
Bounded Concurrent Timestamp Systems
Using Vector Clocks

SIBSANKAR HALDAR

Bell Laboratories, Murray Hill, New Jersey

AND

PAUL VITÁNYI

Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands

Abstract. Shared registers are basic objects used as communication mediums in asynchronous con-
current computation. A concurrent timestamp system is a higher typed communication object, and
has been shown to be a powerful tool to solve many concurrency control problems. It has turned out to
be possible to construct such higher typed objects from primitive lower typed ones. The next step is to
find efficient constructions. We propose a very efficient wait-free construction of bounded concurrent
timestamp systems from 1-writer shared registers. This finalizes, corrects, and extends a preliminary
bounded multiwriter construction proposed by the second author in 1986. That work partially initiated
the current interest in wait-free concurrent objects, and introduced a notion of discrete vector clocks
in distributed algorithms.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—shared memory;
B.4.3 [Input/Output and Data Communications]: Interconnections (Subsystems)—asynchronous/
synchronous operation; D.1.3 [Programming Techniques]: Concurrent Programming; D.4.1 [Op-
erating Systems]: Process Management—concurrency, multiprocessing/multiprogramming; D.4.4
[Operating Systems]: Communications Management—buffering

General Terms: Algorithms, Theory, Verification

This research was supported in parts by the Netherlands Organization for Scientific Research (NWO)
under Contract Number NF 62-376 (NFI project ALADDIN), EU Fifth Framework project QAIP,
IST-1999-11234, the NoE QUIPROCONE IST-1999-29064, the ESF QiT Programme, and the EU
Fourth Framework BRA NeuroCOLT II Working Group EP 27150.
The work of S. Haldar was performed while visiting the Department of Computer Science, Utrecht
University, the Netherlands with support from the Netherlands Organization for Scientific Research
(NWO) under Contract Number NF 62-376 (NFI project ALADDIN), and continued while he was at
the Tata Institute of Fundamental Research, Mumbai, India.
P. Vitányi is also affiliated with the University of Amsterdam.
Author’s present addresses: S. Haldar, TimesTen Performance Software, 1991 Landings Drive,
Mountain View, CA 94043; P. M. B. Vit´anyi, Centrum voor Wiskunde en Informatica, Kruislaan
413, 1098 SJ Amsterdam, The Netherlands, e-mail: paulv@cwi.nl.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this worked owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax+1 (212) 869-0481, or permissions@acm.org.
C© 2002 ACM 0004-5411/02/0100–0101 $5.00

Journal of the ACM, Vol. 49, No. 1, January 2002, pp. 101–126.

102 S. HALDAR AND P. M. B. VITÁNYI

Additional Key Words and Phrases: Concurrent reading while writing; label; nonatomic operation
execution; operation—read and write, labeling and scan; operation execution; shared variable—safe,
regular and atomic; timestamp system, traceability, vector clock, wait-freedom

1. Introduction

Consider a system of asynchronous processes that communicate among themselves
by executing read and write operations on a set of shared variables (also known
as sharedregisters) only. The system has no global clock or other synchronization
primitives. Every shared variable is associated with a process (calledowner) which
writes it and the other processes may read it. An execution of a write (read) operation
on a shared variable will be referred to as aWrite(Read) on that variable. A Write on
a shared variable puts a value from a predetermined finite domain into the variable,
and a Read reports a value from the domain. A process that writes (reads) a variable
is called awriter (reader) of the variable.

1.1. WAIT-FREESHARED VARIABLE. We want to construct shared variables in
which the following two properties hold. (1) Operation executions are not necessar-
ily atomic, that is, they are not indivisible but rather consist of atomic sub-operations,
and (2) every operation finishes its execution within a bounded number of its own
steps, irrespective of the presence of other operation executions and their relative
speeds. That is, operation executions arewait-free. These two properties give rise
to a classification of shared variables, depending on their output characteristics.
Lamport [1986] distinguishes three categories for 1-writer shared variables, using
a precedence relation on operation executions defined as follows: for operation
executionsA andB, A precedes B, denotedA→ B, if A finishes beforeB starts;
A andB overlapif neither A precedesB nor B precedesA. In 1-writer variables,
all the Writes are totally ordered by “→”. The three categories of 1-writer shared
variables defined by Lamport are the following:

(1) A safevariable is one in which a Read not overlapping any Write returns the
most recently written value. A Read that overlaps a Write may return any value
from the domain of the variable.

(2) A regularvariable is a safe variable in which a Read that overlaps one or more
Writes returns either the value of the most recent Write preceding the Read or
of one of the overlapping Writes.

(3) An atomicvariable is a regular variable in which the Reads and Writes behave
as if they occur in some total order which is an extension of the precedence
relation.

A shared variable isBoolean1 or multivalueddepending upon whether it can
hold only two or more than two values.

1.2. MULTIWRITER SHARED VARIABLE. A multiwriter shared variable is one
that can be written and read (concurrently) by many processes. Lamport [1986]
constructed a shared variable that could be written by one process and read by one
other process, but he did not consider constructions of shared variables with more
than one writer or reader. Vit´anyi and Awerbuch [1986] were the first to construct an

1Boolean variables are referred to asbits.

Bounded Concurrent Timestamp Systems Using Vector Clocks 103

atomic multiwriter shared variable from 1-writer variables. They propose two con-
structions: one from 1-writer multireader shared variables using bounded control in-
formation that turned out to be incorrect [Vit´anyi and Awerbuch 1987] (just regular
and not atomic as claimed), and the other from 1-writer 1-reader variables using un-
bounded control information. The latter construction is correct. It is made bounded
in Li et al. [1996], yielding one of the most optimal implementations that are cur-
rently known. (In this article, we correct and extend the first construction to obtain
an efficient version of the more general notion of bounded concurrent timestamp
system as defined below.) Related work is Abraham [1995], Bloom [1987/1988],
Burns and Peterson [1987], Haldar and Vidyasankar [1995a, 1991/1995b, 1996],
Israeli and Shaham [1992], Kirousis et al. [1987], Lamport [1986], Li and Vit´anyi
[1992], Li et al. [1987/1996], Newman-Wolfe [1987], Peterson [1983], Peterson and
Burns [1987], Schaffer [1988], Singh et al. [1987/1994], and Vidyasankar [1990].
In particular, it is now possible to construct bounded multiwriter atomic variables
from 1-writer 1-reader safe bits. See Li et al. [1996], and the last section of this
paper, for a brief history of the subject.

1.3. TIMESTAMP SYSTEM. In a multiwriter-shared variable, it is only required
that every process keeps track of which process wrote last. There arises the general
question whether every process can keep track of the order of the last Writes by all
processes. This idea was formalized by Israeli and Li [1993]. They introduced and
analyzed the notion oftimestamp systemas an abstraction of such a higher typed
communication medium. In a timestamp system, every process owns anobject, an
abstraction of a set of shared variables. One of the requirements of the system is
to determine the temporal order in which the objects are written. For this purpose,
each object is given alabel(also referred to astimestamp) which indicates the latest
(relative) time when it has been written by its owner process. The processes assign
labels to their respective objects in such a way that the labels reflect the real-time
order in which they are written to. These systems must support two operations,
namely labeling and scan. A labeling operation execution (Labeling, for short)
assigns a new label to an object, and a scan operation execution (Scan, for short)
enables a process to determine the ordering in which all the objects are written, that
is, it returns a set of labeled-objects ordered temporally. We are concerned with
those systems where operations can be executedconcurrently, in an overlapped
fashion. Moreover, operation executions must bewait-free, that is, each operation
execution will take a bounded number of its own steps (the number of accesses to
the shared space), irrespective of the presence of other operation executions and
their relative speeds.

Wait-free constructions of concurrent timestamp systems (CTSs, for short) have
been shown to be a powerful tool for solving concurrency control problems
such asfcfs-mutual exclusion [Dijkstra 1965; Lamport 1974], multiwriter mul-
tireader shared variables [Vit´anyi and Awerbuch 1986], probabilistic consensus
[Abrahamson 1988; Chor et al. 1987],fcfs l-exclusion [Fischer et al. 1979] by
synthesizing a “wait-free clock” to sequence the actions in a concurrent system.

Here, we are interested in constructing concurrent timestamp systems using
1-writer shared variables. It is not difficult to construct a timestamp system if the
shared space is unbounded (there is no limit on the size of some shared variables).
The problem gets much harder for bounded (shared space) systems. Abounded
timestamp systemis a timestamp system with a finite set of bounded size labels.

104 S. HALDAR AND P. M. B. VITÁNYI

In the rest of the article, unless stated otherwise, by a timestamp system we mean
a wait-free bounded concurrent timestamp system.

Israeli and Li [1987/1993] constructed a bit-optimal bounded timestamp system
for sequential operation executions. Theconcurrentcase of bounded timestamp
system is harder and the first generally accepted solution is due to Dolev and Shavit
[1989/1997]. Their construction is the same type as Israeli and Li [1987/1993] and
uses shared variables of sizeO(n), wheren is the number of processes in the sys-
tem. Each Labeling requiresO(n) steps, and each ScanO(n2 logn) steps. In their
construction, no Scan writes any shared variables: It is a “pure” reading operation
execution. (But, by the theorem of Lamport [1986, page 91], all such constructions
become de facto impure if we break them down to the lowest level of system build-
ing.) Following Dolev and Shavit [1997], several researchers have come up with
other constructions. Israeli and Pinhasov [1992] use shared variables of sizeO(n2);
Labeling and Scan requireO(n) steps. Gawlik et al. [1992] use shared variables
of sizeO(n2); Labeling and Scan accessO(n logn) shared variables. Dwork and
Waarts [1992/1999] introduce a powerful communication abstraction called “trace-
able use abstraction” to recycle values of shared variables. They demonstrate the
usefulness of the abstraction by constructing a CTS, borrowing the basic ideas and
techniques from Vit´anyi and Awerbuch [1986] for recycling private values. Their
construction requires shared variables of sizeO(n logn); Labeling and Scan require
O(n) steps. Later, they along with Herlihy and Plotkin [Dwork et al. 1992/1999] pro-
pose a construction using shared variables of sizeO(n); Labeling and Scan access
O(n) shared variables. Unlike the Israeli–Li and Dolev–Shavit constructions, Scans
in other proposed constructions are not pure; they write a lot of shared space.

