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Abstract— In 1974 Kolmogorov proposed a non-
probabilistic approach to statistics, an individual combina-
torial relation between the data and its model, expressed
by the so-called “structure function” of the data. We show
that the structure function determines all stochastic proper-
ties of the data in the sense of determining the best-fitting
model at every model-complexity level. A consequence is
this: minimizing the data-to-model code length (finding the
ML estimator or MDL estimator), in a class of contemplated
models of prescribed maximal (Kolmogorov) complexity, al-
ways results in a model of best fit, irrespective of whether
the source producing the data is in the model class con-
sidered. In this setting, code minimization always separates
optimal model information from the remaining accidental
information, and not only with high probability. The func-
tion that maps the maximal allowed model complexity to
the goodness-of-fit (expressed as minimal “randomness de-
ficiency”) of the best model cannot itself be monotonically
approximated. However, the shortest one-part or two-part
code above can—implicitly optimizing this elusive goodness-
of-fit. We show that—within the obvious constraints—every
graph is realized by the structure function of some data. We
determine the (un)computability properties of the various
functions contemplated and of the “algorithmic minimal suf-
ficient statistic.”

I. INTRODUCTION

As perhaps the last mathematical innovation of an ex-
traordinary scientific career, Kolmogorov [16], [15] pro-
posed to found statistical theory on finite combinatorial
principles independent of probabilistic assumptions. Tech-
nically, the new statistics is expressed in terms of Kol-
mogorov complexity, [14], the information in an individual
object. The relation between the individual data and its
explanation (model) is expressed by Kolmogorov’s struc-
ture function. This function, its variations and its relation
to model selection, have obtained some notoriety [21], [3],
[26], [6], [13], [22], [27], [10], [12], [9], [4], but it has not
before been comprehensively analyzed and understood. It
has always been questioned why Kolmogorov chose to fo-
cus on the the mysterious function h, below, rather than
on the more evident 3, variant below. The only written
record by Kolmogorov himself is the following abstract [15]
(translated by L.A. Levin):
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“To each constructive object corresponds a function
®, (k) of a natural number k—the log of minimal cardi-
nality of z-containing sets that allow definitions of com-
plexity at most k. [We use h, in place of ®,.] If the
element z itself allows a simple definition, then the func-
tion ® drops to 1 [presumably, 0 = log 1 is meant] even for
small k. Lacking such definition, the element is “random”
in a negative sense. But it is positively “probabilistically
random” only when function ® having taken the value @
at a relatively small k = kg, then changes approximately
as ®(k) = &9 — (k — ko).”

These pregnant lines will become clear on reading this
paper. Our main result, with the beauty of truth, estab-
lishes the importance of the structure function: For all
data, minimizing a two-part code consisting of one part
model description and one part data-to-model code (es-
sentially the two-part MDL estimator [18]), subject to a
given model-complexity constraint, in every case (and not
only with high probability) selects a model that is a best
explanation (within a certain negligible tolerance) of the
data within the given model-complexity constraint. The
same holds for minimizing the one-part code consisting of
just the data-to-model code (essentially the maximum like-
lihood estimator). The explanatory value of an individual
model for particular data is quantified by by the random-
ness deficiency (I1.6): minimal randomness deficiency im-
plies that the data is maximally “random” or “typical” for
the model. Tt turns out that the minimal randomness defi-
ciency of a model for the data, the minimum taken over the
elements of the contemplated model class, cannot be com-
putationally monotonically approximated up to any signif-
icant precision. Thus, while we can monotonically approx-
imate the minimal length two-part code, or the one-part
code, and thus monotonically approximate implicitly the
best fitting model, we cannot monotonically approximate
the number expressing the goodness of this fit. But this
should be sufficient: we want the best model rather than a
number that measures its goodness.

Monotonic Approximation: In technical terms our
notion of monotonic approximation means the existence of
a non-halting algorithm A that given any z,a outputs a
finite sequence pq,p2,pP3,...,p; of pairwise different com-
puter programs each of length at most a + C'log|z| (C is
a constant) such that each program p; prints a model S;
such that |Si| > |Sa| > --- > |S|, and the last model S; is
best in the following sense. There is no program p of length
at most « that prints a model S such that the randomness
deficiency of z for S is C'log |z| less than that of = for Sj.
Note that we are not able to identify p; given z,a, since
the algorithm A is non-halting and thus we do not know



which program will be output last.

Epistimology: Classical statistics investigates real-
world phenomena using probabilistic methods. There is
the problem of what probability means, whether it is sub-
jective, objective, or exists at all. The total probability
concentrated on potentially realizable data may be negli-
gible, for example, in complex video and sound data. In
such a case, a model selection process that is successful
with high probability may nonetheless fail on the actually
realized data. Kolmogorov’s proposal strives for the firmer
and less contentious ground of finite combinatorics and ef-
fective computation.

Reach of Results: In Kolmogorov’s initial proposal, as
in this work, models are finite sets of finite binary strings,
and the data is one of the strings (all discrete data can
be binary encoded). The restriction to finite set models
is just a matter of convenience: the main results general-
ize to the case where the models are arbitrary computable
probability density functions, [21], [1], [22], [10], and to
the model class consisting of arbitrary total recursive func-
tions, [24]. We summarize the proofs of this below. Since
our results hold only within additive logarithmic precision,
and the equivalences between the model classes hold up to
the same precision, the results hold equally for the more
general model classes.

The generality of the results are at the same time a re-
striction. In classical statistics one is commonly interested
in model classes that are partially poorer and partially
richer than the ones we consider. For example, the class
of Bernoulli processes, or k-state Markov chains, is poorer
than the class of computable probability density functions
of moderate maximal Kolmogorov complexity «, in that the
latter may contain functions that require far more complex
computations than the rigid syntax of the former classes
allows. Indeed, the class of computable probability density
functions of even moderate complexity allows implementa-
tion of a function mimicking a universal Turing machine
computation. On the other hand, even the lowly Bernoulli
process can be equipped with a noncomputable real bias in
(0,1), and hence the generated probability density function
over n trials is not a computable function. This incompa-
rability of the here studied algorithmic model classes, and
the traditionally studied statistical model classes, means
that the current results cannot be directly transplanted to
the traditional setting. They should be regarded as pris-
tine truths that hold in a platonic world that can be used
as guideline to develop analogues in model classes that are
of more traditional concern, [19].

II. PRELIMINARIES

Self-delimiting Code: Let z,y,z € N, where A de-
notes the natural numbers and we identify A" and {0,1}*
according to the correspondence

(0,¢€),(1,0),(2

Here € denotes the empty word. The length |z| of z is the
number of bits in the binary string x, not to be confused
with the cardinality |S| of a finite set S. For example,

,1),(3,00), (4,01), ...

|010] = 3 and |e| = 0, while |{0,1}"| = 2™ and || = 0.
The emphasis is on binary sequences only for convenience;
observations in any alphabet can be so encoded in a way
that is ‘theory neutral’.

A binary string y is a proper prefix of a binary string x
if we can write z = yz for z # €. A set {z,y,...} C {0,1}*
is prefiz-free if for any pair of distinct elements in the set
neither is a proper prefix of the other. A prefix-free set
is also called a prefiz code and its elements are called code
words. An example of a prefix code, that is useful later,
encodes the source word x = x> ...z, by the code word

T = 1"0x.

This prefix-free code is called self-delimiting because we can
determine where the code word Z ends by reading it from
left to right without backing up. (This desirable property
holds for every prefix-free encoding of a finite set of source
words, but not for every prefix-free encoding of an infinite
set of source words.) Using this code we define the standard
self-delimiting code for z to be z' = |z|z. It is easy to check
that |Z] = 2n+1 and |z'| = n+2logn+1. Let {-) denote a
standard invertible effective one-one encoding from N x
to a subset of A/. For example, we can set (z,y) = z'y or
(z,y) = Ty. We can iterate this process to define {(z, (y, 2)),
and so on.

Kolmogorov Complexity: For precise definitions, no-
tation, and results see the text [13]. Informally, the Kol-
mogorov complexity, or algorithmic entropy, K(z) of a
string z is the length (number of bits) of a shortest bi-
nary program (string) to compute z on a fixed reference
universal computer (such as a particular universal Turing
machine). Intuitively, K (x) represents the minimal amount
of information required to generate x by any effective pro-
cess. The conditional Kolmogorov complexity K (z|y) of x
relative to y is defined similarly as the length of a short-
est program to compute z, if y is furnished as an auxiliary
input to the computation. For technical reasons we use a
variant of complexity, so-called prefix complexity, which is
associated with Turing machines for which the set of pro-
grams resulting in a halting computation is prefix free. We
realize prefix complexity by considering a special type of
Turing machine with a one-way input tape, a separate work
tape, and a one-way output tape. Such Turing machines
are called prefix Turing machines. If a machine 7" halts with
output x after having scanned all of p on the input tape,
but not further, then T'(p) = x and we call p a program
for T. Tt is easy to see that {p : T(p) = z,z € {0,1}*}
is a prefiz code. Let T1,T5, ... be a standard enumeration
of all prefix Turing machines with a binary input tape,
for example the lexicographical length-increasing ordered
syntactic prefix Turing machine descriptions, [13], and let
@1, @2, ... be the enumeration of corresponding functions
that are computed by the respective Turing machines (75
computes ¢;). These functions are the partial recursive
functions or computable functions (of effectively prefix-free
encoded arguments). The Kolmogorov complexity of z is
the length of the shortest binary program from which z is
computed.



Definition II.1: The prefix Kolmogorov complezity of x

is

K(z) = min{|i| + |p| : Ti(p) = o}, (IL1)
where the minimum is taken over p € {0,1}* and i €
{1,2,...}. For the development of the theory we actually
require the Turing machines to use auziliary (also called
conditional) information, by equipping the machine with
a special read-only auxiliary tape containing this informa-
tion at the outset. Then, the conditional version K (x | y)
of the prefix Kolmogorov complexity of z given y (as aux-
iliary information) is is defined similarly as before, and the
unconditional version is set to K(z) = K(z | €).

One of the main achievements of the theory of computa-
tion is that the enumeration 77,75, ... contains a machine,
say U = T, that is computationally universal in that it can
simulate the computation of every machine in the enumer-
ation when provided with its index: U((y,ip) = T;({y,p))
for all 4,p,y. We fix one such machine and designate it as
the reference universal prefiz Turing machine. Using this
universal machine it is easy to show K (z | y) = ming{|q| :
U((y,q)) = =}

A prominent property of the prefix-freeness of K(z) is
that we can interpret 2-5() as a probability distribution
since K (z) is the length of a shortest prefix-free program for
z. By the fundamental Kraft’s inequality, see for example
[6], [13], we know that if I1,ls, ... are the code-word lengths
of a prefix code, then ) 27!= < 1. Hence,

D 2 K@ <,

x

(IL.2)

This leads to the notion of universal distribution—a rig-
orous form of Occam’s razor—which implicitly plays an
important part in the present exposition. The functions
K(-) and K(- | -), though defined in terms of a particular
machine model, are machine-independent up to an additive
constant and acquire an asymptotically universal and ab-
solute character through Church’s thesis, from the ability
of universal machines to simulate one another and execute
any effective process. The Kolmogorov complexity of an
individual object was introduced by Kolmogorov [14] as an
absolute and objective quantification of the amount of in-
formation in it. The information theory of Shannon [20],
on the other hand, deals with average information to com-
municate objects produced by a random source. Since the
former theory is much more precise, it is surprising that
analogs of theorems in information theory hold for Kol-
mogorov complexity, be it in somewhat weaker form. An
example is the remarkable symmetry of information prop-
erty used later (denoting K(z,y) = K({z,y)):

K(z,y) = K(z) + K(y | z, K(2)) + O(1) (IL.3)
=K(y)+ K(z |y, K(y)) + O(1).

The meaning of the pair z, K (z) in the condition of this
expression is as follows: Let z* denote the shortest pro-
gram z* for a finite string z, or, if there are more than
one of these, then z* is the first one halting in a fixed

standard enumeration of all halting programs. The infor-
mation in the pair (z, K(z)) is equal to the information in
z*: Given z* we can compute z = U(z*) and K (z) = |z*|,
and given z, K(z) we can run all programs of length K (x)
simultaneously, round-robin fashion, until the first program
computing = halts—this is by definition z*.

Precision: It is customary in this area to use “additive
constant ¢” or equivalently “additive O(1) term” to mean
a constant, accounting for the length of a fixed binary pro-
gram, independent from every variable or parameter in the
expression in which it occurs. In this paper we use the pre-
fix complexity variant of Kolmogorov complexity for conve-
nience. Actually some results, especially Theorem B.1, are
easier to prove for plain complexity. Most results presented
here are precise up to an additive logarithmic term, which
means that they are valid for plain complexity as well—
prefix complexity exceeds plain complexity by at most a
logarithmic additve term. Thus, our use of prefix complex-
ity is important for “fine details” only.

Meaningful Information: The information contained
in an individual finite object (like a finite binary string) is
measured by its Kolmogorov complexity—the length of the
shortest binary program that computes the object. Such
a shortest program contains no redundancy: every bit is
information; but is it meaningful information? If we flip a
fair coin to obtain a finite binary string, then with over-
whelming probability that string constitutes its own short-
est program. However, also with overwhelming probabil-
ity all the bits in the string are meaningless information,
random noise. On the other hand, let an object x be a se-
quence of observations of heavenly bodies. Then z can be
described by the binary string pd, where p is the description
of the laws of gravity, and d the observational parameter
setting: we can divide the information in z into meaningful
information p and accidental information d. The main task
for statistical inference and learning theory is to distil the
meaningful information present in the data. The question
arises whether it is possible to separate meaningful infor-
mation from accidental information, and if so, how. The
essence of the solution to this problem is revealed when we
rewrite (II.1) as follows (use the universality of the fixed
reference universal prefix Turing machine U = T, with
|u] = O(1) to obtain the last equality):

K(z) = min{lip| : T;(p) = =}
- nz}iin{2|i| + |p| + 1 : Ty(p) = z},

= min{K (i) + Ip| : Ti(p) = 2} + O(1),

(11.4)

where the minimum is taken over p € {0,1}* and i €
{1,2,...}. This expression emphasizes the two-part code
nature of Kolmogorov complexity. In the example

z =10101010101010101010101010

we can encode z by a small Turing machine printing a spec-
ified number of copies of the pattern “01” which computes
z from the program “13.” This way, K(z) is viewed as the



shortest length of a two-part code for z, one part describing
a Turing machine, or model, for the regular aspects of x,
and the second part describing the irregular aspects of x in
the form of a program to be interpreted by T'. The regular,
or “valuable,” information in z is constituted by the bits
in the “model” while the random or “useless” information
of x constitutes the remainder.

