′Ru′ ‖w.
• If x≡ t | v, then, by de1nition of R′, y≡ u |w such that tR1u and vR2w. We distinguish
4 possibilities:

(1) t b→√
and v c→√

and "(b; c)= a and x′ =
√
. In this case we have u b→√

and
w c→√

. Hence y a→√
. It holds that

√
R
√
, since

√
R1

√
(and

√
R2

√
).

(2) t b→ t′ and v c→√
and "(b; c)= a and x′ = t′. Straightforward.

(3) t b→√
and v c→ v′ and "(b; c)= a and x′ = v′. Straightforward.

(4) t b→ t′ and v c→ v′ and "(b; c)= a and x′ = t′ ‖ v′. Straightforward.
• If x≡ @H (t), then, by de1nition of R′, y≡ @H (u) such that tR1u. If x′ =

√
, then

t a→√
and a =∈H . Then also u a→√

, and y a→√
. If x′ �=√

, then x′ = @H (t′), for
some t′ with t a→ t′ and a =∈H . Then u a→ u′ for some u′ with t′R1u′. So y a→ @H (u′).
Using the de1nition of R′, we get @H (t′)R@H (u′).

• If x≡ �I (t), then we proceed as in the previous case.
• If x≡ �(t), then, by de1nition of R′, y≡ �(u) such that tR1u. If x′ =

√
, then t a→√

and there is no b¿a with t b→. Since tR1u, also u a→√
and there is no b¿a with

u b→. Hence y a→√
.

If x′ =
√
, then x′ ≡ �(t′), for some t′ with t a→ t′ and t does not have a b-step

with b¿a. It follows from tR1u, that u
a→ u′ for some u′ with t′R1u′ and u does not

have a b-step with b¿a. Hence y a→ �(u′) and x′R′�(u′).

A.2.3. Silent steps
Take any (x; y)∈R′ and assume that x �→ x′ for some x′. We have to show that y �→

and that, for some n¿0, there are yk such that y0 · · ·yn in �-paths(y) and x′Ryn and
xRyk for all k¡n.
We make a case distinction on the form of x.

• If x≡ t · v, then, by de1nition of R′, y≡ u ·w such that tR1u and vR2w. We see that
either t �→√

and x′ = v, or t �→ t′ and x′ = t′ · v. In the 1rst case, since tR1u, u
�→ and

hence y �→. Furthermore, for some n¿0, there are ui such that u0 · · · un in �-paths(u)
and un =

√
and tR1ui for all i¡n. Then (u0 ·w) · · · (un−1 ·w)w in �-paths(y). We

have x′R2w, and xR′ui ·w for i¡n by de1nition of R′.
In the second case, we 1nd that, since tR1u, u �→ and hence y �→. Furthermore,

for some n¿0, there are states ui such that u0 · · · un in �-paths(u) and t′R1un and
tR1ui for all i¡n. Then (u0 ·w) · · · (un ·w) in �-paths(y). We have x′R2un ·w, and
xR′ui ·w for i¡n by de1nition of R′.

• If x≡ t ‖ v, then, by de1nition of R′, y≡ u ‖w such that tR1u and vR2w. We distin-
guish 4 possibilities:

(1) t �→√
and x′ = v. In this case u �→ and hence y �→. Furthermore, for some n¿0,

there are ui such that u0 · · · un in �-paths(u) and un =
√

and tR1ui for all i¡n.
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Then also (u0 ‖w) · · · (un−1 ‖w)w in �-paths(y), and, by de1nition of R′, xR′ui ‖w
for all i¡n.

(2) t �→ t′ and x′ = t′ ‖ v. In this case u �→ and hence y �→. Furthermore, for some n¿0,
there are ui such that u0 · · · un in �-paths(u) and t′R1un and tR1ui for all i¡n.
Then also (u0 ‖w) · · · (un ‖w) in �-paths(y), and, by de1nition of R′, xR′ui ‖w,
for all i¡n, and x′R′un ‖w.

(3) v �→√
and x′ = t. Like case (1).

(4) v �→ v′ and x′ = t ‖ v′. Like case (2).
• If x≡ t ‖ v, then, by de1nition of R′, y≡ u ‖ w such that tR1u and vR2w. We

distinguish 2 possibilities:
(1) t �→√

and x′ = v. In this case u �→ and hence y �→. Furthermore, for some n¿0,
there are ui such that u0 · · · un in �-paths(u) and un =

√
and tR1ui for all i¡n.