1.4. OUR RESULT AND RELATED WORK. Among the constructions mentioned
above, the one of Dwork and Waarts [1992/1999] is relatively simple and efficient
as well.2 They introduce “traceable-use abstraction” to bound the size of labels.
As in Vitányi and Awerbuch [1986], each label is a vector ofn private values, one
for each ofn processes. Using a strategy similar to, and extending Vit´anyi and
Awerbuch [1986], the abstraction helps each process to keep track of its private
values that are in use in the system. At any point in time, a process can use only
a bounded number of private values of another process. Exploiting that feature,
the abstraction helps in bounding the set of private values needed. The labels are
read by executing atraceable-readfunction, and written by executing atraceable-
write procedure. When the traceable-read function is executed to read a label, the
executing process explicitly informs all other processes which of their private values
it is going to use. A process can find which of its private values are in use by other
processes even if the values propagate through these processes in tandem one after
another. To determine which of its private values are currently not in use, a process
executes agarbage collectionroutine. This routine helps processes to safely recycle
their respective private values that are not in use. These three routines are at the
heart of implementing the traceable-use abstraction. Dwork and Waarts [1999] have
shown how these routines are used in constructing a bounded concurrent timestamp
system. The most intricate among these routines is the garbage collection, whose
time complexity isO(n2) that could be, though nonstandard, uniformly amortized

2 We find it is the easiest one to understand; also see comments by Yakovlev [1993].

Bounded Concurrent Timestamp Systems Using Vector Clocks 105

over O(n2) labeling operation executions. To achieve this, each process needs to
maintain a private, separate, pool of 22n2 private values. The costliest part of their
construction is the use of multireader “order” variables. The construction uses,
for each process,2(n) sets of 22n-many 1-writern-reader atomic variables of
size2(n logn) bits each. Let us roughly estimate their space complexity at the
fundamental level, that is, at the level of 1-writer 1-reader safe bits. (To implement
a 1-writern-reader atomic variable of sizem bits, the constructions in Lamport
[1986] and Vidyasankar [1990] together require 3mn1-writer 1-reader safe bits, 2n
1-writer 1-reader atomic bits and one 1-writern-reader atomic bit. Each 1-writer
1-reader atomic bit can be implemented fromO(1) 1-writer 1-reader safe bits
[Haldar and Vidyasankar 1995a; Lamport 1986; Tromp 1989; Vidyasankar 1996].
A 1-writern-reader atomic bit can be implemented fromO(n2) safe bits [Haldar and
Vidyasankar 1995a]. Thus, we require a total of 3mn+O(n2) 1-writer 1-reader safe
bits to implement a 1-writern-reader atomic variables of sizem bits.) Thus, there is
a need of at leastÄ(n4 logn) bits at the fundamental level just for the order variables
in each process. Consequently, we need at leastÄ(n5 logn) 1-writer 1-reader safe
bits for all order variables of all processes. In addition, there are other shared
variables for the processes.

The bounded multiwriter shared variable construction of Vit´anyi and Awerbuch
[1986], while falling short of the claimed atomicity [Vit´anyi and Awerbuch 1987],
has brought into prominence many techniques that were used later in wait-free
computing. An example is the idea of a label as a vector ofn individual clocks.3

(In Vit ányi and Awerbuch [1986], vector entries are called “tickets.”) Even better, it
turns out that the corrected version presented here suffices to implement the higher
communication object type of bounded CTS. The current article is the final version
of the pioneering preliminary article [Vit´anyi and Awerbuch 1986] and its correction
[Haldar 1993]. Dwork and Waarts [1992/1999] without giving proper credit, used
the idea of (bounded) vector clocks and other techniques introduced in Vit´anyi
and Awerbuch [1986], and hence their solution bears a close resemblance to the
construction proposed here (and, in fact, to other constructions [Peterson and Burns
1987; Schaffer 1988] based on Vit´anyi and Awerbuch [1986]). On the other hand,
our construction uses some ideas from their traceable-use abstraction. We observe
that, in CTSs, the propagation of private values is restricted to only one level of
indirection, and not to arbitrary levels. Consequently, the propagation of private
values can be tracked down by their respective owner processes with relative ease.
And, the one-level indirect propagation of private values by other processes need
not be informed to the original owner of these private values. Thus, one doesn’t
need the complete power of the traceable-use abstraction for constructing a CTS. In
our construction, we use less powerful traceable-read and traceable-write. But, we
prefer to use the same function/procedure names of Dwork and Waarts [1992/1999]
just to keep conformity with the literature. We do not require a garbage collection
routine, thereby simplifying the proposed CTS construction and its correctness
proof considerably. When a process executes the traceable-read function, it does
not explicitly inform the other processes which of their private values it is going to
use. On the other hand, the executers of the traceable-write procedure correctly find

3 The concept of vector clock is used in many areas of distributed computing, all in related contexts,
to keep track of execution evolution in distributed systems. (Cf. the articles by Mattern [1989, 1992].)

106 S. HALDAR AND P. M. B. VITÁNYI

which private values of which processes are in use in the system. Another important
point is that, in our construction, a Scan writes a limited amount of information,
only O(n) 1-writer 1-reader bits. Also, each local pool of private values contains
fewer than 2n2 values. We use a total ofn2 O(n logn) bit size 1-reader 1-writer
regular order variables, requiring a total ofO(n3 logn) safe 1-reader 1-writer bits
at the fundamental level. Both the scan and labeling operation executions require
O(n) steps in terms of the shared variables used. But in our construction, a Scan
reads at most (n − 1) 1-writer 1-reader regular order variables, whereas in their
construction it is (2n− 2) 1-writern-reader atomic ones. Thus, at the fundamental
level, they scan order-of-magnitude more bits than we do.

Our construction is not optimal in terms of the usage of shared space (Cf. Table I
in Section 5). It is perhaps possible to use a bounded set of global values and to
recycle them instead of using private values. Recycling of global values could lead
to an optimal construction.

The remainder of this article is organized as follows: Section 2 discusses the
system model and presents the problem statement precisely. A new construction of
concurrent timestamp systems is presented in Section 3, and its correctness proof
in Section 4. Section 5 concludes the article.

2. Model, Problem Definition, and Some Notations

A concurrent bounded timestamp system (CTS, in short) is an abstract communi-
cation system forn completely asynchronous processesP1, . . . , Pn. It consists of
n objectsO[1..n], each of finite space representation, and supports two operations,
namelylabelingandscan(ing). A labeling operation execution (Labeling, for short)
of processPp assigns a new label to objectO[p]. It may use all existing labels of
O[1..n], but it is not allowed to change the labels of components other thanO[p].
A scan operation execution (Scan, for short) enables a process to determine the or-
dering in which all the objects are written, that is, it returns a set of labeled-objects
ordered temporally.4 It returns a pair (̄l ,≺), wherel̄ is a set of current labels, one
for each object-component, and≺ is a total order on̄l . Operation executions of
each process are sequential. However, operation executions of different processes
need not be sequential, that is, they might overlap.

Let us denote thekth operation execution (Labeling or Scan) of a processPp by
O[k]

p , k ≥ 1. If it is a Scan (Labeling), we denote it explicitly byS[k]
p (L [k]

p). The label
written by a labeling operation executionL [k]

p is denoted byl [k]
p .

For operation executionsA and B on a shared variable,A - B means that
the execution ofA starts before that ofB finishes. That is, ifA - B, then either
A→ B or A overlapsB; in other words,B 6→ A. We also assume that ifB 6→ A,
thenA - B. That is, we assume the global time model [Lamport 1986].

A concurrent timestamp system must ensure the following properties [Dolev and
Shavit 1997; Gawlick et al. 1992]:

P1. Ordering.There exists an irreflexive total order⇒ on the set of all labeling
operation executions, such that the following two conditions hold.
—Precedence. For every pair of LabelingsL [k]

p andL [k′]
q , if L [k]

p → L [k′]
q then

L [k]
p ⇒ L [k′]

q .

4 We ignore, in this article, the data values of the objects.

Bounded Concurrent Timestamp Systems Using Vector Clocks 107

—Consistency. For every ScanS[j]
i returning (̄l ,≺), for every two labelsl [k]

p
and l [k′]

q in l̄ , l [k]
p ≺ l [k′]

q iff L [k]
p ⇒ L [k′]

q .
P2. Regularity.For every labell [k]

p in l̄ returned by a ScanS[j]
i , L [k]

p begins before
S[j]

i terminates, that is,L [k]
p
- S[j]

i , and there is no LabelingL [k′]
p such that

L [k]
p → L [k′]

p → S[j]
i .

P3. Monotonicity.Let S[j]
i and S[j ′]

i ′ be a pair of Scans returning setsl̄ and l̄ ′,
respectively, which contain labelsl [k]

p and l [k′]
p , respectively. IfS[j]

i → S[j ′]
i ′ ,

thenk ≤ k′.
P4. Extended Regularity.Let l [k]

p be a label returned by a ScanS[j]
i . For

each LabelingL [k′]
q , if S[j]

i → L [k′]
q , thenL [k]

p ⇒ L [k′]
q .

The intuitive meaning of the above four properties is as follows: The ordering
property says that all the labeling operation executions can be totally ordered, which
is an extension of their real-time precedence order “→”. Moreover, if two differ-
ent Scans return labelsl and l ′, then both Scans will have the same order on the
labels. The regularity property says that labels returned by a Scan are not obsolete.
The monotonicity property says that for every two Scans ordered by “→”, it is
not the case that the preceding Scan returns a new label of a processPp and the
succeeding Scan an old label ofPp. The monotonicity property does not imply that
labeling and scan operation executions of all processes are linearizable [Herlihy and
Wing 1990]. It does imply the linearizability of the Scans of all processes and label-
ing operation executions of a single process [Dolev and Shavit 1997]. The extended
regularity property says that if a Scan precedes a labeling operation executionL,
then all labels returned by the Scan were assigned by labeling operation executions
that precedeL in⇒.

We are interested in those CTSs in which operation executions arewait-free, that
is, each operation execution will take a bounded number of its own steps (a step is
a read/write of a shared variable), irrespective of the presence of other operation
executions and their relative speeds. This article is concerned with implementing
wait-free CTSs from basic 1-writer 1-reader shared variables.

3. The Construction

For the sake of convenience and better understanding, we first present an intuitive
informal description of a construction that uses unbounded shared space [Vit´anyi
and Awerbuch 1986] (the same idea is used in Dwork and Waarts [1992/1999]).
Each process maintains a separate local pool of private values that are natural
numbers with the standard order relations on them.