Data and Model: To simplify matters, and because all
discrete data can be binary coded, we consider only finite
binary data strings . Our model class consists of Turing
machines T that enumerate a finite set, say S, such that
on input p < |S| we have T'(p) = z with z the pth element
of T’s enumeration of S, and T'(p) is a special undefined
value if p > |S|. The “best fitting” model for z is a Turing
machine T' that reaches the minimum description length in
(I1.4). Such a machine T' embodies the amount of useful
information contained in z, and we have divided a short-
est program z* for z into parts x* = T*p such T* is a
shortest self-delimiting program for 7. Now suppose we
consider only low complexity finite-set models, and under
these constraints the shortest two-part description happens
to be longer than the shortest one-part description. Does
the model minimizing the two-part description still capture
all (or as much as possible) meaningful information? Such
considerations require study of the relation between the
complexity limit on the contemplated model classes, the
shortest two-part code length, and the amount of mean-
ingful information captured.

Kolmogorov Structure Functions: We will prove
that there is a close relation between functions describ-
ing three, a priori seemingly unrelated, aspects of model-
ing individual data by models of prescribed complexity:
minimal remaining randomness, optimal fit, and length
of shortest two-part code, respectively (Figure 1). We
first need a definition. Denote the complexity of the fi-
nite set S by K(S)—the length (number of bits) in the
shortest binary program p from which the reference uni-
versal prefix machine U computes a listing of the elements
of S and then halts. That is, if S = {1,...,z,}, then
U(p) = (z1,{z2,.--,{Tn-1,%n)...)). The shortest pro-
gram p, or, if there is more than one such shortest pro-
gram, then the first one that halts in a standard dovetailed
running of all programs, is denoted by S*. For every finite
set S C {0,1}* containing = we have

K(z|S) <log|S|+ O(1). (IL5)
Indeed, consider the selfdelimiting code of x consisting of
its [log |S|] bit long index of z in the lexicographical order-
ing of S. This code is called data-to-model code. Its length
quantifies the maximal “typicality,” or “randomness,” data
(possibly different from ) can have with respect to this
model. The lack of typicality of x with respect to S is
measured by the amount by which K(z|S) falls short of
the length of the data-to-model code. The randomness de-
ficiency of z in S is defined by

0(z|S) =log|S| — K(z|S), (11.6)

for x € S, and oo otherwise. The minimal randomness
deficiency function is

Bz(a) = mgn{é(x|5) : S5z, K(5) <a}, (IL7)
where we set min () = co. The smaller §(z|S) is, the more
x can be considered as a typical member of S. This means
that a set S for which z incurs minimal deficiency is a
“best” model for z—a most likely explanation, and S, («a)
can be viewed as a fitness function. If the randomness
deficiency is close to 0, then are no simple special properties
that single it out from the majority of elements in S. This
is not just terminology: If d(z|S) is small enough, then z
satisfies all properties of low Kolmogorov complexity that
hold with high probability for the elements of S. To be
precise: Consider strings of length n and let S be a subset
of such strings.

(i) If P is a property satisfied by all z with §(z|S) < d(n),
then P holds with probability at least 1 —1/ 20(7) for the
elements of S.

(ii) Let P be any property that holds with probability
at least 1 — 1/2°(™ for the elements of S. Then, every
such P holds simultaneously for every z € S with §(z|S) <
é(n) — K(P|S) — O(1).

Example I1.2: Lossy Compression: The function
Be(a) is relevant to lossy compression (used, for instance,
to compress images). Assume we need to compress z to
a bits where a < K(z). Of course this implies some loss
of information present in z. One way to select redundant
information to discard is as follows: Find a set S 3 z
with K(S) < « and with small é(z|S), and consider a
compressed version S’ of S. To reconstruct an z’, a de-
compresser uncompresses S’ to S and selects at random an
element z' of S. Since with high probability the random-
ness deficiency of x' in S is small, 2’ serves the purpose
of the message x as well as does z itself. Let us look at
an example. To transmit a picture of “rain” through a
channel with limited capacity «a, one can transmit the in-
dication that this is a picture of the rain and the particular
drops may be chosen by the receiver at random. In this
interpretation, 83, («) indicates how “random” or “typical”
x is with respect to the best model at complexity level a—
and hence how “indistinguishable” from the original z the
randomly reconstructed z’ can be expected to be. &

Kolmogorov [16], [15] proposed the following function:

he(a) = msin{log|S| :S>z, K(S) <a}l, (I1.8)
where S 5 z is a contemplated model for z, and « is a
nonnegative integer value bounding the complexity of the
contemplated S’s. We call h, the Kolmogorov structure
function for data x. Clearly, this function is non-increasing
and reaches log [{z}| = 0 for & = K (z) + ¢1 where ¢ is the
number of bits required to change x into {«}. The func-
tion can also be viewed as the mazimum likelihood (ML)
function, a viewpoint that is more evident for its version
for probability models, Figure 2. For every S 3 2 we have

K(z) < K(S) +1log|S| + O(1). (IL.9)
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Fig. 1. Structure functions hs(a), Bz(@), Az(a), and minimal suffi-
cient statistic.

Indeed, consider the following two-part code for xz: the
first part is a shortest self-delimiting program p of S and
the second part is [log|S|] bit long index of z in the
lexicographical ordering of S. Since S determines log |S]|
this code is self-delimiting and we obtain (II.9) where
the constant O(1) is the length of the program to recon-
struct z from its two-part code. We thus conclude that
K(z) < a+hz(a)+0(1), that is, the function h;(«) never
decreases more than a fixed independent constant below
the diagonal sufficiency line L defined by L(a)+a = K(z),
which is a lower bound on h,(a) and is approached to
within a constant distance by the graph of h, for certain
a’s (for instance, for o = K(z) + ¢1). For these a’s we
have a + hy(a) = K(z) + O(1) and the associated model
(witness for h,(a)) is called a sufficient statistic. The suffi-
cient statistic associated with the least such « is called the
minimal sufficient statistic. This suggestive nomenclature
is explained in [6], [10].

The length of the minimal two-part code for x consisting
of the model cost K(S) and the length of the index of x
in S, the complexity of S upper bounded by «a, is given by
the MDL function:

A (@) = mSin{A(S) : S>>z, K(9) <a}, (I1.10)
where A(S) = log|S| + K(S) > K(z) — O(1) is the total
length of two-part code of z with help of model S. Apart
from being convenient for the technical analysis in this
work, Az () is the celebrated two-part Minimum Descrip-
tion Length code length (Example IV.16) with the model-
code length restricted to at most a.

III. OVERVIEW OF RESULTS

Background and Related Work: A.N. Kolmogorov
[15], [16] proposed the combinatorial non-probabilistic ap-
proach to an individual data-to-model relation, two-part
codes separating the structure or meaningful information
of a string from meaningless accidental features. There is

no written version, apart from a few lines [15] which we
reproduced in Section I, so we have to rely on oral his-
tory of witnesses [9], [4], [12] for more details, and, says
Tom Cover [4]: “I remember taking many long hours trying
to understand the motivation of Kolmogorov’s approach.”
According to Peter Gécs, [9]: “Kolmogorov drew a pic-
ture of h;(a) as a function of @ monotonically approach-
ing the diagonal [sufficiency line]. Kolmogorov stated that
it was known (proved by L.A. Levin) that in some cases
it remained far from the diagonal line till the very end.”
Leonid A. Levin [12]: “Kolmogorov told me [about] h, (i)
(or its inverse, I am not sure) and asked how this A(7) could
behave. I proved that i + k(i) + O(log4) is monotone but
otherwise arbitrary within O(v/4) accuracy; it stabilizes on
K (x) when i exceeds I(z : Halting). (Actually, this expres-
sion for accuracy was Kolmogorov’s re-wording, I gave it
in less elegant but equivalent terms—O(plogi) where p is
the number of ”jumps”.) I do not remember Kolmogorov
defining (i) or suggesting anything like your result. I
never published anything on the topic because I do not be-
lieve strings x with significant I(x : Halting) could exist in
the world.” (Here ”Halting” stands for the infinite binary
“halting sequence”: the ith bit is 1 iff the ith program for
the reference universal prefix machine U halts.)

Remark III.1: Levin’s statement [12] quoted above ap-
pears to suggest that strings x such that h, (i) + i stabi-
lizes on K (x) only for large i may exist mathematically
but are unlikely to occur in nature, because such z’s must
have a lot of information about the Halting problem. and
hence the analysis of their properties is irrelevant. But the
statement in question is imprecise. There are two ways to
understand the statement: (i) h,(i) + ¢ stabilizes on K (z)
when 7 exceeds I(z : Halting) or earlier; or (ii) h; (%) + ¢
stabilizes on K (z) when i exceeds I(z : Halting) and not
earlier. It is not clear what “the information in x about the
halting problem” is, since the “Halting problem” is not a
finite object and thus the notion of information about Halt-
ing needs a special definition. The usual I(z : Halting) =
K (Halting) — K (Halting | z) doesn’t make sense since both
K (Halting) and K (Halting | ) are infinite. The expres-
sion I(z : Halting) = K(z) — K(z | Halting) looks better
provided K (z | Halting) is understood as K (z) relativized
by the Halting problem. In the latter interpretation of
I(x : Halting), case (i) is correct and case (ii) is false. The
correctness of (i) is implicit in Theorem V.4. A counter
example to (ii): Let p be the halting program of length at
most n with the greatest running time. It is easy to show
that K (p) is about n, and therefore p is a random string of
length about n. As a consequence, the complexity of the
minimal sufficient statistic ag of p is close to 0. On the
other hand I(p : Halting) is about n. Indeed, given the
oracle for the Halting problem and n we can find z; hence
I(p : Halting) = K(p) — K(p | Halting) > n — K(n) >
n — 2logn. &

Related work on so-called “non-stochastic objects”
(where hy(a)+a drops to K (z) only for large ) is [21], [26],
[22], [23], [24]. In 1987, [26], [27], V.V. V’yugin established
that, for @ = o(|z|), the randomness deficiency function



Bz(a) can assume all possible shapes (within the obvious
constraints). In the survey [5] of Kolmogorov’s work in in-
formation theory, the authors preferred to mention 3, (),
because it by definition optimizes “best fit,” rather than
hz (a) of which the usefulness and meaningfulness was mys-
terious. But Kolmogorov had a seldom erring intuition: we
will show that his original proposal h, in the proper sense
incorporates all desirable properties of 3, («), and in fact is
superior. In [3], [6], [5] a notion of “algorithmic sufficient
statistics”, derived from Kolmogorov’s structure function,
is suggested as the algorithmic approach to the probabilis-
tic notion of sufficient statistic [7], [6] that is central in clas-
sical statistics. The paper [10] investigates the algorithmic
notion in detail and formally establishes such a relation.
The algorithmic (minimal) sufficient statistic is related in
[23], [11] to the “minimum description length” principle
[18], [2], [29] in statistics and inductive reasoning. More-
over, [10] observed that £;(a) < hz(a) +a— K(z) + O(1),
establishing a one-sided relation between (IL.7) and (IL.8),
and the question was raised whether the converse holds.

This Work: The most fundamental result in this paper
is the equality

/Bz(a) = hz(a) +a— K(Z‘) = )‘w(a) - K(."L') (III]-)

which holds within logarithmic additive terms in argument
and value. Additionally, every set S that witnesses the
value h(a) (or A;(a)), also witnesses the value 8, (a) (but
not vice versa). It is easy to see that h;(a) and A;(a)
are upper semi-computable (Definition VII.1); but we show
that 8,(«) is neither upper nor lower semi-computable. A
priori there is no reason to suppose that a set that wit-
nesses hz(a) (or A\;z(a)) also witnesses S;(a), for every a.
But the fact that they do, vindicates Kolmogorov’s orig-
inal proposal and establishes h,’s pre-eminence over (3.
The result can be taken as a foundation and justification
of common statistical principles in model selection such
as maximum likelihood or MDL ([18], [2] and our Exam-
ples IV.16 and IV.17). The possible (coarse) shapes of
the functions A;, h, and B, are examined in Section IV.
Roughly stated: The structure functions A, h, and 3, can
assume all possible shapes over their full domain of defini-
tion (up to additive logarithmic precision in both argument
and value). As a consequence, so-called “non-stochastic”
strings « for which h,(a) + « stabilize on K (z) for large a
are common. This improves and extends V’yugin’s result
[26], [27] above; it also improves the independent related
result of L.A. Levin [12] above; and, applied to “snooping
curves” extends a recent result of V’yugin, [28], in Exam-
ple IV.14. The fact that A, can assume all possible shapes
over its full domain of definition establishes the significance
of (IIL.1), since it shows that A;(a) > K(z) indeed hap-
pens for some z,a pairs. In that case the more or less
easy fact that 8,(a) = 0 for A\z(a) = K(z) is not ap-
plicable, and a priori there is no reason for (II1.1): Why
should minimizing a set containing z plus the set’s de-
scription length also minimize z’s randomness deficiency
in the set? But (III.1) shows that it does! In Section V,
we exhibit a universal construction for sets realizing h; ()

for all «. We determined the (fine) details of the func-
tion shapes in Section VI. (Non-)computability properties
are examined in Section VII, incidentally proving a to our
knowledge first natural example, 3, of a function that is
not semi-computable but computable with an oracle for
the halting problem. For convenience of the reader we
have delegated almost all proofs to Appendix A, and all
precise formulations and proofs of the (non)computability
and (non)approximability of the structure functions to Ap-
pendix B.

All Stochastic Properties of the Data: The result
(ITI.1) shows that the function h,;(ca) yields all stochastic
properties of data z in the following sense: for every a
the class of models of maximal complexity a has a best
model with goodness-of-fit determined by the randomness
deficiency B;(a) = hgy(a) + a — K(xz)—the equality being
taken up to logarithmic precision. For example, for some
value ag the minimal randomness deficiency (. (a) may be
quite large for a < o (so the best model in that class has
poor fit), but an infinitessimal increase in model complexity
may cause (3, (a) to drop to zero (and hence the marginally
increased model class now has a model of perfect fit), see
Figure 1. Indeed, the structure function quantifies the best
possible fit for a model in classes of every complexity.