Then also (u0 ‖ w)(u1 ‖w) · · · (un−1 ‖w)w in �-paths(y), and, by de1nition of R′,
xR′ui ‖w for all 0¡i¡n.

(2) t �→ t′ and x′ = t′ ‖ v. In this case u �→ and hence y �→. Furthermore, for some n¿0,
there are ui such that u0 · · · un in �-paths(u) and t′R1un and tR1ui for all i¡n. Then
also (u0 ‖ w)(u1 ‖w) · · · (un ‖w) in �-paths(y), and, by de1nition of R′, xR′ui ‖w,
for all 0¡i¡n, and x′R′un ‖w.

• If x≡ t | v, then x cannot have an outgoing �-step.
• If x≡ @H (t), then, by de1nition of R′, y≡ @H (u) such that tR1u. We see that t �→

and hence u �→ and y �→.
If x′ =

√
, then t �→√

. Furthermore, for some n¿0, there are ui such that
u0 · · · un in �-paths(u) and un =

√
and tR1ui for all i¡n. Then also @H (u0) · · ·

@H (un−1)
√

in �-paths(y) and xR′@H (ui) for all i¡n.
If x′ �=√

, then x′ = @H (t′), for some t′ with t �→ t′. Furthermore, for some n¿0,
there are ui such that u0 · · · un in �-paths(u) and t′R1un and tR1ui for all i¡n.
Then also @H (u0) · · · @H (un) in �-paths(y) and x′R′@H (un) and xR′@H (ui) for all
i¡n.

• If x≡ �I (t), then, by de1nition of R′, y≡ �I (u) such that tR1u. We distinguish 4
possibilities:

(1) t �→√
and x′ =

√
. We see that u �→ and hence y �→. Furthermore, for some n¿0,

there are ui such that u0 · · · un in �-paths(u) and un =
√

and tR1ui for all i¡n.
Then also �I (u0) · · · �I (un−1)

√
in �-paths(y) and xR′�I (ui) for all i¡n.

(2) t �→t′ and x′ = �I (t′). We see that u �→ and hence y �→. Furthermore, for some
n¿0, there are ui such that u0 · · · un in �-paths(u) and t′R1un and tR1ui for all
i¡n. Then also �I (u0) · · · �I (un) in �-paths(y) and x′R′�I (un) and xR′�I (ui) for
all i¡n.

(3) t a→√
and a∈ I and x′ =

√
. In this case, u a→√

and hence y �→√
.

(4) t a→ t′ and a∈ I and x′ = �I (t′). In this case, u a→ u′ for some u′ with t′R1u′. So
y �→ �I (u′). By de1nition of R′, we have x′R′�I (u′).

• If x≡ �(t), then, by de1nition of R′, y≡ �(u) such that tR1u.
If x′ =

√
, then t �→√

, and there is no a¿� with t a→. Since tR1u, we have
that for some n¿0, there are ui such that u0 : : : un in �-paths(u), un =

√
, and

tR1ui for i¡n. Since, for i¡n, tR1ui, it follows that there is no a¿� with ui
a→.
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Hence �(u0) : : : �(un−1) un in �-paths(y). We have that xR�(ui) by de1nition
of R′.
If x′ �=√

, then t �→ t′ for some t′ with x′ ≡ �(t′), and there is no a¿� with
t a→. Since tR1u, we have that for some n¿0, there are ui such that u0 : : : un in
�-paths(u), t′R1un, and tR1ui for i¡n. So u �→ and hence y �→. Since, for i¡n,
tR1ui, we 1nd that there is no a¿� with ui

a→. Hence �(u0) : : : �(un) in �-paths(y).
We have that xR�(ui) and x′R�(un) by de1nition of R′.

A.2.4. Rootedness
We have to show that R is rooted between t1  t2 and u1  u2, and between †(t1) and

†(u1), for all  ∈ {·; ‖; ‖ ; |} and † ∈ {@H ; �I ; �}.
• Sequential composition. Assume that t1 · t2 �→ x. We distinguish two possibi-
lities:

(1) t1
�→√

and x= t2. Since R1 is rooted between t1 and u1, it follows that u1
�→√

and hence u1 · u2 �→ u2.
(2) t1

�→ t′1 and x= t′1 · t2. Since R1 is rooted between t1 and u1, there must be some
u′1 with u1

�→ u′1 and t′1R1u′1. We see that u1 · u2 �→ u′1 · u2 and xRu′1 · u2.
Silent steps of u1 · u2 are treated symmetrically.

• Merge. Assume that t1 ‖ t2 �→ x. We distinguish 4 possibilities:
(1) t1

�→√
and x= t2. Since R1 is rooted between t1 and u1, it follows that u1

�→√
and hence u1 ‖ u2 �→ u2.