A label is a vector ofn values (“tickets” in Vitányi and Awerbuch [1986]); its
pth component holds a private value of processPp. The current label ofO[p] is
denoted byl p[1..n] or simply l p. The current private value of processPp is l p[p].
Initially, l p[p] = 1 andl p[q] = 0, for allq 6= p. To determine a new label forO[p],
processPp reads all current private values of other processesPq, namely,lq[q], and
increments its own private valuel p[p] by one to obtain the new private value. The
new label vector contains thesen values, and it is written atomically inO[p]. Since
the same private value is not used twice in labeling operation executions, no two
labels ever produced in the system are the same. The ordering of two label vectors
is done by using the standard lexicographic (dictionary) order≺: for every two

108 S. HALDAR AND P. M. B. VITÁNYI

labels,l p 6= lq, theleast significant indexin which they differ is the lowestk such
that l p[k] 6= lq[k]; then, l p≺ lq iff l p[k] < lq[k]. This lexicographic order≺ is a
total order on the set of all possible labels [Fishburn 1985], and this fact is a static
common knowledge to the processes. (In fact,≺ is an elementary example of a well-
ordered relation.) A Scan simply reads all the current labels and orders them using
the lexicographic order. This unbounded construction satisfies all the properties
required for a concurrent timestamp system (Cf. [Dwork and Waarts 1992/1999]).

In the unbounded construction discussed above, every time a processPk executes
a new labeling operation, it uses a new private value greater than the previously
used ones. In a bounded construction, each process has only a bounded number
of private values, and hence, it needs to use the same private value at different
times, that is, it needs to recycle its own private values. The following observation
(which is a synthesis of the text in Vit´anyi and Awerbuch [1986, page 236]) by
Dwork and Waarts helps doing the recycling in some possible way. We quote
them verbatim:

. . . for a system to be a concurrent timestamp system, every time a new private value
chosen by processPk need not be the one that was never used byPk beforehand;
roughly speaking, instead of increasing its private value, it is enough forPk to take
as its new private value any valuev of its private values that does not appear in any
labels, with one proviso:Pk must inform the other processes thatv is to be considered
larger than all its other private values currently in use.

Consequently, we cannot use the standard ordering relations on the natural numbers
any more, for the numbers may be recycled repeatedly. One now has to consider
these numbers as mere symbols with no standard ordering relations defined on them.
We define for every two different private valuesv andv′ of processPk currently
in use in the system,v ≺k v′ iff v is issued beforev′ by Pk. Thus, in the bounded
construction, the ordering relation among the private values changes in time, and
hence it cannot bea priori common knowledge. Note that at any point in time,
the relation≺k on the values in use is a total order as the values are produced in
sequences, and in fact, it is well ordered. For every two labels,l p 6= lq, obtained
by a Scan, ifk is the least significant index such thatl p[k] 6= lq[k], then we define
l p ≺ lq iff l p[k] ≺k lq[k]. Then,≺ is also a well-ordered relation [Fishburn 1985].
Now, we are concerned with two things in a bounded construction. First, to make
the relations≺k useful, processesPk cannot recycle a private value if some other
processes are using it. Second, for every two private valuesv andv′ of Pk currently
in use, ifv ≺k v′, then all other processes should (get to) know this ordering before
using these values. Note that the meaning of< on the natural numbers is a static
common knowledge, but the meaning of≺k changes continually. Thus, every time
Pk changes the ordering of two different private values, it should inform all the
other processes well in advance. Then, for all labels read by a Scan, the labels are
ordered lexicographically, based on the orderings≺k of all processesPk. Then,
the correctness of the bounded system trivially follows from that of the unbounded
system mentioned above (given in Vit´anyi and Awerbuch [1986] and Dwork and
Waarts [1992/1999]).

In the following paragraphs, we present a novel construction, based on Vit´anyi
and Awerbuch [1986] and Haldar [1993] to achieve the aforementioned two objec-
tives. The construction is given in Figure 1.

Bounded Concurrent Timestamp Systems Using Vector Clocks 109

FIG. 1. Shared variables.

We now introduce some terminology. The description of the construction
has five parts: shared variables declaration, TRACEABLE-WRITE procedure,
TRACEABLE-READ function, LABELING procedure and SCAN function. The
procedures and the functions are written in a Pascal-type language. To avoid too
many “begin” s and “end” s, some blocks are shown just by indentation. All the
statements in the four routines are numbered only for reference purposes.

A base shared variablex is read (respectively, written) by executing an instruc-
tion “readlocal-variablefrom x” (respectively, “writelocal-variablein x”), where
thelocal-variableis local to the function or the procedure. The read-instruction as-
signs the value ofx to thelocal-variable, and the write-instruction writes the value
of the local-variable in x. The writer (owner) of a shared variable can retain the
value of the variable in its local storage and refer to it later on if needed, that is,
it need not read the shared variable to determine the current value of the variable.
Nevertheless, for the sake of convenience and to avoid using many local vari-
ables, we let the writer also read its own shared variable. It also uses some private

110 S. HALDAR AND P. M. B. VITÁNYI

FIG. 1. Construction for processPp. (Cont’d.)

(local, nonshared) variables for each process. We assume that the private variables
are persistent.

Let us consider operation executions of a particular processPp. ProcessPp
executes the LABELING procedure to obtain and assign a new label toO[p], and
executes the SCAN function to report the temporal ordering of the labels ofO[1..n].
In a labeling operation execution, it selects a presently unused private value from
its local pool of values (Statements 1–2 in the LABELING procedure), collects
the current private values of all other processes (Statements 5–6), and then writes
thesen values atomically inO[p] as its new label (Statement 7). The selection of
a new private value is done in such a way that there is no trace of this value in the
system at present. In a scan operation execution, processPp first reads the current
labels of all the processes (Statement 1 in the SCAN function), and then determines
their temporal ordering using the latest ordering information available from some
ordering shared variables (Statement 2).

The collection of the current private values of other processes is done by executing
the TRACEABLE-READ function, and the writing of the new label is done by

Bounded Concurrent Timestamp Systems Using Vector Clocks 111

FIG. 1. Construction for processPp. (Cont’d.)

executing the TRACEABLE-WRITE procedure.5 These two routines collectively
implement atomic reading and writing of labels from and into objectsO[p]. (In rest
of the article, an execution of the TRACEABLE-READ function (TRACEABLE-
WRITE procedure) will be called a traceable Read (traceable Write).) Note that
these two routines are not parts of the interface to the CTS, and the processes cannot
directly invoke them. They directly invoke the LABELING and SCAN routines in
which they, in turn, invoke traceable Read (Write) to read (write) labels.

A processPp uses shared variablesw[p, 1..n], r[p, 1..n], c[p], label[p, 0..1]
and copylabel[p, 1..n] to read and write new labels from and into objectO[p]
atomically. Thelabel andcopylabelvariables are used to hold labels ofO[p]. w
andr are handshake variables used to detect overlapping of traceable Reads and
Writes. The variablec is used to atomically declare writings of new labels inO[p].
ProcessPp uses the shared variablesorder[p, 1..n] to inform all the processes
of the latest ordering relation≺p. The shared variableslend[p, 1..n] are used to
inform all the processes which of their private values might be in use in the system.

5 These two routines resemble the READ and WRITE routines in Haldar and Vidyasankar
[1991/1995b, 1996], Vidyasankar [1990], and Vit´anyi and Awerbuch [1986] pretty closely.

112 S. HALDAR AND P. M. B. VITÁNYI

The componentlend[p, j] contains all the private values of processPj that Pp
may have lent to other processes. ProcessPp also uses static private variables:clp,
myLendp,≺p, andold-labelp, clp andmyLendp always store the values ofc[p] and
lend[p, 1..n], respectively, locally.≺p contains the latest ordering information of
all the private values in use in the system.old-labelp stores the label of the ongoing
or the recently completed Labeling operation execution.

The traceable Writes of processPp use twon-reader safemain label variables,
label[p, 0] andlabel[p, 1], and a 1-reader safecopy label variablefor each process,
copylabel[p, 1..n]. The main label variables are used alternately for writing suc-
cessive new labels. Immediately after writing a new label in a main label variable,
the process records that variable index in the 1-writer multireader Boolean atomic
variablec[p]. (This writing atomically “declares” the current label of component
O[p].) Then, the process checks for eachi whether a new traceable Read of pro-
cessPi started since the last traceable Write (ofPp). This is done by using a pair of
Boolean 1-writer 1-reader (handshaking) atomic variablesr[i, p] andw[p, i].6 Pro-
cessPi sets these values different, by assigning the complement ofw[p, i] to r[i, p]
at the beginning of each traceable Read (Statements 1–2 in TRACEABLE-READ),
and processPp makes sure that they are the same, at the end of each traceable Write
(Statements 4.1 and 4.2.3 in TRACEABLE-WRITE). In this way, the processesPp

andPi can find if there are overlappings of their traceable Writes and Reads. Hence,
if the two values are different when the processPp checks them, a new traceable
Read ofPi must have started by then. In that case,Pp writes the new label value
in copylabel[p, i] also, and then sets the above values the same, by assigning the
r[i, p] value tow[p, i]. (This way it is guaranteed that a reading and a writing on
copylabelvariables do not overlap each other, and contain a valid value for the
traceable Read [Vit´anyi and Awerbuch 1986; Haldar and Vidyasankar 1991/1995b;
Vidyasankar 1990].) For each such processPi , Pp takes note of which of the private
values of processesPj could be used byPi (Statement 4.2.2). Finally,Pp informs
all the processesPj which of their private values could be in use (all thatPp knows
of) through 1-writer 1-reader regular variableslend[p, j] (Statement 6).

Each traceable Read of processPp, from a processPi , after readingw[i, p]
and writing its complement inr[p, i] as mentioned above (Statements 1–2 in
TRACEABLE-READ), finds out fromc[i] the main label variable that has been
written byPi most recently, and reads from that variable. Then, it readsw[i, p] again
and compares withr[p, i]. If the two values continue to be different, then the read-
ing of the main label variable does not overlap any writings of the label variable and
hence it returns the value just read from the main label variable. Otherwise, there is
a possibility that the reading of the label variable overlaps with some writing of the
same variable, and hence, it readscopylabel[i, p] and returns that value. Note that,
in the latter case, a traceable Write byPi must have finished (with respect toPp, i.e.,
Pi must have done loop iterationp at Statement 4 in TRACEABLE-WRITE) after
the traceable Read started, and that Write would have written incopylabel[i, p].