Validity for Extended Models: Following Kol-
mogorov we analyzed a canonical setting where the mod-
els are finite sets. As Kolmogorov himself pointed out,
this is no real restriction: the finite sets model class is
equivalent, up to a logarithmic additive term, to the model
class of probability density functions, as studied in [21],
[10]. The analysis is valid, up to logarithmic additive
terms, also for the model class of total recursive func-
tions, as studied in [24]. The model class of computable
probability density functions consists of the set of func-
tions P : {0,1}* — [0,1] with > P(z) = 1. “Com-
putable” means here that there is a Turing machine Tp
that, given z and a positive rational e, computes P(x)
with precision e. The (prefix-) complexity K(P) of a
computable (possibly partial) function P is defined by
K(P) = min;{K (i) : Turing machine T; computes P}.
A string x is typical for a distribution P if the randomness
deficiency 6(z | P) = —log P(xz) — K(z | P) is small. The
conditional complexity K (z | P) is defined as follows. Say
that a function A approximates P if |A(y,e) — P(y)| < ¢ for
every y and every positive rational e. Then K (z | P) is the
minimum length of a program that given every function A
approximating P as an oracle prints . Similarly, P is c-
optimal for z if K (P)—log P(z) < K(z)+c. Thus, instead
of the data-to-model code length log |S| for finite set mod-
els, we consider the data-to-model code length — log P(x)
(the Shannon-Fano code). The value —log P(z) measures
also how likely x is under the hypothesis P and the map-
ping £ — Ppnin, where P, minimizes — log P(z) over P
with K(P) < «a is a mazimum likelihood estimator, see
figure 2. Our results thus imply that that maximum likeli-
hood estimator always returns a hypothesis with minimum
randomness deficiency.

The model class of total recursive functions consists
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Fig. 2.  Structure function hg(a) = minp{—log P(z) : P(z) >

0, K(P) < a} with P a computable probability density function, with
values according to the left vertical coordinate, and the maximum
likelihood estimator 2~h=(2) = max{P(z) : P(z) > 0, K(P) < a},
with values according to the right-hand side vertical coordinate.

of the set of computable functions p {0,1}* —
{0,1}*. The (prefix-) complexity K(p) of a total re-
cursive function p is defined by K(p) = min;{K (%) :
Turing machine T; computes p}. In place of log|S| for fi-
nite set models we consider the data-to-model code length
I;(p) = min{|d| : p(d) = z}. A string z is typical for
a total recursive function p if the randomness deficiency
0(z | p) = l,(p) — K(z | p) is small. The conditional com-
plexity K(z | p) is defined as the minimum length of a
program that given p as an oracle prints . Similarly, p is
c-optimal for z if K(p) +l,(p) < K(z) + ¢

It is easy to show that for every data string x and a
contemplated finite set model for it, there is an almost
equivalent computable probability density function model
and an almost equivalent total recursive function model.

Proposition II1.2: For every z and every finite set S 5 x
there is:

(a) A computable probability density function P with
—log P(z) = log|S|, 6(z | P) = 6(x | S) + O(1) and
K(P)=K(S)+ 0(1); and

(b) A total recursive function p such that I,(p) < log|S],

6(z | p) <d(z | S) +0O(1) and K(p) = K(5) + O(1).
Proof:  (a) Define P(y) = 1/|S| for y € S and 0
otherwise.
(b) If S = {z0,...,Zm_1}, then define p(d) = T4 mod m-

|
The converse of Proposition III.2 is slightly harder: for
every data string z and a contemplated computable proba-
bility density function model for it, as well as for a contem-
plated total recursive function model for z, there is a finite
set model for z that has no worse complexity, randomness
deficiency, and worst-case data-to-model code for z, up to
additive logarithmic precision.
Proposition II1.3: There are constants ¢, C', such that for
every string z, the following holds:
(a) For every computable probability density function
P there is a finite set S 3> =z such that log|S| <
—logP(z) + 1, 6(z | S) < é(z | P) + 2logK(P) +

K(|-logP(x)]) +2log K(|—log P(x)]|) + C and K(S) <

K(P)+ K(|-log P(z)]) + C; and

(b) For every total recursive function p there is a finite set
S 5z withlog|S| <I,(p), (x| S) <dé(z | p)+2log K (p)+
K(lm(p))+210gK(l (p))+cand K(S) < K(p)+K(l.(p))+

Proof: (a) Let m = |—log P(z)], that is, 27™ 1 <
P(z) < 27™. Define S = {y : P(y) > 2-™ '}. Then,
|S| < 2m*! < 2/P(z), which implies the claimed value
for log |S|. To list S it suffices to compute all consecutive
values of P(y) to sufficient precision until the combined
probabilities exceed 1 —2~™~1. That is, K(S) < K(P) +
K(m) + O(1). Finally, é(z | S) = log|S| — K(z|S*) <
—logP(z) — K(z|S*)+1=6(z | P)+ K(z | P) — K(z |
S*)+1<d(z|P)+ K(S*| P)+ O(1). The term K(S* |
P) can be upper bounded as K(K(S)) + K(m) + O(1) <
2log K(S)+K(m)+0(1) < 2log(K(P)+ K(m))+K(m)+
O(1) < 2logK(P) + 2log K(m) + K(m) + O(1), which
implies the claimed bound for §(z | S).

(b) Define S = {y : p(d) = y, |dl = L(p)}. Then,
log |S| < lx(p). To list S it suffices to compute p(d) for
every argument of length equal I;(p). Hence, K(S) <
K(p) + K(I;(p)) + O(1). The upper bound for d(z | S)
is derived just in the same way as in the proof of item (a).

|

Remark II1.4: How large are the nonconstant additive
complexity terms in Proposition III.3 for strings z of
length n? In item (a), we are commonly only interested
in P such that K(P) < n + O(logn) and —logP(z) <
n + O(1). Indeed, for every P there is P’ such that
K(P') < min{K(P),n} + O(logn), é(z | P') < é(z |
P) + O(logn), —log P'(z) < min{—log P(z),n} + 1. Such
P' is defined as follows: If K(P) > n then P'(z) = 1 and
P'(y) = 0 for every y # =z; otherwise P! = (P + U,)/2
where U, stands for the uniform distribution on {0,1}".
Then the additive terms in item (a) are O(logn). In
item (b) we are commonly only interested in p such that
K (p) <n+0(logn) and I, (p) < n+0O(1). Indeed, for every
p there is p’ such that K(p') < min{K(p),n} + O(logn),
6(z | p') < é(z | p) + O(logn), Is(p') < min{ly(p),n} + 1.
Such p’ is defined as follows: If K(p) > n then p' maps all
strings to z; otherwise p'(0u) = p(u) and p'(1u) = u. Then
the additive terms in item (b) are O(logn). Thus, in this
sense all results in this paper that hold for finite set models
extend, up to a logarithmic additive term, to computable
probability density function models and to total recursive
function models. Since the results in this paper hold only
up to additive logarithmic term anyway, this means that all
of them equivalently hold for the model class of computable
probability density functions, as well as for the model class
of total recursive functions. &

IV. COARSE STRUCTURE

Let B;(a) be defined as in (I1.7) and h;(a) be defined
as in (I1.8). Both functions are 0 (8,(a) may be —O(1))
for all @ > K(z) + co where ¢ is a constant. We represent
the coarse shape of these functions for different z by func-
tions characteristic of that shape. Informally, g represents



f means that the graph of f is contained in a strip of loga-
rithmic (in the length n of ) width centered on the graph
of g, Figure 3.

Intuition: f follows g up to a prescribed precision.

For formal statements we rely on the notion in Defini-
tion IV.1. Informally, we obtain the following results (z is
of length n and complexity K(x) = k):

o Every non-increasing function S represents 3, for some
z, and for every x the function (3, is represented by some
B, provided B(k) =0, 8(0) <n — k.

o Every function h, with non-increasing h(a) + a, repre-
sents h, for some x, and for every x the function h, is rep-
resented by some h as above, provided h(k) = 0, h(0) <n
(and by the non-increasing property h(0) > k).

o hg(a)+ a represents 3,(a) + k, and conversely, for every
x.

¢ For every x and «, every minimal size set S 3 z of com-
plexity at most o' = a + O(logn), has randomness defi-
ciency B(a') <d(z | S) < Bz(a) + O(logn).

To provide precise statements we need a definition.

Definition IV.1: Let f,g be functions defined on
{0,1,...,k} with values in NU {oo}. We say that f is
(e(4),6(i))-close to g (in symbols: f = E(g)) if

f(i) > min{g(5): j € [e(0), k], |j —i| <e(@)} - ()},
f(@) <max{g(j): j € [(0), k], 7 —i] <e(i)} +6(0)}

for every i € [£(0),k]. If f = E(g) and g = E(f) we write

~

Here £(¢),6(¢) are small values like O(logn) when we
consider data x of length n. Note that this definition is
not symmetric and allows f () to have arbitrary values for
i € [0,£(0)). However, it is transitive in the following sense:
if fis (e1(4), 01(¢))-close to g and g is (e2(2), 62(¢))-close to h
then fis (£1(i) +€2(4), 61(i) 4+ d2(3))-close to h. If f = E(g)
and g is linear continuous, meaning that |g(i) — g(j)| <
cli—j| for some constant ¢, then the difference between f ()
and g¢(7) is bounded by c£(i) + (i) for every £(0) <i < k.

This notion of closeness, if applied unrestricted, is not
always meaningful. For example, take as g the function
taking value n for all even ¢ € [0,%] and O for all odd i €
[0, k]. Then for every function f on [0, k] with f(i) € [0,n)
we have f = E(g) fore = 1,5 =0. But if f = &(g) and
g is mon-increasing then g indeed gives much information
about f.

It is instructive to consider the following example. Let
g(i) be equal to 2k —i for i = 0,1,...,5 — T and to k — 4
for i = £, k. Let €(i),8(i) be constant. Then a func-
tion f = £(g) may take every value for i € [0,¢), every
value in [2k — i — 25,2k — i + 20] for i € [¢, & — 4], every
value in [k —i — 6,2k —i + 6] for i € (& —4,% + 5], and
every value in [k —i — 20,k — i + 28] for i € (£ + 6, k] (see
Figure 3). Thus the point g of discontinuity of g gives an
interval of size 26 of large ambiguity of f. Loosely speak-
ing the graph of f can be any function contained in the
strip of radius 2§ whose middle line is the graph of g. For
technical reasons it is convenient to use, in place of h;, the
MDL function A, (II.10). The definition of A, immediately

h @
K(x)

log S| T

h (o)
X

~
~

K(x)
o

Fig. 3. Structure function h;(c) in strip determined by h(a), that
is, hg(a) = E(h(a)).

implies the following properties: A;(«) is non-increasing,
Az(a) > K(z) — O(1) for all a.

The next lemma shows that properties of )\, translate
directly into properties of h, since h, () is always “close”
to Az(a) — a.

Lemma IV.2: For every x we have \;(a) < hy(a) +a <
Az (@) + K(a) + O(1) for all a. Hence Az (a) =
fore =0, = K(a) + 0(1).

Intuition: The functions h,(a) + a (the ML code length
plus the model complexity) and A;(a) (the MDL code
length) are essentially the same function.

Remark IV.3: The lemma implies that the same set wit-
nessing h,(«) also witnesses A;(a) up to an additive term
of K (). The converse is only true for the smallest cardinal-
ity set witnessing A\, (). Without this restriction a counter
example is: for random z € {0,1}" the set S = {0,1}"
witnesses A;(3) = n + O(K(n)) but does not witness
he(%) = % + O(K(n)). (If A\;(a) = K(x), then every
set of complexity o' < a witnessing A\ (o) = K(z) also
witnesses \;(a) = K(z).)

The next two theorems state the main results of this
work in a precise form. By K(i,n,\) we mean the mini-
mum length of a program that outputs n,%, and computes
A(j) given any j in the domain of A. We first analyze the
possible shapes of the structure functions.

Theorem IV.4: (i) For every n and every string x of
length n and complexity k there is an integer valued non-
increasing function A defined on [0, k] such that A\(0) < n,
AMk)=kand \y, =&E()\) fore =§ = K(n) + O(1).

(ii) Conversely, for every n and non-increasing integer
valued function A whose domain includes [0, k] and such
that A(0) < n and A(k) = k, there is z of length n and
complexity k=+ (K (k,n,A) + O(1)) such that A, = £(A) for
e=d=K(@,n,\)+0(1).

Intuition The MDL code length )., and therefore by
Lemma IV.2 also the original structure function h,, can
assume essentially every possible shape as a function of the



contemplated mazximal model complexity.

Remark IV.5: The theorem implies that for every func-
tion h(i) defined on [0, k] such that the function A(7) =
h(i) + i satisfies the conditions of item (ii) there is an z
such that h, (i) = E(h(i)) with e =6 = O(K (i,n, h)). &

Remark IV.6: The proof of the theorem shows that for
every function A(7) satisfying the conditions of item (ii)
there is « such that Ay (i | n,\) = E(A(9)) with e = 6 =
K (i) 4+ O(1) where the conditional structure function A, (¢ |
y) = ming{K(S | y) +1og|S| : S 5 =, K(S|y) < i}.
Consequently, for every function h() such that the function
A(@) = h(i) + i satisfies the conditions of item (ii) there
is an z such that h (i | n,h) = E(h(i)) withe = § =
O(K (i)) where the conditional structure function h,(i |
y) = ming{log|S|: S>3z, K(S |y) <i}. O

Remark IV.7: In the proof of Item (ii) of the theorem
we can consider every finite set U with |U| > 2" in place of
the set A of all strings of length n. Then we obtain a string
x € U such that A\, = £(A\) with £(i) = 6(¢) = K(i,U, N).

¢

The following central result of this paper shows that the
Az (equivalently h,, by Lemma IV.2) and S, can be ex-
pressed in one another but for a logarithmic additive error.

Theorem IV.8: For every x of length n and complexity
k it holds Bz(a) + k = Az(a) for e = 6 = O(logn).

Intuition: A model achieving the MDL code length
Az (@), or the ML code length h;(a), essentially achieves
the best possible fit 8, (a).

Corollary IV.9: For every z of length n and complex-
ity k < n there is a non-increasing function S such that
B(0) <n—k, B(k) =0and 8, = E(B) for £,6 = O(logn).
Conversely, for every non-increasing function 8 such that
B(0) < n—k, B(k) = 0 there is z of length n and complexity
k £ 0 such that 8, = £(B) for e = 6 = O(logn) + K(B).