(2) t1
�→ t′1 and x= t′1 ‖ t2. Since R1 is rooted between t1 and u1, there must be some

u′1 with u1
�→ u′1 and t′1R1u′1. We see that u1 ‖ u2 �→ u′1 ‖ u2 and xRu′1 ‖ u2.

(3) t2
a→√

and x= t1. Like case (1).
(4) t2

a→ t′2 and x= t1 ‖ t′2. Like case (2).
Silent steps of u1 ‖ u2 are treated symmetrically.

• Left merge. Assume that t1 ‖ t2
�→ x. We distinguish 2 possibilities:

(1) t1
�→√

and x= t2. Since R1 is rooted between t1 and u1, it follows that u1
�→√

and hence u1 ‖ u2
�→ u2.

(2) t1
�→ t′1 and x= t′1 ‖ t2. Since R1 is rooted between t1 and u1, there must be some

u′1 with u1
�→ u′1 and t′1R1u′1. We see that u1 ‖ u2

�→ u′1 ‖ u2 and xRu′1 ‖ u2.
Silent steps of u1 ‖ u2 are treated symmetrically.

• Communication merge. No �-steps.
• Encapsulation. Assume that @H (t1)

�→ x. We distinguish 2 possibilities:
(1) t1

�→√
and x=

√
. Since R1 is rooted between t1 and u1, it follows that u1

�→√
and hence @H (u1)

�→√
.

(2) t1
�→ t′1 and x= @H (t′1). Since R1 is rooted between t1 and u1, there must be some

u′1 with u1
�→ u′1 and t′1R1u′1. We see that @H (u1)

�→ @H (u′1) and xR@H (u′1).
Silent steps of @H (u1) are treated symmetrically.

• Hiding. Assume that �I (t1)
�→ x. We distinguish 4 possibilities:

(1) t1
�→√

and x=
√
. Since R1 is rooted between t1 and u1, we have that u1

�→√
and hence �I (u1)

�→√
.
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(2) t1
�→ t′1 and x= �I (t′1). Since R1 is rooted between t1 and u1, there must be some

u′1 with u1
�→ u′1 and t′1R1u′1. We see that �I (u1)

�→ �I (u′1) and xR�I (u′1).
(3) t1

a→√
and a∈ I and x=

√
. From t1R1u1 it follows that u1

a→√
and hence �I (u1)

a→√
.

(4) t1
a→ t′1 and a∈ I and x= �I (t′1). Since t1R1u1, there must be some u′1 with u1

a→ u′1
and t′1R1u′1. We see that �I (u1)

�→ �I (u′1) and xR�I (u′1).
Silent steps of �I (u1) are treated symmetrically.

• Priority. Assume that �(t1)
�→ x. If x=

√
, then it must be that t1

�→√
and there is

no a¿� with t1
a→. Since t1R1u1, we 1nd that there is no a¿� with u1

a→. Since R1

is rooted between t1 and u1, it holds that u1
�→√

.
If x �=√

, then it must be that t1
�→ t′1 for some t′1 with x= �(t′1), and there is

no a¿� with t1
a→. Since t1R1u1, there is no a¿� with u1

a→. Since R1 is rooted
between t1 and u1, it must be that u1

�→ u′1 for some u′1 with t′1R1u′1. By de1nition
of R′, we 1nd that xR�(u′1).
Silent steps of �(u1) are treated symmetrically.

A.2.5. Alternative composition
We prove that ↔ro is a congruence with respect to alternative composition. We give

a separate proof for this operator, because, contrary to the other operators, we have to
use the root condition explicitly.
We show that the relation

R = R1 ∪ R2 ∪ {(t1 + t2; u1 + u2); (u1 + u2; t1 + t2)}
is an orthogonal bisimulation that is rooted between t1 + t2 and u1 + u2. Clearly, R is
symmetric.
• If t1 + t2

a→ t for some a and t with a �= �, it must be that ti
a→ t for some i∈{1; 2}.

It follows from tiRiui that ui
a→ u for some u with tRiu. Then also u1 + u2

a→ u and
tRu.

• If t1 + t2
�→ t for some t, then it must be that ti

�→ t for some i∈{1; 2}. Since Ri is
rooted between ti and ui, we have ui

�→ u for some u with tRiu. Then also u1+u2
�→ u

and tRu.

Steps of u1 + u2 are treated symmetrically. The second case shows that R is rooted
between t1 + t2 and u1 + u2.
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