In selecting a new (currently unused) private value, processPp does not use
any of the values stored inlend[1..n, p] (Statements 1–2 in LABELING). After
selecting the new private value, sayv, Pp informs all processesPi that v is the
most recent private value through 1-writer 1-reader regular variablesorder[p, i]
(Statements 3–4), which are used by the Scans ofPi .

6 This strategy of detecting overlapping operation execution is pioneered by Peterson [1983].

Bounded Concurrent Timestamp Systems Using Vector Clocks 113

4. Correctness Proof

PROPOSITION 1 [LAMPORT 1986]. For operation executions B and C on a
shared variable, and all operation executions A and D, if A→ B - C→ D,
then A→ D.

PROOF. The implication follows by the transitivity of (i)A finishes beforeB
starts, (ii)B starts beforeC finishes and (iii)C finishes beforeD starts.

Definition 1. For operation executionsA andB executed on the same atomic
variablex, we sayA⇒x B if A precedesB in the total ordering imposed on the
operation executions by the atomic variable. The subscriptx is omitted when it is
clear from the context.

PROPOSITION 2. For operation executions B and C on an atomic variable x,
and all operation executions A and D, if A→ B⇒x C→ D, then A→ D.

PROOF. The relationB⇒x C impliesB precedes or overlapsC (since the total
order imposed on the operation executions by the atomic variable is an extension
of the precedence relation), that is,B - C. Then the implication follows by
Proposition 1.

The following notations are used in the presentation of the correctness proofs.

N1. Thekth operation execution of a processPp is denoted, as stated in Section 2,
by O[k]

p (O), k ≥ 1; if it is a Scan (alternatively, a Labeling), we denote it
explicitly by S[k]

p (O) (alternatively,L [k]
p (O)). The “(O)” part in the notation is

omitted when it is clear from the context. All the operation executions ofPp
are totally ordered. That is, fork > 2 O[k−1]

p → O[k]
p .

N2. For a shared variablex, the Read (respectively, Write) ofx by O[k]
p is denoted

by R[k]
p (x) (respectively,W[k]

p (x)). If x is referred more than once, then the
superscript [k, j] is used for thejth access.

N3. Each operation executionO[k]
p (L [k]

p or S[k]
p) of processPp executes the

TRACEABLE-READ function for every other processPi ; the whole func-
tion execution is denoted by a traceable ReadTR[k]

p,i .
N4. Each labeling operation executionL [k]

p of process Pp executes the
TRACEABLE-WRITE procedure; the whole procedure execution is denoted
by a traceable WriteTW[k]

p .
N5. For the sake of convenience, the variablesr[p, i] andw[p, i] are abbreviated

to r p,i andwp,i , respectively.

Definition 2. For a shared variablex, we define areading mappingπx for Reads
of x as follows: if a ReadR returns the value written by a WriteW, thenπx(R) is
W; otherwise,πx(R) is undefined. (Note, for safex, πx is a partial mapping.) We
omit the subscriptx when it is clear from the context.

LEMMA 1

(a) No two consecutive labeling operation executions of a process have the same
private value.

(b) No two consecutive traceable Writes of a process have the same private value.

114 S. HALDAR AND P. M. B. VITÁNYI

PROOF. Part (a) follows from the select statement (Statement 2) in the LABEL-
ING procedure. Part (b) follows from Part (a) as each Labeling executes one and
the only one traceable Write.

LEMMA 2. Each time the value written in wp,i is the complement of the previous
value of wp,i .

PROOF. Immediate from Statements 4.1, 4.2 and 4.2.3 in the TRACEABLE-
WRITE procedure.

LEMMA 3. Any traceable Write TW[k]
p (actually, L [k]

p) that writes wp,i sets
wp,i = ri,p, and if R[l ,1]

i (wp,i)⇒ W[k]
p (wp,i)⇒ R[l ,2]

i (wp,i) for some traceable
Read TR[l]i,p (actually, O[l]

i) of process Pi , then the equality continues to hold until
the execution of TR[l]i,p is complete, in fact until the next traceable Read TR[l+1]

i,p
writes ri,p.

PROOF. Initially, wp,i = ri,p, since both of them are initialized to 0. Among the
traceable Writes of the processPp, some will writewp,i , and some will not. Let
TW

[kj]
p , j ≥ 1, kj ≥ 1, be thej th traceable Write that writeswp,i .

ConsiderTW[k1]
p . By Lemma 2, it writes 1 inwp,i . This implies, by Statements 4.1

and 4.2.3 in TRACEABLE-WRITE, that it read 1 fromri,p. Since the initial value of
ri,p is 0, some traceable Read ofPi must have written 1 inri,p. LetTR[l1]

i,p be the first
such traceable Read. ThenW[l1]

i (ri,p)⇒ R[k1]
p (ri,p). Note thatTR[l1]

i,p reads 0 from
wp,i and hence writes 1 inri,p (Statements 1–2 in TRACEABLE-READ). Also each
subsequent traceable ReadTR

[l ′1]
i,p, if any, such thatR

[l ′1,1]
i (wp,i)⇒W[k1]

p (wp,i),
would read 0 fromwp,i , and hence will write 1 inri,p. Hence, irrespective of whether
W

[l ′1]
i (ri,p)⇒ R[k1]

p (ri,p) or R[k1]
p (ri,p)⇒W

[l ′1]
i (ri,p), onW[k1]

p (wp,i), wp,i = ri,p, and
if R[l ,1]

i (wp,i)⇒W[k1]
p (wp,i)⇒ R[l ,2]

i (wp,i) for some traceable ReadTR[l]
i,p, then the

equality continues to hold untilTR[l]
i,p is complete, in fact until the next traceable

ReadTR[l+1]
i,p writes ri,p, sincewp,i will not be changed by any traceable Write

TW
[k′1]
p , for k′1 > k1, that may occur beforeTR[l]

i,p is complete.
Assuming as induction hypothesis that the assertion holds forTW

[kj]
p , for

some j , we show that the assertion holds forTW
[kj+1]
p . By the statement of the

lemma,TW
[kj]
p setswp,i = ri,p by writing value, sayb ∈ {0, 1} in wp,i . Then, by

Lemma 2,TW
[kj+1]
p writes ¬b in wp,i .7 This implies, by Statements 4.1 and

4.2.3 in TRACEABLE-WRITE, that it read¬b from ri,p. As the value ofri,p

is b whenTW
[kj]
p reads it, there must be a traceable Read that writes¬b in ri,p

after TW
[kj]
p setswp,i = ri,p. Let TR[l]

i,p be the first such traceable Read. Then,
W[l]

i (ri,p)⇒ R
[kj+1]
p (ri,p), and TR[l]

i,p writes ¬b in r i,p. Each subsequent trace-
able ReadTR[l ′]

i,p, if any, such thatR[l ′,1]
i (wp,i)⇒W

[kj+1]
p (wp,i), would read

b from wp,i , and hence will write¬b in ri,p. Hence, irrespective of whether
W[l ′]

i (ri,p)⇒ R
[kj+1]
p (ri,p) or R

[kj+1]
p (ri,p)⇒W[l ′]

i (ri,p), onW
[kj+1]
p (wp,i), wp,i = ri,p.

If R[l]
i (wp,i)⇒W

[kj+1]
p (wp,i) ⇒ R[l ,2]

i (wp,i) for some traceable ReadTR[l]
i,p, then

the equality continues to hold untilTR[l]
i,p is complete, (in fact, until the next

traceable ReadTR[l+1]
i,p writesri,p, sincewp,i will not be changed by any traceable

Write TW[k′]
p that may occur beforeTR[l]

i,p is complete, fork′ > kj+1.)

7 ¬b is defined as 1− b.

Bounded Concurrent Timestamp Systems Using Vector Clocks 115

Lemma 3 implies the following property.

LEMMA 4. Let TR[l]
i,p be a traceable Read. There can be at most one traceable

Write, say TW[k]
p , such that R[l ,1]

i (wp,i)⇒W[k]
p (wp,i)⇒ R[l ,2]

i (wp,i). The traceable
Read TR[l]i,p on R[l ,2]

i (wp,i) will find ri,p = wp,i if there is such a traceable Write,
and ri,p 6= wp,i otherwise.

In the following, we use a typical kind of notation for labeling operation
executions.

N6. The labeling operation executions of processPp are sometimes denoted by
L

[kj]
p , wherek is some alphabet andj is a natural number,j ≥ 1,kj ≥ 1. Thus,

for j > 1,L
[kj−1]
p andL

[kj]
p are two consecutive labeling operation executions of

Pp such thatL
[kj−1]
p → L

[kj]
p . They need not be two consecutive operation

executions, that is,kj ≥ kj−1+ 1.

In the following two lemmas, we show that traceable Reads return valid label
values. We also define their reading mapping functionπ . Lemmas 5 and 6 deal
with the case-traceable Reads return values fromlabel andcopylabelvariables,
respectively.

LEMMA 5. Let TR[l]
i,p be a traceable Read that finds ri,p 6= wp,i on R[l ,2]

i (wp,i).
Supposeπ (R[l]

i (c[p])) is W
[kj]
p (c[p]) (of the traceable Write TW

[kj]
p of L

[kj]
p), and

label[p, x] is the main label variable from which TR[l]
i,p returns the label value.

(a) If j ′ is the least index such that R[l ,2]
i (wp,i)⇒ W

[kj ′]
p (wp,i), then j′ equals j

or j + 1.
(b) π (TR[l]

i,p) is TW
[kj]
p .

(c) The traceable Read TR[l]
i,p reading label[p, x] does not conflict with any

traceable Write writing that label variable.

PROOF

(a) Let j ′′ be the greatest index such thatj ′′< j ′ and TW
[kj ′′]
p writes wp,i .

Then, by (i) the choice ofj ′, (ii) the assumption thatTR[l]
i,p finds ri,p 6= wp,i

on R[l ,2]
i (wp,i), and (iii) Lemma 4, it follows thatW

[kj ′′]
p (wp,i)⇒ R[l ,1]

i (wp,i). That

is, W
[kj ′′]
p (wp,i)⇒ R[l ,1]

i (wp,i)→ R[l ,2]
i (wp,i)⇒W

[kj ′]
p (wp,i). The traceable Write

TW
[kj ′′]
p setswp,i equal tori,p, TR[l]

i,p setsri,p not equal towp,i , and henceTW
[kj ′]
p is

the first traceable Write, afterTW
[kj ′′]
p , that findsri,p 6= wp,i .