Proof: The first part is more or less immediate. Or
use the first part of Theorem IV.4 and then let §(i) =
(@) — k. To prove the second part, use the second part of
Theorem IV.8, and the second part of Theorem IV.4 with
A(1) = B(i) + k. [ |

Remark IV.10: From the proof of Theorem IV.8 we see
that for every finite set S 3 =z, of complexity at most
a + O(logn) and minimizing A(S), we have §(z | S) <
B:(a) + O(logn). Ignoring O(logn) terms, at every com-
plexity level, every best hypothesis at this level with re-
spect to A(S) is also a best one with respect to typicality.
This explains why it is worthwhile to find shortest two-
part descriptions for given data z: this is the single known
way to find an S 5 x with respect to which z is as typi-
cal as possible at that complexity level. Note that the set
{z,5,8) | z € S, §(z | S) < B} is not enumerable so we
are not able to generate such S’s directly (Section VII).

The converse is not true: not every hypothesis, consisting
of a finite set, witnessing §;(a) also witnesses A\;(a) or
hz(a). For example, let = be a string of length n with
K(z) > n. Let S; = {0,1}" U {y} where y is a string of
length 2 such that K(z,y) > 22 and let S, = {0,1}™
Then both Si,S: witness 3,(5 + O(logn)) = O(1) but
A(S1) =22 + O(logn) > Ay (2 + O(logn)) = n+ O(logn)

while log |So| = n > hy(§ + O(logn)) = 3 + O(logn). &

However, for every a such that X\, (i) decreases when i —
a with i < a, a witness set for 3, (a) is also a witness set
for A\;(a) and h;(a). We will call such « critical (with
respect to x): these are the model complexities at which
the two-part MDL code-length decreases, while it is stable
in between such critical points. The next theorem shows,
for critical o, that for every A 5 z with K(A) ~ a and §(z |
A) =~ B,(a), we have log|A| ~ h,(a) and A(A) = X ().
More specifically, if K(A) = a and 6(z | A) ~ f;(a) but
A(A) > Ay (a) or log|A| > hy(a) then there is S 5 z with
K(S) < a and A(S) = A (a).

Theorem IV.11: For all A > z there is S > z such
that A(S) < Ag(@) + (8(z|4) — B:(a)), K(S) < K(A) +
(As(a)—A(A))+(0(z]|A) - Bs(@)), and K(S) < a+(ha(e) -
log|A|) + (6(z|A) — Bs(a)) where all inequalities hold up
to O(log A(A)) additive term.

Intuition: Although models of best fit (witnessing B, (a))
do not necessarily achieve the MDL code length A.(c) or
the ML code length h,, they do so at the model complezities
where the MDL code length decreases, and, equivalently, the
ML code length decreases at a slope of more than —1.

Remark IV.12: Invariance under Recoding of Data:
In what sense is the structure function invariant under re-
coding of the data? Osamu Watanabe suggested the ex-
ample of replacing the data x by a shortest program xz*
for it. Since z* is incompressible it is a typical element
of the set of all strings of length |z*| = K(z), and hence
hz+(a) drops to the sufficiency line L(a) = K(z) — « al-
ready for some a < K(K(z)), so almost immediately (and
it stays within logarithmic distance of that line hence-
forth). That is, hy«(a) = K(z) — a up to logarith-
mic additive terms in argument and value, irrespective of
the (possibly quite different) shape of h,. We note that
the recoding function f(z) = z* is not recursive since
K(z*|x) > log|z| — loglog|z| for some z of each length
by [8], and, while it is one-one and total the function is
not onto. But it is the partiality of the inverse function
(not all strings are shortest programs) that causes the col-
lapse of the structure function. If one restricts the finite
sets containing x* to be subsets of {y* : y € {0,1}*}, then
the resulting structure function h,- is within a logarith-
mic strip around h,. However, the structure function is
invariant under “proper” recoding of the data.

Lemma IV.13: Let f be a recursive permutation of the
set of finite binary strings (one-one, total, and onto). Then,
hiy = E(hg) for ,6 = K(f) + O(1).

Proof: Let S > z be a witness of h,(a). Then,

Sy = {f(y) : y € S} satisfies K(S¢) < a+ K(f)+ O(1)
and |Sy| = |S|. Hence, hy)(a+ K(f) +O(1)) < ha(a).
Let R > f(z) be a witness of hf(;)(a). Then, Ry1 =
{f~'(y) : y € R} satisfies K(R;-1) < a + K(f) o(1)
and |Ry-1| = |R|. Hence, hy(a+ K(f) + O(1)) < hyz) (@)
(since K(f~1) = K(f) + O(1)). [ |
¢

Ezample IV.1: Best Prediction Strategy: In [28]

the notion of a snooping curve L;(a) of x was introduced,
expressing the minimal logarithmic loss in predicting the



consecutive elements of a given individual string z, in each
prediction using the preceding sequence of elements, by the
best prediction strategy of complexity at most a.
Intuition: The snooping curve quantifies the quality of
the best predictor for a given sequence at every possible
predictor-complexity.
Formally, L,(a) = min Lossp(z). The minimum is
K(P)<a

taken over all prediction strategies P of complexity at most
a. A prediction strategy P is a mapping from the set of
strings of length less than |z| into the set of rational num-
bers in the segment [0,1]. The value P(z;...x;) is re-
garded as our belief (or probability) that z;11 = 1 after
we have observed zi,...,z;. If the actual bit z;4q1 is 1
the strategy suffers the loss —logp otherwise — log(1 — p).
The strategy is a finite object and K(P) may by de-
fined as the complexity of this object, or as the mini-
mum size of a program that identifies n = |z| and given
y finds P(y). The notation Lossp(z) indicates the total
loss of P on z, i.e. the sum of all n losses: Lossp(z) =
Zl.z:‘gl(— log |P(z1...2;) — 1+ x;4+1]). Thus, the snooping
curve L, (a) gives the minimal loss suffered on all of z by a
prediction strategy, as a function of the complexity at most
a of the contemplated class of prediction strategies. The
question arises what shapes these functions can have—for
example, whether there can be sharp drops in the loss for
only minute increases in complexity of prediction strate-
gies.

A result of [28] describes possible shapes of L, but only
for @ = o(n) where n is the length of z. Here we show
that for every function L and every k < n there is a data
sequence z such that L,(a + O(logn)) = L(a) £ O(logn),
provided L(0) < n, L(a)+ « is non-increasing on [0, k], and
L(a) =0 for a > k.

Lemma IV.15: Ly(a £ O(logn)) = hy(a £ O(logn)) for
every  and a. Thus, Lemma IV.2 and Theorem IV.4 de-
scribes also the coarse shape of all possible snooping curves.

Proof: (<) A given finite set A of binary strings of
length n can be identified with the following prediction
strategy P: Having read the prefix y of z it outputs p =
|Ay1]/|Ay| where A, stands for the number of strings in A
having prefix y.

It is easily seen, by induction, that Lossp(y) =
log(|A|/|Ay]) for every y. Therefore, Lossp(z) = log|A| for
every x € A. Since P corresponds to A in the sense that
K(P | A) = O(1), we obtain L,(a + O(logn)) < hy(a).
The term O(logn) is required, because the initial set of
complexity a might contain strings of different lengths
while we need to know n to get rid of the strings of lengths
different from n.

(>) Conversely, assume that Lossp(z) < m. Let A =
{z € {0,1}": Lossp(z) < m}. Since 3, _, 2 Losse(z) — 1
(proof by induction on n), and 2-10552(z) > 2™ for every
z € A, we can conclude that A has at most 2™ elements.
Since K (A | P) = O(logm), we obtain h,(a + O(logn)) <
L, (). ]
Thus, within the obvious constraint of the function L, (a)+
a being non-increasing, all shapes for the minimal total loss

L, () as a function of the allowed predictor complexity are
possible. &

Ezample IV.16: Foundations of MDL: (i) Consider
the following algorithm based on the Minimum Descrip-
tion Length principle. Given z, the data to explain, and a,
the maximum allowed complexity of explanation, we search
for programs p of length at most o that print a finite set
S 3 z. Such pairs (p,S) are possible explanations. The
best explanation is defined to be the (p, S) for which 6(z|S)
is minimal. Since the function 6(z|S) is not computable,
we cannot find the best explanation. The programs use un-
known computation time and thus we can never be certain
that we have found all possible explanations.

To overcome this problem we use the indirect method
of MDL: We run all programs in dovetailed fashion. At
every computation step ¢ consider all pairs (p, S) such that
program p has printed the set S containing = by time ¢. Let
(pe, L) stand for the pair (p,S) such that |p| + log|S| is
minimal among all these pairs (p, S). The best hypothesis
L; changes from time to time due to the appearance of
a better hypothesis. Since no hypothesis is declared best
twice, from some moment onwards the explanation (p;, L)
which is declared best does not change anymore.

Compare this indirect method with the direct one: af-
ter step ¢ of dovetailing select (p,S) for which log|S| —
K'(z|S) is minimum among all programs p that up
to this time have printed a set S containing z, where
K*'(z|S) is the approximation of K®(z|S) obtained af-
ter t steps of dovetailing, that is, K*(z|S) = min{|q| :
U on input (g, S) prints z in at most ¢ steps}. Let (g, By)
stand for that model. This time the same hypothesis can
be declared best twice. However from some moment on-
wards the explanation (g¢, B;) which is declared best does
not change anymore.

Why do we prefer the indirect method to the direct one?
The explanation is that in practice we deal often with ¢
that are much less than the time of stabilization of both L;
and B;. For small ¢, the model L; is better than By in the
following respect: L; has some guarantee of goodness, as
we know that 6(z|L:) + K(x) < |pt| +1og|L¢|+ O(1). That
is, we know that the sum of deficiency of z in L; and K (x)
is less than some known value. In contrast, the model By
has no guarantee of goodness at all: we do not know any
upper bound neither for §(x|B;), nor for §(z|B;) + K(z).

Theorem IV.8 implies that the indirect method of MDL
gives not only some garantee of goodness but also that,
in the limit, that guarantee approaches the value it upper
bounds, that is, approaches §(z|L;) + K(z), and §(z|Ly)
itself is not much greater than §(z|B;) (assuming that «
is not critical). That is, in the limit, the method of MDL
will yield an explanation that is only a little worse than the
best explanation.

(ii) If S > =z is a smallest set such that K(S) < a, then S
can be converted into a best strategy of complexity at most
a, to predict the successive bits of x given the preceding
ones, (Example IV.14). Interpreting “to explain” as “to be
able to predict well”, MDL in the sense of sets witnessing
Az (@) gives indeed a good explanations at every complexity



level a.

(iii) In statistical applications of MDL [18], [2], MML
[29], and related methods, one selects the model in a given
model class that minimizes the sum of the model code
length and the data-to-model code length; in modern ver-
sions one selects the model that minimizes just the data-to-
model code length (ignoring the model code length). For
example, one uses data-to-model code —log P(z) for data
x with respect to probability (density function) model P.
For example, if the model is the uniform distribution over
n-bit strings, then the data-to-model code for x = 00...0
is —log1/2™ = n, even though we can compress z to about
logn bits, without even using the model. Thus, the data-
to-model code is the worst-case number of bits required for
data of given length using the model, rather than the op-
timal number of bits for the particular data at hand. This
is precisely what we do in the structure function approach:
the data-to-model cost of  with respect to model A 5
is log |A|, the worst-case number of bits required to spec-
ify an element of A rather than the minimal number of
bits required to specify z in particular. In contrast, ulti-
mate compression of the two-part code, which is suggested
by the “minimum description length” phrase, [23], means
minimizing K (A) 4+ K (x| A) over all models A in the model
class. In Theorem IV.8 we have essentially shown that
the “worst-case” data-to-model code above is the approach
that guarantees the best fitting model. In contrast, the “ul-
timate compression” approach can yield models that are far
from best fit. (It is easy to see that this happens only if the
data are “not typical” for the contemplated model, [23].)
For instance, let x be a string of length n and complex-
ity about n/2 for which 8,(O(log(n)) = n/4 + O(log(n).
Such string exists by Corollary IV.9. And let the model
class consists of all finite sets containing x of complexity at
most @ = O(logn). Then for the model A9 = {0,1}" we
have K (Ag) = O(logn) and K (z|Ag) = n/2+0(logn) thus
the sum K (Ag) + K (x|A40) =n/2+ O(logn) is minimal up
to a term O(logn). However, the randomness defficiency
of z in Ay is about n/2, which is much bigger than the
minimum £;(O(log(n)) ~ n/4. For the model A; witness-
ing B,(O(log(n)) ~ n/4 we also have K(A;) = O(logn)
and K(z|A1) = n/2 + O(logn). However, it has smaller
cardinality: log|Ai1| = 3n/4 + O(logn) which causes the
smaller randomness deficiency.

The same happens also for other model classes, such as
probability models. Consider, for instance, the class of
Bernoulli processes with rational bias p for outcome “1”
(0 < p £ 1) to generate binary strings of length n. Sup-
pose we look for the model minimizing the codelength of
the model plus data given the model: K(p|n) + K(z|p, n).
Let the data be = 00...0. Then the model corre-
sponding to probability p = % compresses the data code
to K(z | n,p) = O(1) bits and K(pjn) = O(1). But we
find about the same code length if we take p’ = 0. Thus
we have no basis to distinguish between the two, while
obviously the second possibility is preferable. This shows
that ultimate compression of the two-part code, here re-
sulting in K (p|n) + K(z|n,p), may yield a (probability)

model P for which the data has large randomness defi-
ciency (—log P(z) — K(z | n,p) = n for p = 1) and hence
is atypical.

However, in the structure functions h,(a) and A, (a) the
data-to-model code for the model p = 1 is —log P(z) =
—log(3)™ = n bits, while p = 0 results —log1™ = 0 bits.
Choosing the shortest data-to-model code results in the
minimal randomness deficiency, as in (the generalization
to probability distributions of) Theorem IV.8.