From W[l]
i (ri,p) → R[l]

i (c[p]) ⇒ W
[kj+1]
p (c[p]) → R

[kj+1]
p (ri,p), we have

W[l]
i (ri,p)→ R

[kj+1]
p (ri,p). That is, the traceable WriteTW

[kj+1]
p will find ri,p 6= wp,i ,

the inequality set byTR[l]
i,p, unless an earlier traceable Write has found the in-

equality and setwp,i equal tori,p. We claim that such an earlier traceable Write,

if one exists, can only beTW
[kj]
p . Suppose, on the contrary, that it isTW

[kj ′′′]
p ,

for j ′′′< j . Then, by the choice ofj ′′ and Lemma 4, we haveW
[kj ′′]
p (wp,i) ⇒

R[l ,1]
i (wp,i) → R[l]

i (c[p]) → R[l ,2]
i (wp,i) ⇒ W

[kj ′′′]
p (wp,i) → W

[kj]
p (c[p]). This

implies R[l]
i (c[p]) → W

[kj]
p (c[p]), contradicting the assumption thatπ (R[l]

i (c[p]))
is W

[kj]
p (c[p]). The assertion follows.

116 S. HALDAR AND P. M. B. VITÁNYI

(b and c) Letlabel[p, x′] be the variable in whichTW
[kj]
p writes.

For j ′ described in part (a), we haveR[l]
i (label[p, x])→ R[l ,2]

i (wp,i)⇒
W

[kj ′]
p (wp,i)→TW

[kj+2]
p . That is, TR[l]

i,p finishes reading label[p, x] before
the traceable WriteTW

[kj+2]
p starts its execution. From (i) the assumption

thatπ (R[l]
i (c[p])) is W

[kj]
p (c[p]), (ii) the property thatTW

[kj+1]
p does not write in the

same main label variable thatTW
[kj]
p writes, (iii) W

[kj]
p (label[p, x′])→

W
[kj]
p (c[p]) ⇒ R[l]

i (c[p]) → R[l]
i (label[p, x]), and (iv) Statements 1–3 in

TRACEABLE-WRITE, it follows that x = x′, and TW
[kj]
p finishes writing

label[p, x] beforeTR[l]
i,p starts reading it. The assertions follow.

LEMMA 6. Let TR[l]
i,p be a traceable Read that finds ri,p = wp,i on R[l ,2]

i (wp,i).

Suppose TW
[kj]
p is the traceable Write such that R[l ,1]

i (wp,i) ⇒ W
[kj]
p (wp,i) ⇒

R[l ,2]
i (wp,i).

(a) The traceable Read TR[l]
i,p reading copylabel[p, i] does not conflict with any

traceable Write writing it.
(b) π (TR[l]

i,p)=TW
[kj]
p .

PROOF
(a and b) By Lemma 4,TW

[kj]
p is the only traceable Write such that

R[l ,1]
i (wp,i)⇒W

[kj]
p (wp,i)⇒ R[l ,2]

i (wp,i). It is clear from the TRACEABLE-
WRITE procedure thatTW

[kj]
p writes the value incopylabel[p, i] (Statement 4.2.1)

before setting thewp,i andri,p values equal (Statement 4.2.3). This equality will not
be changed untilPi starts the next traceable Read. Thus, the traceable WriteTW

[kj+1]
p

and subsequent traceable Writes ofPp, if they find ri,p=wp,i , will not write the

copy label variable. FromW
[kj]
p (copylabel[p, i]) → W

[kj]
p (wp,i)⇒ R[l ,2]

i (wp,i)→
R[l]

i (copylabel[p, i]), we haveW
[kj]
p (copylabel[p, i])→ R[l]

i (copylabel[p, i]). The
assertions follow.

Now we would like to show that private values of processesPp are traceable. If a
processPi in its current label uses a private valuev of another processPp, Pi informs
this “using of” v by settinglend[i, p][1][i] to v at the end of the corresponding
traceable Write (Statements 5–6). Thus, all the private values in the existing labels
are traceable by their respective owners. The following lemma shows that the private
values used by Scans are also traceable.

LEMMA 7. Let a Scan S[l]i of a process Pi use a private value v of a process Pp
that has written the value v in a traceable Write TW

[kj]
p . Then, Pp does not recycle

v until S[l]
i is complete.

PROOF. We need to consider the following two cases.

Case1. S[l]
i gotv directly from Pp.

We need to consider two subcases.

Subcasea. If the traceable ReadTR[l]
i,p returns the valuev from copylabel[p, i],

then, by Lemmas 6 and 4, the traceable WriteTW
[kj]
p has executed theif-statement

body (Statement 4.2) for processPi . There it has setmyLendp[p][1][i] to v

Bounded Concurrent Timestamp Systems Using Vector Clocks 117

(Statement 4.2.2). The successive traceable Writes ofPp that occur beforeS[l]
i

is complete will not execute theif-statement, and hence, will not change the
myLendp[p][1][i] value. (Statement 5 does not change the value too.) As the
labeling operation executions ofPp do not reuse the values referred to in
lend[1..n, p], v will not be reissued at least untilS[l]

i is complete (Statements 1–2
in LABELING).

Subcaseb. If the traceable ReadTR[l]
i,p returns the valuev from a main label

variable, then by Lemma 5(a), traceable WriteTW
[kj]
p or TW

[kj+1]
p executes theif-

statement for processPi . In the case ofTW
[kj]
p , myLendp[p][1][i] is set tov, and

in the case ofTW
[kj+1]
p , myLendp[p][0][i] is set tov (Statements 4.2.2 and 7).

The successive traceable Writes ofPp that occur beforeS[l]
i is complete will not

execute theif-statement, and hence, will not change themyLendp[p][0..1][i] values.
(Statement 5 does not change the values too.) By Lemma 1,TW

[kj+1]
p uses a private

value different fromv. So, by the argument given in the Subcase a,v will not be
reissued as a new private value untilS[l]

i is complete.

Case2. S[l]
i gotv from another processPq.

CLAIM 1. Process Pq has obtained v directly from Pp.

PROOF. NoteS[l]
i got v by reading a label fromPq. That is,Pq writesv in the

pth component of the label. To form a new label,Pq uses thej th component of
the labels it reads from processesPj (Statements 5–6 in LABELING). Hence,Pq
obtainsv directly from Pp.

Let L [mo]
q be the corresponding labeling operation execution. Note that each

labeling operation execution also executes traceable Reads (Statement 5). Then
π (TR[mo]

q,p) is TW
[kj]
p andπ (TR[l]

i,q) is TW[mo]
q . As argued in Case 1, eitherTW

[kj]
p

or TW
[kj+1]
p storesv in myLendp[p][0..1][q]. This value will not be changed until

L [mo]
q is complete, in fact untilPq starts its next operation executionO[mo+1]

q . Let

TW
[kj ′]
p , j ′ ≥ j+1, be the first traceable Write that changes themyLendp[p][0..1][q]

values different fromv. Then, it must have foundL [mo]
q is complete and the next

operation execution ofPq, namelyO[mo+1]
q , has started. FromW[mo]

q (lend[q, p]) →
O[mo+1]

q (O) - L
[kj ′]
p (O) → L

[kj ′+1]
p , we haveW[mo]

q (lend[q, p]) → L
[kj ′+1]
p . That

is, L
[kj ′+1]
p and successive labeling operation executions ofPp would not reissue

v if v is found in lend[q, p] (Statements 1–2). Note thatTW[mo]
q will write v in

lend[q, p][1][q] at the end of its execution (Statements 5–6 in TRACEABLE-
WRITE). Also note that the traceable WriteTW

[kj ′]
p (actuallyL

[kj ′]
p) does not issue

v. Now, fromπ (TR[l]
i,q) isTW[mo]

q it follows, by Lemmas 5 and 6, that eitherTW[mo]
q or

TW[mo+1]
q would execute theif-statement forPi , and writev in myLendq[p][0..1][i]

indicating that the private valuev of Pp is being used byPi , and this will not be
changed untilS[l]

i is complete; in fact, until the next operation executionO[l+1]
i of

Pi starts. Hence,L
[kj ′+1]
p and successive labeling operation executions ofPp that

may occur beforeS[l]
i is complete are able to tracev in lend[q, p], and hence, will

not reissuev.

118 S. HALDAR AND P. M. B. VITÁNYI

COROLLARY 1. It is clear from the proof of Lemma7 that if a Scan
S[l]

i uses a private value v of Pp which is written in labeling opera-
tion execution L

[kj]
p , then TW

[kj]
p (O[p]) - TR[l]

i,p(O[p]) for direct reading
and TW

[kj]
p (O[p]) - TR[mo]

q,p (O[p]) → TW[mo]
q (O[q]) - TR[l]

i,q(O[q]) for indi-
rect reading of v via process Pq. For the latter relation, by the axioms of Anger

[1989],TW
[kj]
p (O[p]) - TR[l]

i,q(O[q]).

The following lemma shows that Scans can determine the correct temporal order
of the private values of all processes.

LEMMA 8. Let S[l]
i be a Scan that uses private values v and v′ of a process Pp.

Then, S[l]
i can determine the correct temporal order between the values v and v′.

PROOF. Assume ScanS[l]
i uses the two different private valuesv and v′ of

processPp that has written them in traceable WritesTW
[kj]
p andTW

[kj ′]
p , respec-

tively, where j < j ′, and hence,v ≺p v′ (as defined in Section 3). By Lemma 7,
Pp does not recyclev and v′ until S[l]

i is complete. To guarantee the correct-
ness of the timestamp system, we need to make sure thatS[l]

i can correctly de-
termine the orderv ≺p v′ in case these values are used in ordering some of the
scanned labels. From the LABELING and SCAN routines and Corollary 1, we
have W

[kj ′]
p (order[p, i])→TW

[kj ′]
p (O[p]) - TR[l]

i,q(O[q]) → R[l]
i (order[p, i]),

where q is as defined in Corollary 1. That is,W
[kj ′]
p (order[p, i]) → R[l]

i
(order[p, i]). Now, we need to make sure thatL

[kj ′]
p can correctly determine that

the private valuev is being used by the processPi , before writingorder[p, i]. Of
course, it would assumev′ could be used byPi too. Since it knowsv ≺p v′, to
inform this ordering toPi , it writes v at a lower indexed entry inorder[p, i] than
v′. The successive labeling operation executions do not change this ordering. Thus,
Pi can determine the order ofv andv′ correctly after readingorder[p, i], by the
regularity of order variables.

Now we answer the question howL
[kj ′]
p finds thatv might be used byPi . Note

that Pp does not know precisely which of its private valuesPi is going to use. So,
it guesses a subset of its private values, which contains the values actually being
used byPi . There are two cases to be considered.

Case1. Pi obtainsv directly from Pp. EitherTW
[kj]
p or TW

[kj+1]
p will reservev

for Pi by storingv in lend[p, p][0..1][i], and hence the use ofv by Pi is traceable.

Case2. Pi obtainsv indirectly through another processPq, for someq. From
the claim in the proof of Lemma 7, we know thatPq has obtainedv directly from
Pp. Let the corresponding labeling operation execution beL [m0]

q . Either TW
[kj]
p

or TW
[kj+1]
p will set lend[p, p][0..1][q] to v, and Pp assumesv could be used

by any processPi throughO[q] (one level of indirect propagation of a private
value). At the end ofL [mo]

q , in TW[mo]
q , Pq informs Pp thatv is inO[q] by setting

lend[q, p][1][q] to v (Statements 5–6), and this value could be used by any process
Pi . Alternatively, if Pq detects that thev is being used byPi , it informs “this using”
throughlend[q, p][0..1][i] (Statements 4.2.2 and 6).

Hence, if L
[kj ′]
p finds v in lend[p, p][0..1][i] or lend[p, p][0..1][q] or

lend[q, p][1][q] or lend[q, p][0..1][i], for someq, it will assume thatv is being
used byPi (Statements 1 and 4.1 in LABELING procedure).

Bounded Concurrent Timestamp Systems Using Vector Clocks 119

The assertion follows.

CLAIM 2. Each order variable is of size at most5n.

PROOF. As discussed in the proof of Lemma 8,Pp needs to reserve its private
values referred to inlend[q, p][0..1][i], lend[q, p][1][q] and lend[p, p][0..1][q]
for all q, that is, at most 5n values for processPi . The claim follows.

COROLLARY 2. The set of private values is bounded. In fact, by Statements1–2
in the LABELING procedure, the size of the set is less than2n2.

By the discussion at the end of the 3rd paragraph of Section 3, the correctness
of the proposed construction is immediate. However, for the sake of completeness,
we give the proof in Theorem 1. Before that, a technical lemma follows.

LEMMA 9. Let TR[l]
i,p and TR[l ′]

i ′,p be two traceable Reads such that TR[l]
i,p→

TR[l ′]
i ′,p andπ (TR[l]

i,p) be TW
[kj]
p . Then,

(a) W
[kj]
p (c[p]) ⇒ R[l ′]

i ′ (c[p]),

(b) π (TR[l ′]
i ′,p) is TW

[kj ′]
p , where j′ ≥ j , kj ′ ≥ kj .

PROOF. We have the following two cases.

Case1. TR[l]
i,p findsri,p 6= wp,i on R[l ,2]

i (wp,i).

Lemma 5 (b) implies thatπ (R[l]
i (c[p])) is W

[kj]
p (c[p]). Then, we haveTW

[kj−1]
p →

W
[kj]
p (c[p]) ⇒ R[l]

i (c[p]) → R[l ′,1]
i ′ (wp,i ′)→ R[l ′]

i ′ (c[p]).

Case2. TR[l]
i,p findsri,p = wp,i on R[l ,2]

i (wp,i).

By Lemma 6, we haveTW
[kj−1]
p →W

[kj]
p (c[p])→W

[kj]
p (wp,i)⇒R[l ,2]

i (wp,i)→
R[l ′,1]

i ′ (wp,i ′)→ R[l ′]
i ′,p(c[p]).

For both cases, we haveW
[kj]
p (c[p]) ⇒ R[l ′]

i ′ (c[p]); part (a) follows. If TR[l ′]
i ′,p

finds ri ′,p 6= wp,i ′ on R[l ′,2]
i ′ (wp,i ′), then part (b) follows by Lemma 5. Assume

TR[l ′]
i ′,p finds ri ′,p = wp,i ′ on R[l ′,2]

i ′ (wp,i ′). From the above two cases, we have

TW
[kj−1]
p → R[l ′,1]

i ′ (wp,i ′). Then part (b) follows by Lemmas 4 and 6.

THEOREM 1. The construction of Figure1 is a correct implementation of
wait-free bounded concurrent timestamp systems.

PROOF. The wait-freedom property is immediate from the structure of the
four routines in Figure 1. The boundedness follows from Corollary 2. We now
show that the construction satisfies all the four properties P1–P4 described in
Section 2.

Ordering. Consider two labeling operation executionsL [k]
p and L [k′]

q with la-
bels l [k]

p and l [k′]
q , respectively. Letm be the least significant index such that

l [k]
p [m] 6= l [k′]

q [m]. Assume these private valuesl [k]
p [m] andl [k′]

q [m] are written byPm

at labeling operation executionsL [so]
m andL [so′]

m , respectively. We defineL [k]
p ⇒ L [k′]

q

iff L [so]
m → L [so′]

m .

120 S. HALDAR AND P. M. B. VITÁNYI

—Precedence. Without loss of generality, we assumeL [k]
p → L [k′]

q . By Lemmas 5

and 6, we haveπ (TR[k]
p,m) is TW[so]

m andπ (TR[k′]
q,m) is TW[so′]

m . Then, fromTR[k]
p,m→

TR[k′]
q,m and Lemma 9(b), we haveso′ ≥ so. As l [k]

p [m] 6= l [k′]
q [m], we haveso′ 6= so,

and hence,so′ > so. That is,L [so]
m → L [so′]

m . The precedence property follows.
—Consistency. For any two labelsl [k]

p andl [k′]
q (returned by a Scan) such thatm

is the least significant index for whichl [k]
p [m] 6= l [k′]

q [m]. We definel [k]
p ≺ l [k′]

q

iff l [k]
p [m] ≺m l [k′]

q [m] iff L [so]
m → L [so′]

m . The consistency property follows by
Lemma 8 and the definition of⇒ given above.

Regularity. Consider a ScanS[j]
i that returns a labell [mo]

p that is writ-

ten by a labeling operation executionL [mo]
p , that is, π (TR[j]

i,p) is TW[mo]
p . By

Lemmas 5 and 6, we can sayTW[mo]
p

- TR[j]
i,p, and hence,L [mo]

p
- S[j]

i . The

second part of the regularity property follows from: (i) ifTR[j]
i,p finds ri,p 6= wp,i

on R[j,2]
i (wp,i), then, by Lemma 5,π (TR[j]

i,p) is TW[mo]
p , whereπ (R[j]

i (c[p])) is

W[mo]
p (c[p]), and so,TW[mo+1]

p 6→TR[j]
i,p, and henceL [mo+1]

p 6→ S[j]
i ; (ii) if TR[j]

i,p

finds ri,p = wp,i on R[j,2]
i (wp,i), then, by Lemma 6,π (TR[j]

i,p) is TW[mo]
p , where

R[j,1]
i (wp,i)⇒W[mo]

p (wp,i)⇒ R[j,2]
i (wp,i), and so,TW[mo+1]

p 6→ TR[j]
i,p, and hence

L [mo+1]
p 6→ S[j]

i .

Monotonicity. Consider two ScansS[j]
i → S[j ′]

i ′ . Let S[j]
i return labell [mo]

p from

a processPp. By Lemmas 5 and 6, we haveπ (TR[j]
i,p) is TW[mo]

p . FromS[j]
i → S[j ′]

i ′ ,

we haveTR[j]
i,p→ TR[j ′]

i ′,p. The monotonicity property follows by Lemma 9.

Extended Regularity.Consider a ScanS[j]
i that returns a labell [mo]

p that is writ-

ten by a labeling operation executionL [mo]
p , that is,π (TR[j]

i,p) is TW[mo]
p . For each

labeling operation executionL [m′]
q , if S[j]

i → L [m′]
q , thenTR[j]

i,p→ TR[m′]
q,p . Then, by

Lemma 9(a), we haveW[mo]
p (c[p]) ⇒ R[m′]

q (c[p]) and hence,π (TR[m′]
q,p) is TW[mo]

p
or a successor, by Lemma 9(b). Also by Lemmas 5 and 6 and the LABELING
procedure, we haveTR[mo]

p,s → TW[mo]
p

- TR[j]
i,p → TR[m′]

q,s for all s 6= p, that is,

TR[mo]
p,s → TR[m′]

q,s . Hence,L [m′]
q reads more recent (at least equal) private values of

all processes thanL [mo]
p . Also, we havel [mo]

p [q] ≺q l [m′]
q [q]. Hence,L [mo]

p ⇒ L [m′]
q .

The extended regularity property follows.

5. Concluding Remarks

This article combines the preliminary articles [Vit´anyi and Awerbuch 1986; Haldar
1993]. The former article is the first to characterize multiwriter shared variables,
and provides a bounded construction of the multiwriter-multireader-multivalued
atomic variable from 1-writer variables. However, it was later found that the
proposed construction doesn’t satisfy some properties of atomic shared variables
[Vit ányi and Awerbuch 1987]. The technical report [Haldar 1993] corrected and
extended [Vitányi and Awerbuch 1986] to a construction of a concurrent timestamp

Bounded Concurrent Timestamp Systems Using Vector Clocks 121

TABLE I. COMPARISONRESULTS

Construction Shared variable sizeShared space (bits)Labeling Scan
Dolev and Shavit [1989/1997] O(n) O(n3) O(n) O(n2 logn)
Gawlick et al. [1992] O(n2) O(n4) O(n logn) O(n logn)
Israeli and Pinhasov [1992] O(n2) O(n4) O(n) O(n)
Dwork and Waarts [1992/1999] O(n logn) O(n5 logn) O(n) O(n)
Dwork et al. [1992/1999] O(n) O(n3) O(n) O(n)
This article O(n logn) O(n3 logn) O(n) O(n)

system using an idea from Dwork and Waarts [1992/1999]. The final result is
very close to the incorrect construction of Vit´anyi and Awerbuch [1986]. It uses
O(n logn) bit-size shared variables (orderandlendvariables), wheren is the num-
ber of processes. Scan and labeling operation executions requireO(n) steps. The
construction uses less shared space than that of Dwork and Waarts [1992/1999]
at the fundamental level, and is orders-of-magnitude more efficient in terms of
scanning bits at the fundamental level.