(iv) Another question arising in MDL or maximum like-
lihood (ML) estimation is its performance if the “true”
model is not part of the contemplated model class. Given
certain data, why would we assume they are generated by
probabilistic or deterministic processes? They have arisen
by natural processes most likely not conforming to mathe-
matical idealization. Even if we can assume the data arose
from a process that can be mathematically formulated,
such situations arise if we restrict modeling of data aris-
ing from a “complex” source (conventional analogue be-
ing data arising from 2k-parameter sources) by “simple”
models (conventional analogue being k-parameter models).
Again, Theorem IV.8 shows that, within the class of mod-
els of maximal complexity «, these constraints we still se-
lect a simple model for which the data is maximally typ-
ical. This is particularly significant for data x if the al-
lowed complexity « is significantly below the complexity
of the Kolmogorov minimal sufficient statistic, that is, if
he(a) + a > K(z) + ¢. This situation is potentially com-
mon, for example if we have a small data sample generated
by a complex process. Then, the data will typically be
non-stochastic in the sense of Example IV.20. For a data
sample that is very large relative to the complexity of the
process generating it, this will typically not be the case and
the structure function will drop to the sufficiency line early
on. &

Ezxample 1V.17: Foundations of Maximum Likeli-
hood: The algorithm based on ML principle is similar
to the algorithm of the previous example. The only dif-
ference is that the currently best (p,S) is the one for
which log |S| is minimal. In this case the limit hypothe-
sis S will witness h,(a) and we obtain the same corollary:
6(x]S) < Bz — O(logn)) + O(logn). o

Example 1V.18: Approximation Improves Models:
Assume that in the MDL algorithm, as described in Exam-
ple IV.16, we change the currently best explanation (py, S1)
to the explanation (p2, Sa) only if |p2|+log|S2| is much less
than |p1|+log |S1|, say |p2|+log |S2| < |p1]|+log|Si|—clogn
for a constant ¢. It turns out that if ¢ is large enough and p;
is a shortest program of Sy, then §(x | Sy) is much less than
0(z | S1). That is, every time we change the explanation
we improve its goodness unless the change is just caused
by the fact that we have not yet found the minimum length
program for the current model.

Lemma I[V.19: There is a constant ¢ such that if A(Sy) <
A(S1) — 2clog|z|, then §(z | S2) < d(z | S2) — clog|z| +
0(1).

Proof: Assume the notation of Theorem IV.8. By
(A.4), for every pair of sets S1,S2 3  we have §(x | S2) —



0(z | S1) = A(S2)—A(S1)+A with A = K(S; | 2*)—K(S2 |
IIT*) + 0(1) S K(Sl | SQ,SU*) + O(].) S K(Sl | SQ,IL') +
O(1). As A(Sz) — A(S1) < |pa2| +1og|S2| — A(S1) = |p2| +
log |S2| — (|p1|+log|S1|) € —2clog|z| we need to prove that
K(S; | S1,z) < clog|z|+O(1). Note that (p1,S1), (p2,S52)
are consecutive explanations in the algorithm and every
explanation may appear only once. Hence to identify S; we
only need to know ps, S2,a and z. Since ps may be found
from Sz and length |ps| as the first program computing S,
of length |p2|, obtained by running all programs dovetailed
style, we have K (Ss | S1,z) < 2log|p2| +2log|a|+0(1) <
4log |z| + O(1). Hence we can choose ¢ = 4. (Continued in
Example VL5.) [ |
¢

Example IV.20: Non-stochastic objects: Let ag, o
be natural numbers. A string z is called (o, Bo)-stochastic
by Kolmogorov if 8;(ag) < Bo. In [21] it is proven that
for some ¢,C for all n and all «ag,B9 with 2ag + By <
n — clogn — C there is a string x of length n that is
not (ayg, Bp)-stochastic. Corollary IV.9 strengthens this re-
sult of Shen: for some ¢,C for all n and all ag, 8y with
ao + fo < n — clogn — C there is a string z of length
n that is not (wg,Bo)-stochastic. Indeed, apply Corol-
lary IV.9 to k = ag + ¢1 logn + C; (we will choose ¢1,Cy
later) and the function (i) = n — k for i« < k and
B(1) = 0 for i = k. For the x existing by Corollary IV.9 we
have B;(a0) > B(ao + (c2logn + C2)) — (c2logn + C2) >
Bk — 1) — (c2logn + C2) = n — k — (c2logn + C2) =
n — (o + ¢1logn + C1) — (ealogn + C) > Bo. (The first
inequality is true if ag + calogn + Co < k — 1; thus let
c1 = ¢z,Cy = Cy + 1. For the last inequality to be true let
¢c=c1 + ¢y and C = Cy + Cy.) That is, x is not (ag, Bo)-
stochastic. O

V. REALIZING THE STRUCTURE FUNCTION

We give a general construction of the finite sets witness-
ing Ay, hy, and B;, at each argument (that is, level of model
complexity), in terms of indexes of z in the enumeration
of strings of given complexity, up to the “coarse” equiv-
alence precision of Section IV. This extends a technique
introduced in [10].

Intuition: The question arises whether there is a uniform
construction to obtain the models that realize the struc-
ture functions at given complexities. Here we present such
a construction. (The construction is of course not com-
putable.)

Definition V.1: Let N' denote the number of strings of
complexity at most I, and let |N!| denote the length of
the binary notation of N'. For i < |N!| let N} stand for
i most significant bits of binary notation of N!. Let D
denote the set of all pairs {{z,l) | K(z) < I}. Fix an
enumeration of D and denote by I’ the minimum index of
a pair (z,4) with ¢ < [ in that enumeration, that is, the
number of pairs enumerated before {z,:) (if K(z) > [ then
Il = o0). Let m!, denote the maximal common prefix of
binary notations of I’ and N', that is, IL = m!,0xx---x and
N' = ml1%x-.-x (we assume here that binary notation
of I is written in exactly |N'| bits with leading zeros if

necessary).
(In [10] the notation m, is used for m!, with I = K(z).)

Theorem V.2: For every ¢ < [, the number Nf is algo-
rithmically equivalent to N, that is, K(N¢ | N}), K(N! |
N%) = O(logl).

Before proceeding to the main theorem of this section we
introduce some more notation.

Definition V.3: For i < I let S! denote the set of all
strings y such that the binary notation of Ié has the form
N!0 % x---x (we assume here that binary notations of in-
dexes are written using exactly |N!| bits.)

Let ¢ denote a constant such that K(z) < A(S) + ¢ for
every € S. The following theorem shows that sets S!
form a universal family of statistics for z.

Theorem V.4: (i) If the (i + 1)st most significant bit of
N'is 1 then |S!| = 2I¥'I=i=1 and S! is algorithmically
equivalent to N}, that is K (N} | S¢), K(S! | N}) = O(log!).

(ii) For every S and every z € S, let | = A(S) + ¢ and
i = |mL]. Then z € S!, K(S! | S) = O(logl), K(S}) =
i+0(logl) < K(S)+0(logl), and A(S!) < A(S)+O(logl)
(that is, S! is not worse than S, as a model explaining ).

(iii) If @ is critical then every S witnessing A, (a) is al-
gorithmically equivalent to N®. That is, if K(S) ~ « and
A(S) = Az(a) but K(N*|S) > 0 or K(S|N%) > 0 then
there is A 3 ¢ with K(4) < a and A(A) = A\;(a). More
specifically, for all S 5 z either K(S|N%) < K(S) — a and
K(N*|S) = 0, or there is A 5 z such that A(A) < A(S)
and K (A) < min{a— K(N%|S), K(S) — K(S|N%)}, where
all inequalities hold up to O(log A(S)) additive term.

Note that Item (iii) of the theorem does not hold for non-
critical points. For instance, for a random string z of length
n there are independent Sy, S> witnessing A;(5) = n: let
S1 be the set of all 2’ of length n having the same prefix of
length % as z and S be the set of all 2" of length n having
the same suffix of length % as z.

Corollary V.5: Let x be a string of length n and com-
plexity k. For every a (K(n) + O(1) < a < k) there is
I <n+ K(n) + O(1) such that the set S, both contains z
and witnesses h;(a), A\;(a), and 8,(a), up to an O(logn)
additive term in the argument and value.

VI. FINE STRUCTURE AND SUFFICIENT STATISTIC

Above, we looked at the coarse shape of the structure
function, but not at the fine detail. We show that h,
coming from infinity drops to the sufficiency line L de-
fined by L(a) + @ = K(z). It first touches this line for
some a9 < K(x) + O(1). It then touches this line a
number of times (bounded by a universal constant) and
in between moves slightly (logarithmically) away in little
bumps. There is a simple explanation why these bumps
are there: It follows from (I1.3) and (IL.5) that there
is a constant ¢; such that for every S > x, we have
K(S) + log|S| > K(z) + K(S | #*) — ¢1. If, moreover,
K(S)+log|S| < K(x)+ca, then K(S | 2*) < ca+¢;. This
was already observed in [10]. Consequently, there are less
than 2°2+¢1+! distinct such sets S. Suppose the graph of h,
drops within distance c» of the sufficiency line at «q, then it
cannot be within distance ¢ on more than 2¢2+¢1+1 points.



By the pigeon-hole principle, there is a € [ag, K (z)] such
that hy(a) +a > Ay (o) > K(z) +log(K(x) —ag) —ca — 1.
So if |K () — ap| is of order Q(n) , then we obtain the log-
arithmic bumps, or possibly only one logarithmic bump,
on the interval [ag, K(x)]. However, we will show below
that h, cannot move away more than O(log|K(z) — apl)
from the sufficiency line on the interval [ag, K(z)]. The
intuition here is that a data sequence can have a simple
satisfactory probabilistic explanation, but we can also ex-
plain it by many only slightly more complex explanations
that are slightly less satisfactory but also model more acci-
dental random features—models that are only slightly more
complex but that significantly overfit the data sequence by
modeling noise.

Initial behavior: Let z be a string of complexity
K(z) = k. The structure function h,(a) defined by (IL.8)
rises sharply above the sufficiency line for very small values
of a. Define

m(s) = min{K(y) : y 2 o}, (VL1)
the minimum complexity of a string greater than x—that
is, m(z) is the greatest monotonic non-decreasing function
that lower bounds K(z). The function m(z) tends to in-
finity as x tends to infinity, very slowly—slower than any
computable function.

For a € [0,m(z) — O(1)) we have h,(a) = oo: For a set
S 3 z with K(S) = a we can consider the largest element
y of S. Then y has complexity a + O(1) < m(z), that is,
K (y) < m(z), which implies that y < z. But then z ¢ S
which is a contradiction.

Sufficient Statistic: A sufficient statistic of the data
contains all information in the data about the model. In
introducing the notion of sufficiency in classical statistics,
Fisher [7] stated: “The statistic chosen should summarize
the whole of the relevant information supplied by the sam-
ple. This may be called the Criterion of Sufficiency ... In
the case of the normal curve of distribution it is evident
that the second moment is a sufficient statistic for estimat-
ing the standard deviation.” For the classical (probabilis-
tic) theory see, for example, [6]. In [10] an algorithmic
theory of sufficient statistic (relating individual data to in-
dividual model) was developed and its relation with the
probabilistic version established. The algorithmic basics
are as follows: Intuitively, a model expresses the essence of
the data if the two-part code describing the data consisting
of the model and the data-to-model code is as concise as
the best one-part description. Formally:

Definition VI.1: A finite set S containing = is optimal
for x if

A(S) < K(z) +e. (V1.2)

Here cis some small value, constant or logarithmic in K (z),
depending on the context. A minimal length description
S* of such an optimal set is called a sufficient statistic for
z. To specify the value of ¢ we will say c-optimal and
c-sufficient.

If a set S is c-optimal with ¢ constant, then by (I1.9) we
have K(z) —ca < A(S) < K(x) + ¢. Hence, with respect to

the structure function \;(a) we can state that all optimal
sets S and only those, cause the function A\, to drop to its
minimal possible value K(z). We know that this happens
for at least one set, {z} of complexity K (z) + O(1).

We are interested in finding optimal sets that have low
complexity. Those having minimal complexity are called
minimal optimal sets (and their programs minimal suffi-
cient statistics). To be rigorous we should say minimal
among c-optimal. We know from [10] that the complex-
ity of a minimal optimal set is at least K(K(z)), up to
a fixed additive constant, for every z. So for smaller ar-
guments the structure function definitively rises above the
sufficiency line. We also know that for every n there are
so-called non-stochastic objects x of length n that have op-
timal sets of high complexity only. For example, there are
z of complexity K(z | n*) = n + O(1) such that every
optimal set S has also complexity K (S | n*) = n + O(1),
hence by the conditional version K(S | n*) + log|S| <
K(z | n*) + c of (VI.2) we find |S] is bounded by a fixed
universal constant. As K(S | *) = O(1) (this is proven
in the beginning of this section), for every y € S we have
K(y|z*) <K(y|S)+K(S|z*)+0(1) = O(1). Roughly
speaking for such z there is no other optimal set S than
the singleton {z}.

Example VI.2: Bumps in the Structure Function:
Consider z € {0,1}" with K(z | n) = n 4+ O(1) and the
conditional variant h, (@ | y) = ming{log|S|: S 3 =, |S| <
00, K(S | y) < a} of (II.8). Since S; = {0,1}" is a
set containing z and can be described by O(1) bits (given
n), we find hy(a | n) < n+ O0(1) for a = K(S; | n) =
O(1). For increasing «, the size of a set S 3 z, one can
describe in « bits, decreases monotonically until for some
ap we obtain a first set Sy witnessing hy(ap | n) + ap =
K(z | n)+0(1). Then, Sp is a minimal-complexity optimal
set for x, and S§ is a minimal sufficient statistic for =.
Further increase of a halves the set S for each additional
bit of @ until @ = K(z | n). In other words, for every
increment d we have h,(ap +d | n) = K(z | n) — (o +
d+ O(logd)), provided the right-hand side is non-negative,
and 0 otherwise. Namely, once we have an optimal set
So we can subdivide it in a standard way into 2¢ parts and
take as new set S the part containing z. The O(log d) term
is due to the fact that we have to consider self-delimiting
encodings of d. This additive term is there to stay, it cannot
be eliminated. For a > K (z | n) obviously the smallest set
S containing x that one can describe using a bits (given
n) is the singleton set S = {z}. The same analysis can be
given for the unconditional version h;(a) of the structure
function, which behaves the same except for possibly the
small initial part o € [0, K'(n)) where the complexity is too
small to specify the set Sy = {0,1}", see the initial part of
Section VI.