5.1. COMPARISON WITH RELATED WORK. In Dwork and Waarts [1992/1999],
they have defined three routines, namely, traceable-read, traceable-write and
garbage collection. When the traceable-read function is executed to read a label,
the executing process explicitly informs the other processes which of their private
values it is going to use. The traceable-write procedure is executed to write a new
label. To determine which of its private values are currently in use, a process exe-
cutes the garbage collection routine. This routine helps processes to safely recycle
their respective private values. This is the most intricate routine.

In our construction, we have used a separate implementation technique for a
weaker form of the traceable-read and the traceable-write routines. We do not need
a garbage collection routine. When a process executes the traceable-read function,
it does not explicitly inform the other processes which of their private values it
is going to use. On the other hand, the executers of the traceable-write procedure
correctly finds which private values of which processes are in use.

Every process needs a separate pool of private values, whose size is fewer than
2n2. In their construction, the pool size is 22n2. All the ordering shared variables
used in our construction are of 1-writer 1-reader regular ones, whereas they use
1-writer n-reader atomic ones in their construction. In our construction, a Scan
reads at mostn − 1 1-writer 1-reader regular order shared variables, whereas in
their construction it is 2n − 2 1-writern-reader atomic ones. In our construction,
all but one bit are nonatomic 1-writer 1-reader variables. Table I presents some
comparison results briefly.

Of all proposed constructions of bounded concurrent timestamp systems we are
aware of, the construction in this article is the “simplest.” The correctness proof,
though involved, is easier to follow. It is used as a basis in the reference text [Attiya
and Welch 1998] to describe bounded concurrent timestamp system.

Although we have used a notion of vector clocks for our construction, as in
Vit ányi and Awerbuch [1986], we may not really need the full power of vector
clock concept developed later by Mattern [1989]. In CTSs, we are not interested in
determining causal “independence” of various labeling operation executions. The
ordering property of CTSs implies that the causal orders among labeling operation
executions matter most. We need to have a total order on all labeling operation

122 S. HALDAR AND P. M. B. VITÁNYI

executions, and the total order must extend their original causal relation. This is
akin to the logical time of Lamport [1978]. We suspect that there might be a way
to eliminate the vector clock altogether, by an efficient way of recycling of global
values, instead of usingn sets of private values.

The construction presented here should not be considered as an alternative im-
plementation of the traceable use abstraction, for it restricts the value propagation
at indirection level one. It is not clear to the authors how this strategy could be
extended for a general implementation of the abstraction.

5.2. A BRIEF EARLY HISTORY. The development of bounded wait-free shared
variables and timestamp systems has been quite problematic and error-prone. It
may be useful at this point to present a brief early history of the area: who did what,
when, and where, and which solutions are known to be incorrect. In a series of ar-
ticles starting in 1974, Lamport [1974, 1977, 1978, 1986] explored various notions
of concurrent reading and writing of shared variables culminating in the seminal
1986 paper [Lamport 1986]. It formulates the notion of wait-free implementation
of an atomic shared variable—written by a single writer and read by (another)
single reader—from safe 1-writer 1-reader 2-valued shared variables, being math-
ematical versions of physicalflip-flops. Predating the latter article, Peterson [1983]
published an ingenious wait-free construction of an atomic 1-writer,n-readerm-
valued atomic shared variable fromn+2 safe 1-writern-readerm-valued registers,
2n 1-writer 1-reader 2-valued atomic shared variables, and two 1-writern-reader
2-valued atomic shared variables. He presented also a proper notion of wait-freedom
property. Lamport [1984] gave an example that appeared to contradict a possible
interpretation of the informal statement of a theorem in Peterson [1983], which, as
Peterson apparently retorted to Lamport, was not intended. In his paper, Peterson
didn’t tell how to construct then-reader Boolean atomic variables from flip-flops,
while Lamport mentioned the open problem of doing so, and, incidentally, uses
a version of Peterson’s construction to bridge the algorithmically demanding step
from atomic shared bits to atomic shared multivalues. Based on this work, N. Lynch,
motivated by concurrency control of multiuser databases, posed around 1985 the
question of how to construct wait-free multiwriter atomic variables from 1-writer
multireader atomic variables (personal knowledge of the author PV). Her student
Bloom [1987/1988] found in 1986 an elegant 2-writer construction, which, however,
has resisted generalization to multiwriter. Vit´anyi and Awerbuch [1986] were the
first to define and explore the complicated notion of wait-free constructions of gen-
eral multiwriter atomic variables. They presented a proof method, an unbounded
solution from 1-writer 1-reader atomic variables, and a bounded solution from
1-writer n-reader atomic variables. The unbounded solution was made bounded
in Li et al. [1987/1996]. It is optimal for the implementation ofn-writer n-reader
atomic variables from 1-writer 1-reader ones. “Projections” of the construction
also give specialized constructions for the implementation of 1-writern-reader
atomic variables from 1-writer 1-reader ones, and for the implementation ofn-
writer n-reader atomic variables from 1-writern-reader ones. As noted in Li and
Vit ányi [1992], the first “projection” is optimal, while the last “projection” may
not be optimal since it usesO(n) control bits per writer while only a lower
bound ofÄ(logn) was established. Taking up this challenge, the construction
in Israeli and Shaham [1992] apparently achieves this lower bound. The ear-
lier bounded solution in Vit´anyi and Awerbuch [1986] (corresponding in fact to

Bounded Concurrent Timestamp Systems Using Vector Clocks 123

the problem correctly solved by the last “projection” above) turned out not to
be atomic, but only achieved regularity [Vit´anyi and Awerbuch 1987]. Nonethe-
less, Vitányi and Awerbuch [1986] introduced important notions and techniques
in the area, like (bounded) vector clocks. These were inspired by the celebrated
“Bakery” algorithm of Lamport [1974], which can be viewed as a global bounded
“clock” determining the order among queued processes much like the ticket dis-
penser in a bakery serves to determine the order of servicing waiting customers. The
multiwriter situation has stronger requirements than apparently can be satisfied by
a global ticket dispenser. The solution in Vit´anyi and Awerbuch [1986] was the con-
struction of a bounded “vector clock”: a private ticket dispenser for each process,
the storing and updating of a vector of latest tickets held by all processes, together
with a semantics to determine the order between vectors. Moreover, a complex
mechanism–primitive traceable read/write—is presented to keep track of which
tickets of what processes could still be present in the system, with the objective
of bounding the private ticket pool of each process by recycling obsolete tickets.
Following the appearance of Vit´anyi and Awerbuch [1986], Peterson, who had been
working on the multiwriter problem for a decade, together with Burns, revamped the
construction retaining the vector clocks, but replaced the primitive traceable read/
write elements by repeated scanning as in Peterson [1983]. The result [Peterson
and Burns 1987] was found to be nonetheless erroneous, in the technical report
[Schaffer 1988]. This makes the multiwriter problem perhaps the only one for which
two consecutive wrong solutions were published in the highly selective FOCS con-
ferences. Neither the recorrection in Schaffer [1988], nor the claimed recorrection
by [Peterson and Burns 1987] has appeared in print. The present article consti-
tutes a correction of the original [Vit´anyi and Awerbuch 1986] by the extension of
Haldar [1993]: by implementing the stronger concurrent timestamp system, it also
solves the atomic multiwriter problem. Apart from the already-mentioned article
[Li et al. 1987/1996], the only other multiwriter-multireader atomic shared variable
construction that appeared in journal version seems to be of Abraham [1995]. Also,
in 1987, there appeared at least five purported solutions for the implementation
of 1-writer n-reader atomic shared variable from 1-writer 1-reader ones: Kirousis
et al. [1987], Newman-Wolfe [1987], Burns and Peterson [1987], and Singh et al.
[1987/1994] and the conference version of Israeli and Li [1987/1993], of which
Burns and Peterson [1987] was shown to be incorrect in Haldar and Vidyasankar
[1992], and only Singh et al. [1987/1994] appeared in journal version. The only
other 1-writern-reader atomic shared variable construction that appeared in journal
version is of Haldar and Vidyasankar [1995a]. Israeli and Li were attracted to the
area by the work in Vit´anyi and Awerbuch [1986] and, in an important paper
[Israeli and Li 1987/1993], they raised and solved the question of the more general
and universally useful notion of bounded timestamp system to track the order of
events in a concurrent system. Their sequential timestamp system was published in
journal version, but the preliminary concurrent timestamp system in the conference
proceedings, of which a more detailed version has been circulated in manuscript
form, has not been published in final form.

The difficulty of wait-free atomic multireader-, multiwriter-, and timestamp-
system constructions, and the many errors in purported and published solutions,
have made it hard to publish results in print. Of the major pioneering papers,
the first correct multiwriter construction of 1987 [Li et al. 1987/1996] was re-
jected at five consecutive conferences until it was published in ICALP, 1989.

124 S. HALDAR AND P. M. B. VITÁNYI

The final journal version was handled by three consecutive editors, scrutinized
by three consecutive sets of referees, and lasted from 1989 until publication in
1996. The pioneering timestamp paper [Israeli and Li 1987/1993] was submitted in
1987/88 to this journal, after a couple of years refereeing, surprisingly rejected since
a stronger result [Dolev and Shavit 1989/1997] had appeared in conference version,
submitted to another journal and finally appeared in 1993, but only the part con-
taining the simpler sequential timestamp construction. The first generally accepted
concurrent timestamp construction [Dolev and Shavit 1998/1997] appeared in con-
ference version in 1989, but its journal version appeared in 1997. As stated before,
the concurrent timestamp construction in the present article is based on the 1986
article [Vitányi and Awerbuch 1986], supplemented by the 1993 technical report
[Haldar 1993]. For further remarks, see Li et al. [1987/1996] in this journal and the
Introduction to present article.

ACKNOWLEDGMENT. Hagit Attiya and Orli Waarts gave valuable suggestions for an
early version of Haldar [1993], and Baruch Awerbuch co-authored the preliminary
article [Vitányi and Awerbuch 1986] on which this article is based.

REFERENCES

ABRAHAM, U. 1995. On interprocess communication and the implementation of multi-writer atomic
registers.Theoret. Comput. Sci. 149, 2, 257–298.