The little bumps in the sufficient statistic region
[K(K(x)),K(z)] in Figure 4 are due to the boundedness
of the number of sufficient statistics. &

Example VI.3: Sufficient Statistic: Let us look at
a coin toss example. Let k be a number in the range
0,1,...,n of complexity logn + O(1) given n and let x
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be a string of length n having k ones of complexity K(z |
n, k) > log (Z) given n, k. This z can be viewed as a typ-
ical result of tossing a coin with a bias about p = k/n. A
two-part description of z is given by the number k of 1’s
in z first, followed by the index j < log|S| of z in the set
S of strings of length n with k£ 1’s. This set is optimal,
since K(z | n) = K(z,k | n) = K(k | n)+ K(z | k,n) =
K(S|n) +log|S]|. &

Example VI.J: Hierarchy of Sufficient Statistics:
Another possible application of the theory is to find a
good summarization of the meaningful information in a
given picture. All the information in the picture is de-
scribed by a binary string x of length n = ml as follows.
Chop z into [ substrings z; (1 < ¢ < I) of equal length
m each. Let k; denote the number of ones in z;. Each
such substring metaphorically represents a patch of, say,
color. The intended color, say “cobalt blue”, is indicated
by the number of ones in the substring. The actual color
depicted may be typical cobalt blue or less typical cobalt
blue. The smaller the randomness deficiency of substring
z; in the set of all strings of length m containing precisely
k; ones, the more typical z; is, the better it achieves a typ-
ical cobalt blue color. The metaphorical “image” depicted
by z is w(z), defined as the string kiko ...k over the al-
phabet {0,1,...,m}, the set of colors available. We can
now consider several statistics for z.

Let X C {0,1,...,m}' (the set of possible realizations
of the target image), and let Y; for 4 = 0,1,...,m be a
set of binary strings of length m with ¢ ones (the set of
realizations of target color i). Consider the set

S={z':n(z')e X,(2'); € Yy, forall i =1,...,1}

One possible application of these ideas are to gouge how
good the picture is with respect to the given summarizing

set S. Assume that 2 € S. The set S is then a statistic for
that captures both the colors of the patches and the image,
that is, the total picture. If S is a sufficient statistic of x
then S perfectly expresses the meaning aimed for by the
image and the true color aimed for in everyone of the color
patches. Clearly, S summarizes the relevant information
in z since it captures both image and coloring, that is,
the total picture. But we can distinguish more sufficient
statistics.

The set

Sy ={z":n(a') € X}

is a statistic that captures only the image. It can be suf-
ficient only if all colors used in the picture z are typical.
The set

Sy ={z':(z")i €Yy, foralli=1,...,1}

is a statistic that captures the color information in the
picture. It can be sufficient only if the image is a random
string of length [ over the alphabet {0,1,...,m}, which is
surely not the case for all the real images. Finally the set

A= {-'L'I : (xl)l € Yki}

is a statistic that captures only the color of patch (z'); in
the picture. It can be sufficient only if K (i) = 0 and all
the other color applications and the image are typical. <

Example VI.5: “Positive” and ¢“Negative” Ran-
domness: (Continuing Example IV.20.) In [10] the exis-
tence of strings was shown for which essentially the single-
ton set consisting of the string itself is a minimal sufficient
statistic. While a sufficient statistic of an object yields
a two-part code that is as short as the shortest one part
code, restricting the complexity of the allowed statistic may
yield two-part codes that are considerably longer than the
best one-part code (so the statistic is insufficient). This is
what happens for the non-stochastic objects. In fact, for
every object there is a complexity bound below which this
happens—but if that bound is small (logarithmic) we call
the object “stochastic” since it has a simple satisfactory
explanation (sufficient statistic). Thus, Kolmogorov in [15]
(full text given in Section I) makes the important distinc-
tion of an object being random in the “negative” sense by
having this bound high (they have high complexity and are
not typical elements of a low-complexity model), and an
object being random in the “positive, probabilistic” sense
by both having this bound small and itself having com-
plexity considerably exceeding this bound (like a string
z of length n with K(x) > n, being typical for the set
{0,1}™, or the uniform probability distribution over that
set, while this set or probability distribution has complex-
ity K(n) + O(1) = O(logn)). We depict the distinction in
Figure 5.

Corollary IV.9 establishes that for some constant C, for
every length n, for every complexity k < n and every aq €
[0, k], there are z’s of length n and complexity k £+ C'logn
such that the minimal randomness deficiency 3, (i) > n —
k — Clogn for every i < ag — C'logn and S,(:) < Clogn
for every i > ag + Clogn. Fix ¢ = Clogn and define
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Fig. 5. Data string z is “positive random” or “stochastic” and data
string y is “negative random” or “non-stochastic”.

for all s,t = 0,...,n/(2¢) — 1 the set As of all n-length
strings of complexity K(z) € [(2s — 1), (25 + 1)e) and
such that the minimal randomness deficiency 8, (i) > n —
(2s + 1)e for every i < (2t — 1)e and B,(i) < € for every
i > (2t + 1)e. Corollary TV.9 implies that every Ay is
non-empty (let ag = 2te, k = 2s¢). Note that A, are
pair-wise disjoint. Indeed, if s # s’ then Ay and Agy are
disjoint as the corresponding strings x,z' have different
complexities. And if ¢t # ¢/, say t < t/, then Ay and Agy
are disjoint, as the corresponding strings , z' have different
value of deficiency function in the point i = (2t + 1)e:
Bz((2t +1)e) > n— (2s + 1)e > € > B ((2¢ + 1)e).
Letting k = ap = n — +/n we see that there are n-length
non-stochastic strings of almost maximal complexity n —
v/n+0(logn) having significant v/n+O(logn) randomness
deficiency with respect to {0,1}" or, in fact, every other
finite set of complexity less than n — O(logn)! O

VII. COMPUTABILITY QUESTIONS

How difficult is it to compute the functions h;, Az, Bz,
and the minimal sufficient statistic? To express the prop-
erties appropriately we require the notion of functions that
are not computable, but can be approximated monotoni-
cally by a computable function.

Definition VIL.1: A function f : N — R is upper semi-
computable if there is a Turing machine T° computing
a total function ¢ such that ¢(z,t + 1) < ¢(z,t) and
lim¢ o0 ¢(z,t) = f(z). This means that f can be com-
putably approximated from above. If —f is upper semi-
computable, then f is lower semi-computable. A func-
tion is called semi-computable if it is either upper semi-
computable or lower semi-computable. If f is both upper
semi-computable and lower semi-computable, then we call
f computable (or recursive if the domain is integer or ra-
tional).

Semi-computability gives no speed-of-convergence guar-
anties: even though the limit value is monotonically ap-
proximated we know at no stage in the process how close
we are to the limit value. The functions h;(a), \; (@), Bz (@)
have finite domain for given x and hence can be given as

a table—so formally speaking they are computable. But
this evades the issue: there is no algorithm that computes
these functions for given z and a. Considering them as
two-argument functions we show the following (we actu-
ally quantify these):
e The functions hg(a) and M\, (a) are upper semi-
computable but they are not computable up to any rea-
sonable precision.
« Moreover, there is no algorithm that given z* and « finds
hz(a) or Ag(a).
e The function S,(a) is not upper- or lower semi-
computable, not even to any reasonable precision, but we
can compute it given an oracle for the halting problem.
o There is no algorithm that given = and K (z) finds a min-
imal sufficient statistic for x up to any reasonable precision.
Intuition: the functions h, and X\, (the ML-estimator
and the MDL-estimator, respectively) can be monotonically
approzimated in the upper semi-computable sense. But the
fitness function B, cannot be monotonically approximated
in that sense, nor in the lower semi-computable sense, in
both cases not even up to any relevant precision.
The precise forms of these quite strong noncomputability
and nonapproximability results are given in Appendix B.

VIII. CONCLUSION

When we compare statistical hypotheses Sy and S; to
explain & we should take into account three parameters:
K(S),K(z|S),andlog|S|. The first parameter is the sim-
plicity of the theory S explaining the data. The difference
0(z|S) = log|S| — K(z | S) (the randomness deficiency)
shows how typical the data is with respect to S. The sum
A(S) = K(S) + log|S| tells us how short the two part code
of the data using theory S is, consisting of the code for
S and a code for x simply using the worst-case number of
bits possibly required to identify x in the enumeration of S.
This second part consists of the full-length index ignoring
savings in code length using possible non-typicality of x in
S (like being the first element in the enumeration of S).
We would like to define that Sy is not worse than S; (as
an explanation for z), in symbols: Sy < Sy, if
o K(So) < K(S1);

e 0(z|So) < d(z|S1); and

o A(So) < A(Sh).

To be sure, this is not equivalent to saying that K (Sp) <
K(S1),0(z|So) < 6(x|S1),log|So| < log|Si]- (The latter
relation is stronger in that it implies Sy < S1 but not vice
versa.) The algorithmic statistical properties of a data
string x are fully represented by the set A, of all triples
(K (S),d(2]S), A(S)) such that S 5 z, together with a com-
ponent wise order relation < on the elements those triples.
The complete characterization of how this set may look
like (with O(logn)-accuracy) is now known in the follow-
ing sense.

Our results (Theorems IV.4, IV.8, IV.11) describe com-
pletely (with O(logn)-accuracy) possible shapes of the
closely related set B, consisting of all triples («, 3, A) such
that there is a set S 3 z with K(S) < a, d(z | S) < 8,
A(S) < A. That is, A, C B, and A, and B, have the



same minimal triples. Hence, we can informally say that
our results describe completely possible shapes of the set of
triples (K (S), d(z|S), A(S)) for non-improvable hypotheses
S explaining z. For example up to O(logn) accuracy, and
denoting k = K(z) and n = |z|:

(i) For every minimal triple («
a<k 0<B,8+k=vy<n.

(ii) There is a triple of the form (ap,0,k) in B, (the
minimal such qq is the complexity of the minimal sufficient
statistic for ). This property allows us to recover the
complexity k of z from B,,.

(iii) There is a triple of the form (0,A¢ — k, Ao) in B,
with Ag < n.

Previously, a limited characterization was obtained by
V’yugin [26], [27] for the possible shapes of the projection
of B, on a, B-coordinates but only for the case when a =
o(K (z)). Our results describe possible shapes of the entire
set B, for the full domain of a (with O(logn)-accuracy).
Namely, let f be a non-increasing integer valued function
such that f(0) <mn, f(i) =k for all ¢ > k and

By = {{a,B,N) |0< a, f(a) <A, fla)—

For every z of length n and complexity k there is f such
that

,3,7) in B, we have 0 <

k< B}.

Bf+uCB,CBj—u (VIIL1)

where u = {clogn, clogn,clogn) for some universal con-
stant ¢. Conversely, for every & < n and every such
f there is z of length n such that (VIIL.1) holds for
u = {clog K(n, f,k),clog K(n, f,k),clog K(n, f,k)) . Our
results imply that the set B, is not computable given z, k
but is computable given z,k and «g, the complexity of
minimal sufficient statistic.

The major result of this work is that a finite set that
witnesses \;(a) or h;(a) (minimizes the log-cardinality or
A(S) of a set containing z of complexity at most «) simul-
taneously witnesses 3, (a) (minimizes the randomness defi-
ciency of x with respect to a set containing it of complexity
at most «). We have also addressed the non-computability
of h, (but it is upper semi-computable), and the fine struc-
ture of its shape (especially for a below the minimal suffi-
cient statistic complexity).

Model determination deficiency: There is also the
fourth important parameter, K (S | z*) reflecting the de-
terminacy of hypothesis S by the data z. However, the
equality log |S|+K(S)—K(z) = K(S | z*)+d(z | S)+0(1)
shows that this parameter can be expressed in «, 8, h. The
main result (ITI.1) establishes that K(S | z*) is logarith-
mic for every set S witnessing h;(a). This also shows that
there are at most polynomially many such sets.

APPENDIX

I. PROOFS

Proof: Lemma IV.2 The inequality A, (a) < h;(a)+
« is immediate. So it suffices to prove that h,(a) + a <
Az (@) + K(a) + O(1). The proof of this inequality is based
on the following:

Claim A.1: Ignoring additive K (i) terms the function
h (i) + i does not increase:

hx(lz) +1i9 < hw(’ll) +1i1 + K(iQ | i1) + 0(1) (Al)

for i1 < iz < K(x).

Proof: Let S be a finite set containing z with K(S) <
i1 and log|S| = hg(i1). For every m < log|S|, we can
partition S into 2™ equal-size parts and select the part S’
containing z. Then, log|S’| = log|S| — m at the cost of
increasing the complexity of S’ to

K(S') < K(S)+m + K(m | K(S)) + O(1)

(we specify the part S’ containing x by its index among all
the parts). Choose

m =1is — K(S) — K(iz | K(S)) —

for a constant ¢ to be determined later. Note that

K(m | K(8)) < K(is, K(is | K(S)) | K(8)) + K(c) + ¢'
= K(iz | K(S)) + K () + ¢

for appropriate constants ¢, ¢”.
sulting set S’ is thus at most

The complexity of the re-

K(S)+i2— K(S)— K(i2 | K(S)) — ¢
+ K(is | K(9)) + K(c) + " < i,

provided ¢ is chosen large enough. Hence, h;(iz)
log |S'| = hy(i1)—m = hy(i1)—ie+K(S)+K(iz | K(S))+
and it suffices to prove that K(S) + K(ia | K(S))
i1 + K(i2 | 41) + O(1). This follows from the bound
K(iz | K(5)) < K(iz | i1) + K(ix | K(S)) + O(1) < K(iz |

IN S IA

i1) + K (i1 — K(5)) +0(1) < K (iy | i1) +i1 — K(S) + O(1).
|

Let S witness \; (). Substituting K(S) =41, a = iy in
(A.1) we obtain: h,(a) + a < h,(K(S)) + K(S) + K(a |
K(5))+0(1) < A(S)+K(a)+0(1) = A (@) + K (a)+0(1).
|

Proof: Theorem IV.4 (i) We first observe that for
every z of length n we have A\, (K (n)+0(1)) <n+K(n)+
O(1), as witnessed by S = {0,1}". At the other extreme,
Az(k+ O(1)) = k+ O(1), as witnessed by S = {z}.

Define A(7) by the equation A(i) — k = max{0,\,(i +
K(n)+0()) —k—0(1)}. Then A, = E(A) withe =6 =
K(n) + O(1), and X satisfies the requirements of Item (i)
of the theorem.

(i) Fix A(4) satisfying the conditions in the theorem. It
suffices to show that there is a string z of length n such
that, for every ¢ € [0, k], we have A, (1) > A(¢) and A, (i +
8(1)) < M) +6(4) for 6(i) = K(i,n,A) + O(1). Then, with
0 = d(k), we have K(z) < Ay (k+0) +0(1) < A(k)+0 +
O(1) =k+4d+0(1). And the inequality A, (k) > A\(k) =k
implies that K(x) > k — O(1).

Claim A.2: For every length n, there is a string z of
length n such that A, (i) > A(i) for every i in the domain
of .