ABRAHAMSON, K. 1988. On achieving consensus using a shared memory. InProceedings of the 7th
Annual ACM Symposium on Principles of Distributed Computing. ACM, New York, pp. 291–302.

ANGER, F. 1989. On Lamport’s interprocess communication model.ACM Trans. Prog. Lang. Syst. 11,
3, 404–417.

ATTIYA , H., AND WELCH, J. 1998. Distributed Computing: Fundamentals, Simulations, and Advanced
Topics. McGraw-Hill Publishing Company, London, UK.

BLOOM, B. 1988. Constructing two-writer atomic registers.IEEE Trans. Comput. 37, 12, 1506–
1514. (Preliminary version: Constructing two-writer atomic registers. InProceedings of the 6th Annual
ACM Symposium on Principles of Distributed Computing. ACM, New York, pp. 249–259, 1987.)

BURNS, J. E.,AND PETERSON, G. L. 1987. Constructing multi-reader atomic values from non-atomic
values. InProceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing.
ACM, New York, pp. 222–231.

CHOR, B., ISRAELI, A., AND LI, M. 1987. On processor coordination using asynchronous hardware.
In Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing. ACM,
New York, pp. 86–97.

DIJKSTRA, E. W. 1965. Solutions of a problem in concurrent programming control.Commun. ACM 8, 9,
165–165.

DOLEV, D., AND SHAVIT , N. 1997. Bounded concurrent time-stamp systems are constructible.SIAM J.
Comput. 26, 2, 418–455. (Preliminary version in:Proceedings of the 21st ACM Symposium on Theory
of Computing. ACM, New York, pp. 454–466, 1989.)

DWORK, C., HERLIHY, M., PLOTKIN, S., AND WAARTS, O. 1992. Time-lapse snapshots. InPro-
ceedings of Israeli Symposium on Theory of Computing and Systems. Lecture Notes in Computer
Science, vol. 601. Springer-Verlag, New York, pp. 154, 170. (Also, inSIAM J. Comput. 28, 5, 1848–1874,
1999.)

DWORK, C., AND WAARTS, O. 1999. Simple and efficient bounded concurrent timestamping and the
traceable use abstraction.J. ACM 46, 5, 633–666. (Preliminary version in:Proceedings of the 24th ACM
Symposium on Theory of Computing. ACM, New York, pp. 655–666, 1992.)

FISCHER, M. J., LYNCH, N. A., BURNS, J. E.,AND BORODIN, A. 1979. Resource allocation with immunity
to limited process failure. InProceedings of the 20th IEEE Symposium on Foundations of Computer
Science. IEEE Computer Society Press, Los Alamitos, Calif. pp. 234–254.

FISHBURN, P. C. 1985. Interval Orders and Interval Graphs: A Study of Partially Ordered Sets. Wiley,
New York.

Bounded Concurrent Timestamp Systems Using Vector Clocks 125

GAWLICK , R., LYNCH, N. A., AND SHAVIT , N. 1992. Concurrent timestamping made simple. InProceed-
ings of Israeli Symposium on Theory of Computing and Systems. Lecture Notes in Computer Science,
vol. 601. Springer-Verlag, New York, pp. 171–183.

HALDAR, S. 1993. Efficient Bounded Timestamping Using Traceable Use Abstraction—Is Writer’s
Guessing Better Than Reader’s Telling? Tech. Rep. RUU-CS-93-28, Dept. of Computer Science, Utrecht
University, The Netherlands.

HALDAR, S.,AND VIDYASANKAR, K. 1992. Counterexamples to a one writer multireader atomic shared
variable construction of Burns and Peterson.ACM Oper. Syst. Rev 26, 1, 87–88.

HALDAR, S.,AND VIDYASANKAR, K. 1995a. Constructing 1-writer multireader multivalued atomic vari-
ables from regular variables.J. ACM 42, 1, 186–203.

HALDAR, S.,AND VIDYASANKAR, K. 1995b. Buffer-optimal constructions of 1-writer multireader multi-
valued atomic shared variables.J. Parall. Dist. Comput. 31, 2, 174–180. (Preliminary version in: Conflict-
free constructions of 1-writer multireader multivalued atomic shared variables. TR 9116, Dept. of Com-
puter Science, Memorial University of Newfoundland, Canada, 1991.)

HALDAR, S.,AND VIDYASANKAR, K. 1996. Simple extensions of 1-writer atomic variable constructions
to multiwriter ones.ACTA Inf. 33, 2, 177–202.

HERLIHY, M., AND WING, J. 1990. Linearizability: A correctness condition for concurrent objects.ACM
Trans. Prog. Lang. Syst. 12, 3, 463–492.

ISRAELI, A., AND LI, M. 1993. Bounded time-stamps.Dist. Comput. 6, 205–209. (Preliminary version
in: In Proceedings of the 28th IEEE Symposium on Foundations of Computer Science. IEEE Computer
Society Press, Los Alamitos, Calif., pp. 371–382, 1987.)

ISRAELI, A., AND PINHASOV, M. 1992. A concurrent time-stamp scheme which is linear in time and
space. InProceedings of the Workshop on Distributed Algorithms. Lecture Notes in Computer Science,
Springer-Verlag, vol. 647, Berlin, pp. 95–109.

ISRAELI, A., AND SHAHAM , A. 1992. Optimal multi-writer multireader atomic register. InPro-
ceedings of the 11th ACM Symposium on Principles of Distributed Computing. ACM, New York,
pp. 71–82.

KIROUSIS, L. M., KRANAKIS, E., AND VITÁNYI , P. M. B. 1987. Atomic multireader register. InPro-
ceedings of the Workshop on Distributed Algorithms. Lecture Notes in Computer Science, vol, 312.
Springer-Verlag, Berlin, pp. 278–296.

LAMPORT, L. 1974. A new solution to Dijkstra’s concurrent programming problem.Commun. ACM 17,
8 (Aug.), 453–455.

LAMPORT, L. 1977. On concurrent reading and writing.Commun. ACM 20, 11 (Nov.), 806–811.
LAMPORT, L. 1978. Time, clocks, and the ordering of events in a distributed system.Commun. ACM 21,

7 (July), 558–565.
LAMPORT, L. 1984. On a “Theorem” of Peterson Unpublished (October, 1984). http:// www.research.

compaq.com/SRC/personal/lamport/pubs/pubs.html#peterson-theorem.
LAMPORT, L. 1986. On interprocess communication—Part I: Basic formalism, Part II: Algorithms.Dist.

Comput. 1, 2, 77–101.
LI, M., AND VITÁNYI , P. M. B., 1992. Optimality of wait-free atomic multiwriter variables.Inf. Process.

Lett. 43, 2, 107–112.
LI, M., TROMP, J.,AND VITÁNYI , P. M. B. 1996. How to share concurrent wait-free variables.J. ACM 43,

4, 723–746. (Preliminary version: Li, M. and Vit´anyi, P. M. B. 1987. A very simple construction
for atomic multiwriter register, Tech. Rept. TR-01-87, Computer Science Dept., Harvard University,
Nov.)

MATTERN, F. 1989. Virtual time and global states of distributed systems. InProceedings of the Workshop
on Parallel and Distributed Algorithms. North-Holland / Elsevier, Amsterdam, The Netherlands, pp. 215–
226. (Reprinted in: Z. Yang and T. A. Marsland, Eds.,Global States and Time in Distributed Systems.
IEEE Computer Society Press, Los Alamitos, Calif., pp. 123–133.)

MATTERN, F. 1992. On the relativistic structure of logical time in distributed systems. InDatation et
Controle des Executions Reparties, Bigre 78(ISSN 0221-525), pp. 3–20.

NEWMAN-WOLFE, R. 1987. A protocol for wait-free, atomic, multi-reader shared variables. InProceed-
ings of the 6th Annual ACM Symposium on Principles of Distributed Computing. ACM, New York,
pp. 232–248.

PETERSON, G. L. 1983. Concurrent reading while writing.ACM Trans. Prog. Lang. Syst. 5, 1, 56–65.
PETERSON, G. L.,AND BURNS, J. E. 1987. Concurrent reading while writing. II: The multiwriter case. In

Proceedings of the 28th IEEE Symposium on Foundations of Computer Science. IEEE Computer Society
Press, Los Alamitos, Calif., pp. 383–392.

126 S. HALDAR AND P. M. B. VITÁNYI

SCHAFFER, R. 1988. On the correctness of atomic multiwriter registers. Report MIT/LCS/TM-364.
Massachusetts Institute of Technology, Cambridge, Mass., pp. 1–58.

SINGH, A. K., ANDERSON, J. H., AND GOUDA, M. G. 1994. The elusive atomic register.J. ACM 41,
2, 311–339. (Preliminary version in:Proceedings of the 6th Annual ACM Symposium on Principles of
Distributed Computing. ACM, New York, 1987.)

TROMP, J. 1989. How to construct an atomic variable. InProceedings of the Workshop on Distributed
Algorithms. Lecture Notes in Computer Science, vol. 392. Springer-Verlag, Berlin, pp. 292–302.

VIDYASANKAR, K. 1990. Concurrent reading while writing revisited.Dist. Comput. 4, 81–85.
VIDYASANKAR, K. 1996. Weak atomicity: A helpful notion in the construction of atomic shared variables.

SADHANA: J. Eng. Sci. IAS 21, 245–259.
VITÁNYI , P. M. B.,AND AWERBUCH, B. 1986. Atomic shared register access by asynchronous hardware.

In Proceedings of the 27th IEEE Symposium on Foundations of Computer Science. IEEE Computer
Society Press, Los Alamitos, Calif., pp. 233–243.

VITÁNYI , P. M. B.,AND AWERBUCH, B. 1987. Errata to “Atomic shared register access by asynchronous
hardware”. InProceedings of the 28th IEEE Symposium on Foundations of Computer Science. IEEE
Computer Society Press, Los Alamitos, Calif., pp. 487–487.

YAKOVLEV, A. 1993. Review of “Simple and Efficient Bounded Concurrent Timestamping or Bounded
Concurrent Timestamp Systems are Comprehensible!” by C. Dwork and O. Waarts.ACM Comput. Rev.
34, 5, 260–261.

RECEIVED AUGUST1999;REVISED OCTOBER2001;ACCEPTED DECEMBER2001

Journal of the ACM, Vol. 49, No. 1, January 2002.