Proof: Fix a length n. If A;(4) < A(%) then z belongs
to a set A with A(4) < A(7) < A(0) < n. The total number
of elements in different such A’s is less than 3° , 27 K(4) =
2"y 4 2-K(4) < 27 where the second inequality follows by
(I1.2). [ ]

We prove Item (ii) by demonstrating that the lexico-
graphically first z, as defined in Claim A.2, also satisfies
A (i + 6(2)) < A@E) + 6(4), for 6(i) = K(i,n,A) + O(1) for
all i € [0,%]. It suffices to construct a set S 3 z of cardi-
nality 2X()=% and of complexity at most i + &(i), for every
i€ [0,k].

For every fixed i € [0, k] we can run the following;:

Algorithm: Let A be a set variable initially containing
all strings of length n, and let S be a set variable initially
containing the 2M9~% first strings of A in lexicographical
order. Run all programs of length at most n dovetail style.
Every time a program p of some length j halts, \(j) is de-
fined, and p prints a set B of cardinality at most 2*() 7 we
remove all the elements of B from A (but not from S); we
call a step at which this happens a j-step. Every time SN A
becomes empty at a j-step, we replace the contents of S by
the set of the 229~ first strings in lexicographical order of
(the current contents of) A. Possibly, the last replacement
of S is incomplete because there are less than 29— ele-
ments left in A. It is easy to see that z € S\ A just after
the final replacement, and stays there forever after, even
though some programs in the dovetailing process may still
be running and elements from A may still be eliminated.

Claim A.3: The contents of the set S is replaced at most
2¢+1 times.

Proof: There are two types of replacements that will
be treated separately.

Case 1: Replacement of the current contents of S where
at some j-step with j < i at least one element was removed
from the current contents S N A. Trivially, the number of
this type of replacements is bounded by the number of j-
steps with j < i, and hence by the number of programs of
length less than 4, that is, by 2°.

Case 2: Replacement of the current contents of S where
every one of the 22()~7 elements of the current contents of
S is removed from A by j-steps with j > 4. Let us estimate
the number of this type of replacements: Every element x
removed at a j-step with j > ¢ belongs to a set B with
A(B) < A(J) € A(¢). The overall cumulative number of
elements removed from A on j-steps with j > 4 is bounded
by 35 200K (B) < 223 where the inequality follows by
(I1.2). Hence replacements of the second type can happen
at most 220 —AD—1) = 27 times, [ |

By Claim A.3, S stabilizes after a certain number of j-
steps. That number may be large. However, the number of
replacements of S is small. The final set S 5 x has cardinal-
ity 2\9—% and can be specified by the number of replace-
ments resulting in its current contents (as in Claim A.3),
and by i,n, A. This shows that K(S) < i+K(i,n,\)+0(1).

|
Proof: Theorem IV.8 The statement of the theorem
easily follows from the following two inequalities that are

valid for every x (where n = |z| and k = K(z)):

Bz(i) + k < Az(i) + O(1), for every i < k; and
Az (i + O(logn)) < B,(i) + k+ O(logn),
for every ¢ satisfying K(n) + O(1) <1i < k.

It is convenient to rewrite the formula defining d(z | A)
using the symmetry of information (I1.3) as follows:

3(z | A) = log|A| + K(A) — K(A | z*) — k+O(1) (A.4)
— A(A) — K(A | 2*) — k + O(1).

Ad (A.2): This is easy, because for every set S 3
witnessing A (i) we have §(z | S) < A(S) — k+ O(1)
Az (i) =k + O(1) and B,(i) < d(z | 9).

Ad (A.3): This is more difficult. By (A.4), and the obvi-
ous K(A|z*) < K(A | z) + O(1), it suffices to prove that
for every A 3 x there is an S 3 z with

I &

K(S) < K(A)+ O(logm),
log |S| <log|A| — K(A | z) + O(logm),

where m = A(A). Indeed for every A witnessing () the
set S will witness A, (i + O(logn)) < B,(¢) + k + O(logn)
(note that m = log|A| + K(A) = K(z | A*) + B.(i) +
K(A) < 3n+ O(logn) provided i > K(n) + O(1)). The
above assertion is only a little bit easier to prove than the
one in Lemma A.4 below that also suffices. Since we need
this lemma in any case in the proof of Theorem IV.11 we
state and prove it right now.

Lemma A.j4: For every A > 1z there is S > z with
K(S) < K(A) — K(A | z) + O(logm) and [log|S|]] =
[log|A|] (where m = A(A) ).

Proof: Fix some Ag > z and let m = A(A4p). Our
task is the following: Given K (Ap), [log|A4o|], K (4o | ),
to enumerate a family of at most 2K(40)—K(Ao/z)+O(logm)
different sets S with log|S| = [log|Ao|] that cover all y’s
covered by sets A, with K(A) = K(Ag), K(A | y) =
K(Ap | z) and [log|A|] = [log|Ag|]. Since the complexity
of each enumerated S does not exceed K(Ag) — K(4q |
2) + O(log m) + K (K (4y), llog | 0[], K (Ao | 7)) + O(1) =
K(Ag) — K(Ao | ) + O(logm) the lemma will be proved.
The proof is by running the following:

Algorithm: Given K(Ay), [log|4o|], K (4o | ) we run
all programs dovetail style. We maintain auxiliary set-
variables C, U, D, all of them initially (). Every time a new
program p of length K (Ap) in the dovetailing process halts,
with as output a set A with [log|A|] = [log|Ao|], we exe-
cute the following steps:

Step 1: Update U := U U A.

Step 2: Update D := {y € U\ C: y is covered by at
least t = 2K(4ol2)=9 different generated A’s}, where § =
O(logm) will be defined later.

Step 3: This step is executed only if there is y € D that is
covered by at least 2t different generated A’s. Enumerate
as much new disjoint sets S as are needed to cover D: we
just chop D into parts of size 2108140l (the last part may
be incomplete) and name those parts the new sets S. Every
time a new set S is enumerated, update C := C U S.



Claim A.5: The string z is an element of some enumer-
ated S, and the number of enumerated S’s is at most
9K (Ag)—K(Ao|z)+O(logm)

Proof: By way of contradiction, assume that z is
not an element of the enumerated S’s. Then there are
less than 2K (Aol2)—0+1 different generated sets A such that
xz € A. Every such A therefore satisfies K(A | z) < K (Ao |
z)—3d+0(logm) < K(Ag | z) if § is chosen appropriately.
Since Ao was certainly generated this is a contradiction.

It remains to show that we enumerated at most
2K (Ao)—K(Ao|z)+O(ogm) (different S’s. Step 3 is executed
only once per t executions of Step 1, and Step 1 is ex-
ecuted at most 2K(40) times. Therefore Step 3 is exe-
cuted at most 2K(4o) /t = 2K(Ao)=K(Ao#)+d times. The
number of S’s formed from incomplete parts of D’s in
Step 3 is thus at most 2K(40)—K(A0)+d  Tet us bound
the number of S’s formed from complete parts of D’s.
The total number of elements in different A’s generated is
at most 2K (Ao)+log 4o/l counting multiplicity. Therefore
the number of elements in their union, having multiplicity
2K(Aolz)=8 or more, is at most 2K (Ao)+[log[Ao|]-K(Ao|z)+d
Every S formed from a complete part of a set D in
Step 3 accounts for 2M1°8140ll of them. Hence the num-
ber of S’s formed from complete parts of D’s is at most

9K (Ag)~K(Ao|2)+5 m
|
|

Proof: Theorem IV.11 By Lemma A.4 there is

S 3 z with K(5) < K(A) — K(4 | z) + O(log A(A)) and

[log|S[] = [log | All.
Let us upper bound first K(S). We have

K(S)<K(A) —K(A|z)=0(z|A) + k —log|A|
= Bz(a) + k —log |A| + (6(z]A) — Bz(a))
< Ap(@) —log |A] + (6(z[A4) — Bo(ar)).

(all inequalities are valid up to O(log A(A)) additive term).
The obtained upper bound is obviosly equivalent to the
first upper bound of K(S) in the theorem. As log|S| =
log|A| it gives the upper bound of A(S) from the theorem.
Finally, as A\;(a@) < hy(a) + a + O(1) we obtain K(S) <
a+ (he(a) —log|A]) + (6(z|A) = Bz (a)) (up to O(log A(A))
additive term). [ |
Proof: Theorem V.2 We first show that [ml| <
K(z) + O(logl) for every z with K(z) < I. Indeed, given
z, I, |m!,| and the |[N!| —|m!,| least significant bits of N! we
can find N!: find I! by enumerating D until a pair (z,4)
with i < | appears and then complete m. by using the
|ml| most significant bits of the binary representation of
IL. Given [ and N! we can find, using a constant-length
program, the lexicographically first string not in N!. By
construction, this string has complexity at least [4+1. Then,
| < K(N') + O(logl) < K(z) + |N'| — [m| + O(logl) <
K(z) +1—|ml| + O(logl) (use |N!| <1+ O(1)). Thus,
|ml| < K(z) + O(logl).
Let = be the string of complexity at most ¢ with maxi-
mum I!. Given m!, and i,l,|N!| we can find all strings of
complexity at most ¢ by enumerating D until N pairs (y, j)

with j7 < [ appear, where N is the number whose binary
representation has prefix m!1 and then (|N!| — |m}| - 1)
zeros. Since |m!| < i+ O(logl), this proves K (N | N}) =
O(log!). Since K(N%) > i — O(logi) > K(N!) — O(log)
we have K (N} | N*) = O(log). [ |

Proof: Theorem V.4 (i) If the (i + 1)st most sig-
nificant bit of N’ is “1,” then all the numbers with binary
representation of the form N!0 *-- - are used as indexes
of some y with K(y) < I, that is, S! has exactly 2IV'l=i-1
elements. We can find S! given [, i, [N!| and N! by enu-
merating all its elements. On the other hand, N! can be
found given S! and i,! as the first i bits of I, for every
ze S

(ii) Since i = |m!|, the largest common prefix of binary
representation of I and N! has the form N!0 x---x and
the (i + 1)st most significant bit of N! is 1. In particular,
ze S

Let J = max{I, |y € S}. Asz € S, wehave J > I,. We
can find N} given i, I and S by finding J and taking the i
first bits of J. Given N} we can find S!. Hence K(S! | S) =
O(logl). Therefore K(S!) < K(S) + O(log!). By Item (i)
and by previous theorem we have K(S!) = i + O(logl).
Again by Item (i) we have A(S!) <1+ O(logl) = A(S) +
O(logl).

(iii) Let i = |ml|. We distinguish two cases.

Case 1: i > a. Then K(N® | S) < K(N® | S!) +
O(logl) < K(N® | N%) + O(logl) = O(logl). And K(S |
N*)=K(S)— K(N*)+ O(logl) = K(S) — a+ O(logl).

Case 2: i < a. Let A = 5! As A(S!) < A(S)+O(logl)
we need to prove that K (S!) < a— K(N%|S) and K(S!) <
K(S) — K(S|N?) up to O(log!) additive term. We have

K(S!) = K(N®) — K(N%|S%) + O(log)
<a-—-K(N®S)+ O(logl)

and

K(ShH

K2

K(S) — K(S|S!) + O(log!)
< K(S)— K(S|N%) + O(log1).

II. COMPUTABILITY PROPERTIES

Structure Function: It is easy to see that h,(a) or
Az (@), and the finite set that witnesses its value, are upper
semi-computable: run all programs of length up to a dove-
tailed fashion, check whether a halting program produced a
finite set containing x, and replace the previous candidate
with the new set if it is smaller.

The next question is: Is the function A, («), as the func-
tion of two arguments, computable? Of course not, because
if this were the case, then we could find, given every large
k, a string of complexity at least k. Indeed, we know that
there is a string x for which A\, (k) > k. Applying the al-
gorithm to all strings in the lexicographical order find the
first such z. Obviously K (z) > k — O(1). But it is known
that we cannot prove that K(z) > k for sufficiently large
k, [13].



Assume now that we are given also K(z). The above
argument does not work any more but the statement re-
mains true: Az(«) is not computable even if the algorithm
is given K (x).

Assume first that the algorithm is required to output the
correct answer given any approximation to K (z). We show
that no algorithm can find A that is close to A, (a) for some
<€ a< K(z).

Theorem B.1: For every constant ¢ there is a constant
d such the following holds. There is no algorithm that
for infinitely many k&, given k and z of length k + dlogk
with |K(z) — k| < 2logk, always finds A such that there is
2logk < a < k with [A\z(a) — A| < clogk.

Proof: Fix c. The value of d will be chosen later. The
proof is by contradiction. Let A be some algorithm. We
want to fool it on some pair (z, k).

Fix large k. We will construct a set S of cardinality
2k—2logk gych that every string = in S has length k+dlogk
and complexity at most k+ 2logk, and the algorithm halts
on (z,k) and outputs A > (¢ + 1)logk. This is a contra-
diction. Indeed, there is x € S with K(z) > k — 2logk.
Hence the output A of A on (z, k) is correct, that is, there
is a with 2logk < a < k and |A;(a) — A| < clogk. Then
Az (@) > logk. On the other hand, A(2logk) < k as wit-
nessed by S. Thus we obtain

k< A (a) < A (2logk) <k,

a contradiction.

Run in a dovetailed fashion all programs of length & or
less. Start with z equal to the first string of length k +
dlogk and with S = B =0. Run A on (z,k) and include
in B all strings 2’ such that either a program p of length
at most k£ has halted and output a set C' > 2’ with |p| +
log|C| < k + (2¢ + 1)logk, or we find out that K(z') <
k—2logk. Once x gets in B we change z to the first string
of length k + dlog k outside BU S. (We will show that at
every step it holds |B U S| < 2k+dlogk )

We proceed in this way until A(z, k) prints a number A
or the number of changes of z exceed 282, (Actually, we
will prove that the number of changes of  does not exceed
2k+1 4 gk—2logk ) Therefore K (z) < k + 2logk for all our
x’s so we eventually will find x such that A(z, k) outputs
aresult . If X > k + (¢ + 1)logk then include z in S
and then change z to the first string of length k + dlogk
outside (the current version of) B U S. Otherwise, when
A< k+ (c+ 1)logk, let A, be the current approximation
of \,. We know that z is outside all known sets C' with
K(C) <k, K(C)+log|C| < k+(2c+1) log k. Therefore, for
every a < k it holds A;(a) > k + (2¢ + 1) logk and hence
|Az(a) — A| > clogk. This implies that either K(z) <
k — 2logk or A, differs from A,. So we are sure that at
least one more program of length k or less still has to halt.
We wait until this happens, then include x in B and change
z to the first string of length k + dlogk outside BU S.

Once we get 2F~2198k elements in S we halt. Every
change of z is caused by a halting of a new program of
length at most k£ or by including z in S, thus the total
number of changes does not exceed 2F+1 4 2k—2logk,

Note that at every step we have

|B U Sl < 2k—210gk + 2k+(2c+1) log k + 2k—210gk < 2k+d10gk

provided that d > 2¢ + 1. |

What if the algorithm is required to approximate A, only
if it is given the precise value of K (z)? We are able to prove
that in this case the algorithm cannot compute A, () too.
It is even impossible to approximate the complexity of min-
imal sufficient statistic. To formulate this result precisely
consider the following promise problem:

Input: z,k = K(z),a € [,k —¢].

Output:

1,if Ay(@a—¢) < k+6logk,

0,if Ap(a+¢e) >k +3e.

If neither of two above cases occurs the algorithm may
output any value or no value at all.

Theorem B.2: There is no algorithm A solving this
promise problem for all z and € = |z|/10log|z|.

Corollary B.3: There is no algorithm that given x,k =
K (z) finds an integer valued function A on [0, k] such that
Az =E(A) for e =0 = |z|/101og |z|.

Indeed, if there were such algorithm we could solve the
above promise problem by answering 1 when A(a) < k+2¢
and 0 otherwise.

Proof: The proof is by contradiction. The idea is
as follows. Fix large k. We consider N = O(log k) points
aq,...,an that divide the segment [0, k] into equal parts.
We lower semicompute A\, and K(z) for different z’s of
length about k + 4e. We are interested in strings  with
Xe(or +€) > k + 3¢ where ), is the current approx-
imation to A;. By counting arguments there are many
such strings. We apply the algorithm to (z,K(z),a;) for
those x’s, where K (x) stands for the currently known up-
per bound for K(z). Assume that A(z, K(x),a;) halts.
If the answer is 1 then we know that K(z) < K(z) or
Az(@1 +€) < Az(aq +¢€) and we continue lower semicom-
putation until we get know which of two values K(z) or
Az (a1 + €) gets smaller. If the latter is decreased we just
remove z (the total number of removed z will not increase
2k+3¢ and thus they form a small fraction of strings of
length k + 4¢). If for many z’s the answer is 0 we make
those answers incorrect by including those x’s in a set of
cardinality 2¥~21%2¢ and complexity a; — e. Then for all
such z’s A\;(a1 —€) < k + ¢ and thus algorithm’s answer
is incorrect. Hence K(z) < K(z) and we continue lower
semicomputation. For all those z’s for which K (z) is de-
creased we repeat the trick with as in place of a;. In this
way we will force K (z) to decrease very fast for many x’s.
For most of z’s K(z) will become much less than &, which
is impossible.

Here is the detailed construction. Fix large k. Let N =
3logk, 6 = k/9logk (one third of the distance between
consecutive «;), a; = k — 301+ 0, n = k+ 46 (the length of
z). The value of parameter ¢ is chosen to be slightly less
than ¢ (we will need that § > ¢ + 4log k for large enough
k).

We will run all the programs of length at most k' =
k + 2log k and the algorithm A on all possible inputs in a



dovetailed fashion.

We will define a set X of 2F strings of length n. Our
action will be determined by & only, hence K(z) < k +
2logk = k' for every x € X provided k is large enough.
We will also define some small sets B; for [ = 1,..., N, the
sets of “bad” strings and B will denote their union. Every
B; will have at most 2¢=9 elements. We start with B; = (§
forl=1,...,N.

We make 2% stages. At every stage consider the sets

X,={reX\B:K()=kK+1-1} forl=1,...,N,

={r€ X \B: K(z) > k'}.

Before and after every stage the following invariant will be
true.

(1) |X;| < 23% for every 0 < < N; in particular X, = 0.
(2) For all 1 < I < N for all z € X; it holds

Az, K (x), ;) = 0. B
(8) For all 0 <1 < i< N and all z € Xj it holds A, (a; +
0) > k+ 34.

(4) |B;| < 2319-30+1x(the number of programs of length
at most k — 3iJ + 2§ that have halted so far).

At the start all X;’s and B;’s are empty so the invariant
is true. Each stage starts by including a new element in
X. This element is the first string xo of length n = k + 44
outside X such that A;(a) > k+ 36 for all @ < k. Thus by
the choice of o the assertions (3) and (4) remain true but
(1) and (2) may not.

We claim that continuing the dovetailing and updating
properly B;’s we eventually make every one of (1), (2), (3)
and (4) true. During the dovetailing the sets X; change
(an element can move from X; to X; for i > [ and even to
X\ (XoU---UXp)). We will denote byNX’l the version
of X; at the beginning of the stage (and Xy = {z¢}) and
keep the notations X;, B; for current versions of X;, B;,
respectively. The rule to update B;’s is very simple: once
at some step of the dovetailing a new set C of complexity
at most k — 3id + 20 = a; + ¢ appears, we include in B;
all the elements of the set U;;B X;. As X; C ngo X this
keeps (3) true. Moreover, this keeps true also the following
assertion: ~
(5) Forall1 <1< N forall z € X;\ X it holds A, (ay+6) >
k+36. .
And this also keeps (4) true since U;-;t
Z;;ll 938j  936(i—1)+1

We continue the dovetailing and update B;’s as described
until both (1) and (2) are true. Let us prove that this
happens eventually. It suffices to show that if (3), (4) and
(5) are true but (2) is not, or (2), (3), (4) and (5) are true
but (1) is not then at least one program of length < k' will
halt or A(z, K (z),o;) is undefined for some ! and some
z € X;.

Consider the second case: (2), (3), (4) and (5) are true
but (1) is not. Pick I such that |X;| > 239 If [ = 0, that
is, K (o) > k', we are done, as K () < k. Otherwise, let
S consist of the first 239 elements in X;. We claim that
K(S) <k—3l6+4logk < oy —e. To prove the claim we
will show that all S C X; obtained in this way are pairwise

|XJ| < 1+

disjoint, therefore their number is at most 2% /23/%. Thus
S may be identified by k,l and its index among all such
S CX;.

_ Therefore for all z € S we have A\, (o —¢) < k+4logk <
K(z) + 6log K(x) and the value A(z, K(x),a;) = 0 is not
correct. This implies that K (z) is not correct for all z € S.
We continue the dovetailing until all elements of S move
outside X;. Then S becomes disjoint with Xq U --- U X
and therefore it will be disjoint with all future versions of
X;.

Consider the first case: (3), (4) and (5) are true but
(2) is not. Pick ! and = € X; such that Az, K(z), o)
is undefined or A(z, K (x),0q) = 1. If A(zx, K(z),q,) is
undefined then we are done: since \,(q; +¢€) > Ay (g +
§) > k+ 30 > K(z) + 3, either Ao or K will decrease,
or A(z, K(z),0q) will get defined. Consider the other case.
Obviously z ¢ X;\ X;. By (5) we have A, (a;+¢) > Ay (oy+
8) > k436 > K (x)+ 3¢. Therefore A\, (o +68) < Az (oq +6)
or K(z) < K(z) and we are done.

After 2% stages the set | X| has 2% elements and we have
a contradiction. Indeed, all X;,..., Xy form a very small
part of X because of (1). The sets By,..., By together
form also a very small part of X because of (4). Thus for
most strings z € X it holds K(z) < k' — N +1 < k which
is a contradiction. [ |

Remark B.j: Let us replace in the above promise prob-
lem K(z), the prefix complexity of z, by C(z), the
plain complexity of z. For the modified problem we can
strengthen the above theorem by allowing & = |z|/c where
the constant ¢ depends on the reference computer. Indeed
for every z € X we have C(z) < k+ O(1): every z € X
can be described by its index in X in exactly k bits and
the value of k£ may be retrieved from the length of the de-
scription of z. Therefore we will need N = O(1) to obtain
a contradiction. O

After a discussion of these results, Andrei A. Muchnik
suggested, and proved, that if we are also given an ag such
that Az (ap) = K(x) but Az(a) is much bigger than K (z)
for @ much less than ag (which is therefore the complexity
of the minimal sufficient statistic), then we can compute
Az over all of its domain. This result underlines the signifi-
cance of the information contained in the minimal sufficient
statistic:

Theorem B.5: There are a constant ¢ > 0 and an algo-
rithm that given any z, k, ag with K(z) < k < A\, () finds
a non-increasing function A defined on [0, k] such that A\, =
E(A) with § = Az (a)—K (2)+0(1) and e = ap—ay+clogk
where o = min{a : \;(a) < k+ clogk}.

Proof: The algorithm is a follows. Let Dy = {(y,1) |
K(y) <i < k} C D. Enumerate pairs (y,i) € Dy, until a
pair (x,io) appears and form a list of all enumerated pairs.
For a < ag define A\(a) to be the minimum ¢ + log |S| over
all S 5 z such that a pair (z,4) with ¢ < « is in the list.
For ag < a <k let A(a) = k.

For every a > ap we have A\,(a) > K(z) — O(1) >
k=X (o) +K(2) —O(1) = Aa) =6 and Ay (@) < Az(ag) <
k+ (Az(a0) — K(2)) < Ma) +4.

For every a < ag we have \;(a) < A(a). So it remains



to show that for every ¢ < a < ag we have A(a) < Az(a —
€) + d. We will prove a stronger statement: A(a) = Az(a)
for every a < ay — € provided c is chosen appropriately.
To prove this it suffices to show that all for all S with
K(S) < ag — ¢ the pair (S, K(S)) belongs to the list.

By Theorem V.4 Item (i) we have A;(|mF| + ¢ logk) <
k 4+ cologk. That is, oy < |mk| + ¢;logk if ¢ > ¢y and
ag—e=ay—ag+a; —clogk < |mk| + (¢; —¢)logk.

From the proof of Theorem V.2 we see that there is a
constant c3 such that for every y with K(y) < |mk| —
czlogk the index of (y, K(y)) in the enumeration of Dy
has less than [m¥| common bits with N*¥. Assuming that
¢ > ¢1 +c3 we obtain that the indexes of all pairs {y, K (y))
with K (y) < ag — ¢ in the enumeration of Dy, are less than
Ik [

Randomness Deficiency Function: The function
Bz () is computable from z, o given an oracle for the halt-
ing problem: run all programs of length < a dovetailed
fashion and find all finite sets S containing x that are pro-
duced. With respect to all these sets determine the con-
ditional complexity K (z | S*) and hence the randomness
deficiency d(z | S). Taking the minimum we find S, (a). All
these things are possible using information from the halting
problem to determine whether a given program will termi-
nate or not. It is also the case that the function B;(a)
is upper semi-computable from z,a, K(z) up to a loga-
rithmic error: this follows from the semi-computability of
Az(a) and Theorem IV.8. More subtle is that 3, is not
semi-computable, not even within a large margin of error:

Theorem B.6: The function S, (a) is

(i) not lower semi-computable to within precision |z|/3;
and

(ii) not upper semi-computable to within precision
||/ log* |z|.

Proof: (i) The proof is by contradiction. Assume
Item (i) is false. Choose an arbitrary length n. Let 8
be a function defined by (i) = § for 0 < 4 < %, and
equal 0 otherwise. Then the function §, with z of length
n, corresponding to 3, by Corollary IV.9, has z with k& =
K (z) satisfying 3(0) = n — k + O(logn) so that k = § +
O(logn). Moreover, (i) = § &+ O(logn) for O(logn) <
i < $—0(logn), and B,(i) = O(logn) fori > Z+0O(logn).
Write the set of such z’s as X. By dovetailing the lower
approximation of 3, () for all z of length n and some i with
g <@ < 7, by assumption on lower semi-computability of
Bz, we must eventually find an z, if not z ¢ X then z €
X, for which the lower semi-computation of 8, (i) exceeds
5 — % — O(logn). But we know from Corollary V.9 that
Bz(i) = O(logn) for i > K(x) + O(logn), and hence we
have determined that i — O(logn) < K(z). Therefore,
K(z) > § —O(logn). But this contradicts the well-known
fact [13] that there is no algorithm that for any given n finds
a string of complexity at least f(n) where f is a computable
total unbounded function.

(ii) The proof is by contradiction. Assume Item (ii) is
false. Fix a large length n = 2% and let 4; = {0,1}", so
that @ = 2logk > K(A;). Let x be a string of length
n, let N® < 2°*! be the number of halting programs of

length at most «, and let A = {A;,..., A} be the set
of all finite sets of complexity at most a. Since z € Aj,
the value f,(a) is finite and () = mingc4{0(z | A)}.
Assuming (3, is upper semi-computable, we can run the
following algorithm:

Algorithm: Given N, o, and z,

Step 1: Enumerate all finite sets A = {44,...,4,} of
complexity K(A;) < a. Since we are given N* a we can
list them exhaustively.

Step 2: Dovetail the following computations simultane-
ously:

Step 2.1: Upper semi-compute 3, (), for all z of length
n.

Step 2.2: For alli =1,...,m, lower semi-compute §(z |

We write the approximations at the tth step as % (a),
8t (z | A;), and Kt(z | A;), respectively. We continue the
computation until step ¢ such that

Bz(@) < min{6'(z | A)} +n/log n.

This ¢t exists by the assumption above.
minge4{6(z | A)} = Br(a) < Bi(a). Let A® denote
the set minimizing the right-hand side. (Here we use
that x belongs to a set in A.) Together, this shows that
log|A?|— B (a) < K(z | A®) and log |A7| - B;(a) > K'(z |
A%Y—n/log*n > K (2 | A%)—n/log" n). Thus we obtained
an estimation log |4%| — % (a) of K (z | A®) with precision
n/log* n. We use that K (z | A%) is a good approximation
to K(x):

By definition,

Kiz|A%)—c <K(z) <Kz | A") + A%+
SK($|A$)+CM+617

where ¢; is a constant. Consequently,
K(K(z) | 2) < K(N® o, K(z) —log |A®| + B3 (a)) + ca.

where the constant ¢ is the length of a program to re-
construct a, N and K(z) — log|A?| + Bi(a) < a +
a+n/ log* n, and combining this information with the
conditional information z, to compute K (z). Observing
K(N®) = a — K(a) + O(1) by [10], and substituting
a = 2loglogn, there is a constant ¢z such that

K(K(z) | z) <2loglogn + logn — 4loglogn + cs.

However, for every n, we can choose an z of length n such
that K(K(z) | z) > logn —loglogn by [8], which gives the
required contradiction. |

Open question. Is there a non-increasing (with respect
to a) upper semi-computable function f,(a) such that, for
all z, By(a) = E(fz(a)) for e = § = O(log|z|) (or for
e =6 = of|a))?
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